835.

ON CARDAN'S SOLUTION OF A CUBIC EQUATION.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 96, 97.]
IT is interesting to see how the solution comes out when one root of the equation is known. Say the equation is $x^{3}+q x-r=0$, where $a^{3}-q \alpha-r=0$, that is, $r=a^{3}+q a$.

Solving in the usual manner, we have

$$
x=y+z, \quad y^{3}+z^{3}-r+(y+z)(3 y z+q)=0,
$$

whence

$$
\begin{aligned}
y^{3}+z^{3} & =r \\
y z & =-\frac{1}{3} q
\end{aligned}
$$

and thence

$$
\left(y^{3}-z^{3}\right)^{2}=r^{2}+\frac{4}{27} q^{3}, \quad=a^{6}+2 q a^{4}+q^{2} a^{2}-\frac{4}{27} q^{3}, \quad=\left(a^{2}+\frac{4}{3} q\right)\left(a^{2}+\frac{1}{3} q\right)^{2} ;
$$

or say
and therefore

$$
y^{3}-z^{3}=\left(a^{2}+\frac{1}{3} q\right) \sqrt{ }\left(a^{2}+\frac{4}{3} q\right) ;
$$

$$
\begin{array}{ll}
8 y^{3}=4 a^{3}+4 q a+\left(4 a^{2}+\frac{4}{3} q\right) \sqrt{ }\left(a^{2}+\frac{4}{3} q\right), & =\left\{a+\sqrt{ }\left(a^{2}+\frac{4}{3} q\right)\right\}^{3}, \\
8 z^{3}=4 a^{3}+4 q a-\left(4 a^{2}+\frac{4}{3} q\right) \sqrt{ }\left(a^{2}+\frac{4}{3} q\right), & =\left\{a-\sqrt{ }\left(a^{2}+\frac{4}{3} q\right)\right\}^{3} ;
\end{array}
$$

where observe that the essential step is the expression of the irrational functions as perfect cubes: that the functions are the cubes of $a \pm \sqrt{ }\left(a^{2}+\frac{4}{3} q\right)$ respectively is seen to be true; but if we were to attempt to find a cube root $\alpha+\beta \sqrt{ }\left(\alpha^{2}+\frac{4}{3} q\right)$ by an algebraical process, we should be thrown back upon the original cubic equation.

Writing then ω for an imaginary cube root of unity, we have

$$
\begin{aligned}
& 2 y=\left(1, \omega \text { or } \omega^{2}\right)\left\{a+\sqrt{ }\left(a^{2}+\frac{4}{3} q\right)\right\}, \\
& 2 z=\left(1, \omega^{2} \text { or } \omega\right)\left\{a-\sqrt{ }\left(a^{2}+\frac{4}{3} q\right)\right\} ;
\end{aligned}
$$

and then

$$
x=y+z=a, \text { or }=-\frac{1}{2} a \pm \frac{1}{2}\left(\omega-\omega^{2}\right) \sqrt{ }\left(a^{2}+\frac{4}{3} q\right),
$$

where $\omega-\omega^{2}=i \sqrt{ } 3$; the last two roots are of course the roots of the quadric equation $x^{2}+a x+a^{2}+q=0$, which is obtained by throwing out the factor $x-a$ from the givan equation $x^{3}+q x-r=0$.

Cambridge, Sep. 17, 1884.

