837.

ON THE SO-CALLED D'ALEMBERT CARNOT GEOMETRICAL PARADOX.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 113, 114.]

The present note has reference to Prof.' Sylvester's paper on this subject [l.c., pp. 92-96]. I cannot admit that D'Alembert and Carnot raised a well-founded objection "to the then and even now too prevalent interpretation of the meaning of the geometrical positive and negative": it appears to me that the objection was not a well-founded one.

Consider through the origin K an indefinite line $t^{\prime} K t$, and measure off from K in the sense $K t$ a distance equal to the positive quantity α, and let m be the extremity of the distance thus measured off. There is not in the ordinary theory any reason why the distance $K m$ should be $=+\alpha$ rather than $=-\alpha$; it is $=+\alpha$, if $K t$ be the positive sense of the line through K, and it is $=-\alpha$ if $K t^{\prime}$ be the positive sense of the line through K; if it be undetermined which of the two is the positive sense, then the distance $K m$ is $= \pm \alpha$, the sign being essentially indeterminate.

The problem is from a point K outside a given circle to draw a line $K m m^{\prime}$ such that the intercepted portion mm^{\prime} within the circle has a given value c.

Supposing that the line from K to the centre meets the circle in the points A, B at the distances $K A=a, K B=b$; then if $K m=r$, we have $a b=r(c+r)$, or $r=-\frac{1}{2} c \pm \sqrt{ }\left(\frac{1}{4} c^{2}+a b\right)$; viz. we have for r, not simultaneously but alternatively, the positive value $-\frac{1}{2} c+\sqrt{ }\left(\frac{1}{4} c^{2}+a b\right)$, and the negative value $-\frac{1}{2} c-\sqrt{ }\left(\frac{1}{4} c^{2}+a b\right)$, the latter of these being the greatest in absolute magnitude; say the values are $+\rho_{1}$ and $-\rho_{2}$. We may with either of these values construct the point m; viz. we obtain m as one of the intersections of the given circle with the circle centre K and radius ρ_{1}, o_{z} else with the circle centre K and radius - ρ_{2} (that is, radius ρ_{2}); and attending to the intersections on the same side of the line from K to the centre, it happens that c. XII. 39
the two points m thus determined are on one and the same line $t^{\prime} K t$; but there is no $\dot{\alpha}$ priori reason why the positive senses should be the same, and they are in fact opposite to each other, in the two cases respectively; in the one case we measure off the distance ρ_{1} in the sense $K t$, in the other case the distance $-\rho_{2}$ in the sense $K t^{\prime}$; that is, we in fact measure off the positive distances $+\rho_{1}$, and $+\rho_{2}$, in one and the same sense $K t$; thus obtaining for the point m one or the other extremity of a determinate secant through K.

The best illustration is I think in the elementary problem of finding the perpendicular distance of a given line from the origin. Let $A x+B y+C=0$ be the equation of the given line: and first let a line be drawn in a determinate sense, say at the inclination θ to the positive part of the axis of x, to meet the given line. Taking r for the distance from the origin of the point of intersection, we have, for the coordinates of the point of intersection, $x, y=r \cos \theta, r \sin \theta$; and thence

$$
r(A \cos \theta+B \sin \theta)+C=0
$$

that is,

$$
r=\frac{-C}{A \cos \theta+B \sin \theta}
$$

a perfectly determinate value. But the perpendicular on the given line may be considered as drawn in one or the other of two opposite senses; that is, we have at pleasure

$$
\cos \theta, \sin \theta=\frac{A}{\sqrt{\left(A^{2}+B^{2}\right)}}, \frac{B}{\sqrt{\left(A^{2}+B^{2}\right)}},
$$

or else

$$
=\frac{-A}{\sqrt{\left(A^{2}+B^{2}\right)}}, \quad \frac{-B}{\sqrt{\left(A^{2}+B^{2}\right)}}
$$

and thence $r=\frac{-C}{\sqrt{\left(A^{2}+B^{2}\right)}}$, or else $r=\frac{+C}{\sqrt{\left(A^{2}+B^{2}\right)}}$; that is, the perpendicular distance is $=\frac{ \pm C}{\sqrt{ }\left(A^{2}+B^{2}\right)}$, with the essentially indeterminate sign \pm, because the distance may be considered as drawn from the origin in one or the other of the two opposite senses.

