839.

ON THE MATRICAL EQUATION $q Q-Q q^{\prime}=0$.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 176-178.]
I CONSIDER the matrical equation $q Q-Q q^{\prime}=0$, where q, q^{\prime} are given matrices $\left|\begin{array}{c}a, b \\ c, d\end{array}\right|,\left|\begin{array}{c}a^{\prime}, b^{\prime} \\ c^{\prime}, d^{\prime}\end{array}\right|$ and $Q,=\left|\begin{array}{c}A, B \\ C, D\end{array}\right|$ is a matrix which has to be determined. As remarked in the paper "On the Quaternion Equation $q Q-Q q^{\prime}=0$," Messenger, t. xiv. (1885), pp. 108-112, [836] the question for matrices is equivalent to that for quaternions: for a matrix $\left|\begin{array}{c}a, b \\ c, d\end{array}\right|$ may be regarded as a quaternion

$$
\frac{1}{2} a(1-\lambda i)+\frac{1}{2} b(j+\lambda k)+\frac{1}{2} c(-j-\lambda k)+\frac{1}{2} d(1+\lambda i),
$$

or (omitting the factor $\frac{1}{2}$) as the quaternion

$$
(a+d)-\lambda(a-d) i+(b-c) j-\lambda(b+c) k,
$$

where $\lambda,=\sqrt{ }(-1)$, is the imaginary of ordinary algebra. Hence considering q, q^{\prime} as denoting the quaternions

$$
\begin{aligned}
& (a+d)-\lambda(a-d) i+(b-c) j-\lambda(b+c) k, \\
& \left(a^{\prime}+d^{\prime}\right)-\lambda\left(a^{\prime}-d^{\prime}\right) i+\left(b^{\prime}-c^{\prime}\right) j-\lambda\left(b^{\prime}+c^{\prime}\right) k,
\end{aligned}
$$

we can, if a certain condition is satisfied, find a quaternion Q such that $q Q-Q q^{\prime}=0$; say this is $Q=W+i X+j Y+k Z$; putting this
we find

$$
=\frac{1}{2}\{(A+D)-\lambda(A-D) i+(B-C) j-\lambda(B+C) k\},
$$

$$
Q=\left|\begin{array}{c}
A, B \\
C,
\end{array}\right|, \quad=\left|\begin{array}{rr}
W+\lambda X, & Y+\lambda Z \\
-Y+\lambda Z, & W-\lambda X
\end{array}\right|
$$

for the required matrix Q; this being an indeterminate matrix, such that $A D-B C=0$.

But it is better to solve directly the matrical equation

$$
\left|\begin{array}{cc}
a, & b \\
c, & d
\end{array}\right|\left|\begin{array}{c}
A, B \\
C, D
\end{array}\right|-\left|\begin{array}{cc}
A, & B \\
C, & D
\end{array}\right|\left|\begin{array}{cc}
a^{\prime}, & b^{\prime} \\
c^{\prime}, & d^{\prime}
\end{array}\right|=0
$$

viz.
that is,

$$
\begin{array}{c|cccc}
& (A, C),(B, D) & & \left(a^{\prime}, c^{\prime}\right),\left(b^{\prime}, d^{\prime}\right) \\
(a, b) & " & " & -(A, B) & " \\
(c, d) & " & " & (C, D) & " \\
& " & "
\end{array}
$$

$$
\begin{aligned}
& A a+C b-\left(A a^{\prime}+B c^{\prime}\right)=0 \\
& B a+D b-\left(A b^{\prime}+B d^{\prime}\right)=0 \\
& A c+C d-\left(C a^{\prime}+D c^{\prime}\right)=0 \\
& B c+D d-\left(C b^{\prime}+D d^{\prime}\right)=0
\end{aligned}
$$

or, what is the same thing,

$$
\left|\begin{array}{rrrr}
a-a^{\prime}, & -c^{\prime}, & b & 0 \\
-b^{\prime}, & a-d^{\prime}, & 0 & , \\
c, & 0, & d-a^{\prime}, & -c^{\prime}, \\
0, & c, & -b^{\prime}, & d-d^{\prime},
\end{array}\right|(A, B, C, D)=0
$$

viz. we have (A, B, C, D) connected by these four linear equations: viz. the necessary condition is that the determinant formed out of the matrix which here presents itself shall be $=0$.

After some reductions, and putting for shortness

$$
\nabla=a d-b c, \quad \nabla^{\prime}=a^{\prime} d^{\prime}-b^{\prime} c^{\prime}
$$

this is found to be

$$
\left(\nabla-\nabla^{\prime}\right)^{2}+\left\{\nabla\left(a^{\prime}+d^{\prime}\right)-\nabla^{\prime}(a+d)\right\}\left(a^{\prime}+d^{\prime}-a-d\right)=0
$$

which is the condition for the existence of a solution. This condition being satisfied, the four equations will be equivalent to three independent equations, which serve to determine A, B, C, D; and, assuming the absolute value of A, we find

$$
\begin{array}{rlr}
A & =\quad-\left(a^{\prime}+d^{\prime}-a-d\right), \\
c^{\prime} B & =\nabla-\nabla^{\prime}+a^{\prime}\left(a^{\prime}+d^{\prime}-a-d\right), \\
b C & =\nabla-\nabla^{\prime}+a\left(a^{\prime}+d^{\prime}-a-d\right), \\
b c^{\prime} D & =\left(a^{\prime}-a\right) \nabla-\left(d-a^{\prime}\right) \nabla^{\prime}-a a^{\prime}\left(a^{\prime}+d^{\prime}-a-d\right),
\end{array}
$$

values which give

$$
-b c^{\prime}(A D-B C)=\left(\nabla-\nabla^{\prime}\right)^{2}+\left\{\nabla\left(a^{\prime}+d^{\prime}\right)-\nabla^{\prime}(a+d)\right\}\left(a^{\prime}+d^{\prime}-a-d\right),=0,
$$

viz. in the case where the given matrices satisfy the above-mentioned condition, the components A, B, C, D of the required matrix have determinate values which are such that $A D-B C=0$.

If we have $\nabla-\nabla^{\prime}=0$, that is, $a d-b c=a^{\prime} d^{\prime}-b^{\prime} c^{\prime}$, then the condition becomes $a^{\prime}+d^{\prime}=a+d$; and these two conditions being satisfied, the four equations reduce themselves to two independent equations, and the ratios $A: B: C: D$ have no longer determinate values; the linear equations may in fact be written

$$
\left(\left.\begin{array}{rrrr}
0, & b, & -c^{\prime}, & a-a^{\prime} \\
-b, & 0, & -a+d^{\prime}, & b^{\prime} \\
c^{\prime}, & a^{\prime}-d, & 0, & -c \\
d-d^{\prime}, & -b^{\prime}, & c, & 0
\end{array} \right\rvert\,\right.
$$

which are of the form

$$
\left(\left.\begin{array}{rrrr}
0, & \mathrm{~h}, & -\mathrm{g}, & \mathrm{a} \\
-\mathrm{h}, & 0, & \mathrm{f} & \mathrm{~b} \\
\mathrm{~g}, & -\mathrm{f}, & 0, & \mathrm{c} \\
-\mathrm{a}, & -\mathrm{b}, & -\mathrm{c}, & 0
\end{array} \right\rvert\,\right.
$$

where the coefficients a, b, c, f, g, h are such that $a f+b g+c h=0$; and the four equations are thus equivalent to two independent equations. To obtain a symmetrical solution, assume a relation

$$
D \xi+C \eta+B \zeta+A \omega=0,
$$

with arbitrary coefficients ξ, η, ζ, ω; we then find

$$
\begin{aligned}
& D=\quad \mathrm{c} \eta-\mathrm{b} \zeta+\mathrm{f} \omega, \\
& C=-\mathrm{c} \xi \cdot+\mathrm{a} \zeta+\mathrm{g} \omega, \\
& B=\mathrm{b} \xi-\mathrm{a} \eta \cdot+\mathrm{h} \omega, \\
& A=-\mathrm{f} \xi-\mathrm{g} \eta-\mathrm{h} \zeta .
\end{aligned}
$$

viz. the complete theorem is that, if the matrices

$$
q=\left|\begin{array}{cc}
a, b \\
c, d
\end{array}\right|, \quad q^{\prime}=\left|\begin{array}{c}
a^{\prime}, b^{\prime} \\
c^{\prime}, \\
d^{\prime}
\end{array}\right|
$$

are such that $a d-b c=a^{\prime} d^{\prime}-b^{\prime} c^{\prime}, a+d=a^{\prime}+d^{\prime}$, then writing

$$
\begin{array}{ll}
\mathrm{a}=a-a^{\prime},=-d+d^{\prime}, & \mathrm{f}=-a+d^{\prime},=-a^{\prime}+d, \\
\mathrm{~b}=b^{\prime}, & \mathrm{g}=-c^{\prime}, \\
\mathrm{c}=-c, & \mathrm{~h}=b,
\end{array}
$$

values which satisfy

$$
\mathrm{af}+\mathrm{bg}+\mathrm{ch}=0,
$$

and taking ξ, η, ζ, ω arbitrary, we have for the matrix Q, which is such that $Q q-Q q^{\prime}=0$, the expression

$$
Q=\left|\begin{array}{lrr}
-\mathrm{f} \xi-\mathrm{g} \eta-\mathrm{h} \zeta, & \mathrm{~b} \xi-\mathrm{a} \eta & +\mathrm{h} \omega \\
-\mathrm{c} \xi & \cdot+\mathrm{a} \zeta+\mathrm{g} \omega, & \mathrm{c} \eta-\mathrm{b} \zeta+\mathrm{f} \omega
\end{array}\right|,
$$

depending really on one arbitrary parameter, viz. we may without loss of generality put any two of the coefficients ξ, η, ζ, ω equal to 0 .
c. XII.

