842.

ON THE VALUE OF $\tan (\sin \theta)-\sin (\tan \theta)$.

[From the Messenger of Mathematics, vol. xiv. (1885), pp. 191, 192.]

The following equation is given p. 59 of the Lady's and Gentleman's Diary for 1853 :

$$
\tan (\sin \theta)-\sin \tan \theta=\frac{1}{30} \theta^{7}+\frac{29}{756} \theta^{9}+\& c .
$$

Write in general

$$
\begin{aligned}
& X=\theta+A \theta^{3}+B \theta^{5}+C \theta^{7}+D \theta^{9}+\ldots \\
& Y=\theta+A^{\prime} \theta^{3}+B^{\prime} \theta^{5}+C^{\prime} \theta^{7}+D^{\prime} \theta^{9}+\ldots
\end{aligned}
$$

Then, as far as θ^{9}, we have

$$
\begin{aligned}
& X+A^{\prime} X^{3}+B^{\prime} X^{5}+C^{\prime} X^{7}+D^{\prime} X^{9} \\
& =\theta+A \theta^{3}+B \theta^{5}+\quad C \theta^{7}+\quad D \theta^{9} \\
& +A^{\prime}\left\{\theta^{3}+3 A \theta^{5}+3\left(A^{2}+B\right) \theta^{7}+\left(A^{3}+6 A B+3 C\right) \theta^{9}\right\} \\
& +B^{\prime}\left\{\quad \theta^{5}+\quad 5 A \theta^{7}+\left(10 A^{2}+5 B\right) \theta^{9}\right\} \\
& +C^{\prime \prime}\left\{\quad \theta^{7}+\quad 7 A \theta^{9}\right\} \\
& +D^{\prime}\left\{\quad \theta^{9}\right\} \\
& =+\theta \\
& +\theta^{3}\left(A+A^{\prime}\right) \\
& +\theta^{5}\left(B+3 A A^{\prime}+B^{\prime}\right) \\
& +\theta^{7}\left(C+3 A^{2} A^{\prime}+3 A^{\prime} B+5 A B^{\prime}+C^{\prime \prime}\right) \\
& +\theta^{9}\left(D+A^{3} A^{\prime}+6 A A^{\prime} B+3 A^{\prime} C+10 A^{2} B^{\prime}+5 B B^{\prime}+7 A C+D^{\prime}\right),
\end{aligned}
$$

and hence

$$
\begin{gathered}
X+A^{\prime} X^{3}+B^{\prime} X^{5}+C^{\prime} X^{7}+D^{\prime} X^{9} \\
-Y-A Y^{3}-B Y^{5}-C Y^{7}-D Y^{9} \\
=\theta^{7}\left\{3 A A^{\prime}\left(A-A^{\prime}\right)+2\left(A B^{\prime}-A^{\prime} B\right)\right\} \\
+\theta^{9}\left\{A A^{\prime}\left(A^{2}-A^{\prime 2}\right)+6 A A^{\prime}\left(B-B^{\prime}\right)+4\left(A C^{\prime}-A^{\prime} C\right)+10\left(A^{2} B^{\prime}-A^{\prime 2} B\right)\right\}
\end{gathered}
$$

Now let

$$
\begin{aligned}
& X=\sin \theta=\frac{1}{6} \theta^{3}+\frac{1}{120} \theta^{5}-\frac{1}{5040} \theta^{7}+\ldots ; \quad A=-\frac{1}{6}, \quad B=\frac{1}{120}, C=-\frac{1}{5040} \\
& Y=\tan \theta=\frac{1}{3} \theta^{3}+\frac{2}{15} \theta^{5}+\frac{17}{315} \theta^{7}-\ldots ; \quad A^{\prime}=\frac{1}{3}, \quad B^{\prime}=\frac{2}{15}, C^{\prime}=\frac{17}{315}
\end{aligned}
$$

we have therefore

$$
\begin{gathered}
A A^{\prime}=-\frac{1}{18}, \quad A-A^{\prime}=-\frac{1}{2}, \quad A+A^{\prime}=\frac{1}{6}, \quad B-B^{\prime}=-\frac{1}{8} \\
A B^{\prime}-A^{\prime} B=-\frac{1}{40}, \quad A C^{\prime}-A^{\prime} C=-\frac{1}{112}, \quad A^{2} B^{\prime}-A^{\prime 2} B=\frac{1}{360}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \text { coeff. } \theta^{7}=\frac{1}{12}-\frac{1}{20},=\frac{1}{30} \\
& \text { coeff. } \theta^{9}=\frac{1}{216}+\frac{1}{24}-\frac{1}{28}+\frac{1}{36},=\frac{29}{756}
\end{aligned}
$$

and the required equation is thus verified.

