841.

ON A DIFFERENTIAL OPERATOR.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 190, 191.]
Write $X=1+b x+c x^{2}+\ldots,=(1-\alpha x)(1-\beta x)(1-\gamma x) \ldots$; then by Capt. MacMahon's theorem, any non-unitary function of the roots $\alpha, \beta, \gamma, \ldots$ is reduced to zero by the operation
for instance, if

$$
\Delta,=\partial_{b}+b \partial_{c}+c \partial_{d}+\ldots ;
$$

we have

$$
\text { (2), }=\Sigma \alpha^{2}=b^{2}-2 c \text {, }
$$

We have

$$
\Delta\left(b^{2}-2 c\right)=2 b+b(-2),=0 .
$$

$$
\Delta X=x+b x^{2}+c x^{3}+\ldots=x X
$$

and writing, moreover, $X^{\prime},=b+2 c x+3 d x^{2}+\& \mathrm{c}$., for the derived function of X, then

$$
\Delta X^{\prime}=1+2 b x+3 c x^{2}+\ldots=(x X)^{\prime}
$$

We can hence shew that $\Delta\left(\frac{X^{\prime}}{\bar{X}}-b\right)=0$; the value is, in fact,

$$
\frac{\Delta X^{\prime}}{X}-\frac{X^{\prime} \Delta X}{X^{2}}-\Delta b, \text { that is, } \frac{(x X)^{\prime}}{X}-\frac{X^{\prime} x X}{X^{2}}-1
$$

which is

$$
=\frac{X+x X^{\prime}}{X}-\frac{x X^{\prime}}{X}-1,=0
$$

This is right, for $\frac{X^{\prime}}{X}$ is a sum of non-unitary symmetric functions of the roots; in fact,

$$
\frac{X^{\prime}}{\bar{X}}=\Sigma \frac{-\alpha}{1-\alpha x}=-(1)-(2) x-(3) x^{2}-\& \bar{c} .
$$

or since $b=-(1)$, this is

$$
\frac{X^{\prime}}{\bar{X}}-b=-(2) x-(3) x^{2}-\& c .
$$

a sum of non-unitary functions of the roots.

