846.

A VERIFICATION IN REGARD TO THE LINEAR TRANSFORMATION OF THE THETA-FUNCTIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxi. (1886), pp. 77-84.]

The notation is that of Smith's* "Memoir on the Theta and Omega Functions," differing from Hermite's only in a factor, $\mathscr{I}_{m, n}$ (Smith) $=i^{m n} 9_{m, n}$ (Hermite); and it is in consequence of this that the factor $\dot{i}^{\mu \nu-m n}$ occurs in the expression presently given for δ. Hermite's Memoir "Sur quelques formules relatives à la transformation des fonctions elliptiques" appeared in Liouville, t. III. (1858), pp. 27-36.

Writing

$$
\omega=\frac{c+d \Omega}{a+b \Omega}
$$

where $a d-b c=1$, the formula of transformation is

$$
\mathcal{I}_{\mu, \nu}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}=C \exp \left\{-i \pi b(a+b \Omega) \frac{x^{2}}{h^{2}}\right\} \operatorname{I}_{m, n}\left(\frac{\pi x}{h}, \omega\right)
$$

where

$$
\begin{aligned}
& m=a \mu+b \nu+a b \\
& n=c \mu+d \nu+c d
\end{aligned}
$$

We have, according as b is positive or negative,
where for each case the square root is to be taken in such wise that the real part is positive ; δ, H are eighth roots of unity; viz. in each case

$$
\begin{gathered}
\delta=\exp \left\{-\frac{1}{4} \pi i\left(a c \mu^{2}+2 b c \mu \nu+b d \nu^{2}+2 a b c \mu+2 a b d \nu+a b^{2} c\right)\right\} i^{\mu \nu-m n}, \\
\text { [* H. J. S. Smith, Collected Mathematical Papers, vol. I., pp. 415-621.] }
\end{gathered}
$$

c. XII.
and, according as b is positive or negative,

$$
\begin{aligned}
& H=\left(\frac{b}{a}\right) i^{-\frac{-3}{} a}, \quad a \text { odd, } \quad H=\left(\frac{-b}{-a}\right) i^{i a a}, \quad a \text { odd, } \\
& H=\left(\frac{a}{b}\right) i^{-\frac{1}{3} a-\frac{1}{2}(a-1)(b-1)}, b \text { odd, } \quad H=\left(\frac{-a}{-b}\right) i^{\frac{1}{\frac{1}{2}^{a-\frac{1}{2}}(a+1)(b+1)}, b \text { odd, }, ~}
\end{aligned}
$$

where $\left(\frac{a}{b}\right)$, \&c., are the Legendrian symbols as generalised by Jacobi; if a and b are each of them odd, the formulæ for the cases a odd and b odd respectively are equivalent to each other, and either may be used indifferently.

To fix the ideas, I assume throughout that b is positive and odd; the proper formulæ thus are

$$
C=\frac{\delta H}{\sqrt{\{-i(a+b \Omega)\}}}
$$

δ as above, and

$$
H=\left(\frac{a}{b}\right) i^{-\frac{1}{2} a-\frac{1}{2}(a-1)(b-1)}
$$

I will also, for greater convenience, assume that c is odd; $a d$ is consequently even, viz. the numbers a and d are each of them even, or else one is odd and the other even.

The equation $\omega=\frac{c+d \Omega}{a+b \Omega}$ gives $\Omega=\frac{c-a \omega}{-d+b \omega}$, and thence

$$
a+b \Omega=\frac{-1}{-d+b \omega}
$$

Comparing the expressions for ω, Ω, it appears that we may interchange ω and Ω, writing also $-d, b, c,-a$ for a, b, c, d; and changing the other letters, we may for

$$
a, b, c, \quad d, \omega, \Omega, \mu, \nu, m, n
$$

write

$$
-d, b, c,-a, \Omega, \omega, m, \eta, m^{\prime}, n^{\prime}
$$

where

$$
\begin{aligned}
& m^{\prime}=-d m+b n-b d \\
& n^{\prime}=c m-a n-a c .
\end{aligned}
$$

The formula thus becomes

$$
I_{m, n}\left\{(-d+b \omega) \frac{\pi x}{h}, \omega\right\}=C^{\prime} \exp \left\{-i \pi b(-d+b \omega) \frac{x^{2}}{h^{2}}\right\} 9_{m^{\prime}, n^{\prime}}\left(\frac{\pi x}{h}, \Omega\right)
$$

or, for x writing $(a+b \Omega) x$, this is

$$
\Im_{m, n}\left\{-\frac{\pi x}{h}, \omega\right\}=C^{\prime} \exp \left\{i \pi(a+b \Omega) \frac{x^{2}}{h^{2}}\right\} \ni_{m^{\prime}, n^{\prime}}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}
$$

or, observing that the left-hand side is $=(-)^{m n} 9\left(\frac{\pi x}{h}, \omega\right)$, we have

$$
9_{m^{\prime}, n^{\prime}}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}=\frac{(-)^{m n}}{C^{\prime}} \exp \left\{-i \pi(a+b \Omega) \frac{x^{2}}{\left.\overline{h^{2}}\right\}}\right\} g_{m, n}\left(\frac{\pi x}{h}, \omega\right),
$$

an equation which is of the same form as the original equation of transformation, and is to be identified with it.

We have

$$
\begin{aligned}
m^{\prime}=-d m+b n-b d= & -d(a \mu+b \nu+a b) \quad=-\mu+b d(-a+c-1) \\
& +b(c \mu+d \nu+c d)-b d, \\
n^{\prime}=c m-a n-a c= & c(a \mu+b \nu+a b)=-\nu+a c(b-d-1) \\
& -a(c \mu+d \nu+c d)-a c
\end{aligned}
$$

values which may be written

$$
\begin{array}{ll}
m^{\prime}=2 P-\mu, & \text { where } \quad P=\frac{1}{2} b d(-a+c-1), \\
n^{\prime}=2 Q-\nu, \quad „ \quad Q=\frac{1}{2} a c(\quad b-d-1),
\end{array}
$$

P and Q being integers. In fact, P is an integer if b or d is even, and if they are each of them odd, then from the equation $a d-b c=1, a$ and c will be one of them odd, the other even, and $-a+c-1$ will be even; and similarly for Q.

The left-hand side is

$$
\mathcal{I}_{2 P-\mu, 2 Q-\nu}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}
$$

which is

$$
=(-)^{\mu(Q-\nu)} \mathscr{9}_{\mu, \nu}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\},
$$

and the equation finally is

$$
(-)^{\mu(Q-\nu)} \mathscr{\Im}_{\mu, \nu}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}=\frac{(-)^{m n}}{C^{\prime}} \exp \left\{-i \pi(a+b \Omega) \frac{x^{2}}{h^{2}}\right\} ף_{m, n}\left(\frac{\pi x}{h}, \omega\right) .
$$

Comparing this with the original equation

$$
9_{\mu, v}\left\{(a+b \Omega) \frac{\pi x}{h}, \Omega\right\}=C \exp \left\{-i \pi(a+b \Omega) \frac{x^{2}}{h^{2}}\right\} 9_{m, n}\left(\frac{\pi x}{h}, \omega\right)
$$

the two equations will be identical if only

$$
C C^{\prime}=(-)^{-\mu Q+\mu \nu-m n}
$$

We have

$$
C=\frac{\delta H}{\sqrt{\{-i(a+b \Omega)\}}}, \quad C^{\prime}=\frac{\delta^{\prime} H^{\prime}}{\sqrt{\{-i(-d+b \omega)\}}},
$$

where the square roots are taken in such wise that the real part is positive; hence

$$
C C^{\prime}=\frac{\delta \delta^{\prime} H H^{\prime}}{\sqrt{ }(+1)}
$$

where $\sqrt{ }(+1)$ means

$$
\sqrt{ }\{-i(a+b \Omega)\} \cdot \sqrt{ }\{-i(-d+b \omega)\}
$$

the last-mentioned two square roots being as just explained; and we have moreover

$$
\begin{aligned}
& \delta=\exp \left\{-\frac{1}{4} i \pi\left(\quad a c \mu^{2}+2 b c \mu \nu+b d \nu^{2}+2 a b c \mu+2 a b d \nu+a b^{2} c\right)\right\} i^{\mu \nu-m n}, \\
& \delta^{\prime}=\exp \left\{-\frac{1}{4} i \pi\left(-d c m^{2}+2 b c m n-a b n^{2}-2 d b c m+2 a b d n-d b^{2} c\right)\right\} i^{m n-m^{\prime} n^{\prime}},
\end{aligned}
$$

viz. the value of δ^{\prime} is obtained from that of δ by the change $a, b, c, d, \mu, \nu, m, n$ into $-d, b, c,-a, m, n, m^{\prime}, n^{\prime}$.

Representing these by

$$
\delta=\exp \left\{-\frac{1}{4}(i \pi) \Delta\right\} i^{\mu \nu-m n}, \quad \delta^{\prime}=\exp \left\{-\frac{1}{4}(i \pi) \Delta^{\prime}\right\} i^{m n-m^{\prime} n^{\prime}},
$$

we have

$$
\delta \delta^{\prime}=\exp \left\{-\frac{1}{4} i \pi\left(\Delta+\Delta^{\prime}\right)\right\} \dot{\gamma}^{\mu \nu-m^{\prime} n^{\prime}} .
$$

But

$$
m^{\prime} n^{\prime}=(2 P-\mu)(2 Q-\nu),=4 P Q-2 P \nu-2 Q \mu+\mu \nu
$$

that is,

$$
\mu \nu-m^{\prime} n^{\prime}=-4 P Q+2 P \nu+2 Q \mu ;
$$

or, omitting the term divisible by 4 ,

$$
\dot{i}^{\mu \nu-m^{\prime} n^{\prime}}=i^{2 P_{\nu}+2 Q^{\mu}},=(-)^{P_{\nu}+Q \mu} .
$$

To calculate $\Delta+\Delta^{\prime}$, we have

$$
\begin{aligned}
d m-b n & =\mu+b d(\quad a-c) \\
-c m+a n & =\nu+a c(-b+d)
\end{aligned}
$$

and thence

$$
\begin{aligned}
-c d m^{2}+(a d+b c) m n-a b n^{2} & =\mu \nu+\mu a c(-b+d)+\nu b d(a-c)+a b c d(d-b)(a-c) \\
(-a d+b c) m n & =-a c \mu^{2}-b d \nu^{2}-(a d+b c) \mu \nu-\mu a c(b+d)-\nu b d(a+c)-a b c d
\end{aligned}
$$

consequently

$$
-c d m^{2}+2 b c m n-a b n^{2}=-a c \mu^{2}-b d \nu^{2}-2 b c \mu \nu-2 a b c \mu-2 b c d \nu+a b c d(2 b c-a b-c d)
$$

also

$$
\begin{array}{rlr}
-2 b c d m & = & -2 a b c d \mu-2 b^{2} c d \nu-2 a b^{2} c d \\
2 a b d n & = & 2 a b c d \mu+2 a b d^{2} \nu+2 a b c d^{2} \\
-d b^{2} c & = & -d b^{2} c,
\end{array}
$$

whence, adding, we obtain

$$
\left.\begin{array}{rl}
\Delta^{\prime}=-a c \mu^{2}-2 b c \mu \nu-b d \nu^{2}-2 a b c \mu+(-2 b c d- & 2 b^{2} c d
\end{array}+2 a b d^{2}\right) \nu \quad, ~+a b c d(2 b c-a b-c d-2 b+2 d)-d b^{2} c, ~ \$
$$

and, adding to this the expression of Δ, we find

$$
\Delta+\Delta^{\prime}=\left(2 a b d-2 b c d-2 b^{2} c d+2 a b d^{2}\right) \nu+a b^{2} c-d b^{2} c+a b c d(2 b c-a b-c d-2 b+2 d)
$$

The coefficient of ν is $=2 b d(a-c-b c+a d)=2 b d(a-c+1)$, which is $=-4 P \nu$. Hence writing

$$
\Theta=\frac{1}{4} a b c d(2 b c-a b-c d-2 b+2 d)+\frac{1}{4} b^{2} c(a-d),
$$

where observe that 4Θ, but not in every case Θ itself, is an integer, we have $\Delta+\Delta^{\prime}=-4 P \nu+4 \Theta$, and consequently

$$
\delta \delta^{\prime}=(-)^{\Theta+P_{\nu}}(-)^{P_{\nu}+Q \mu},=(-)^{\Theta+2 P_{v}+Q \mu},
$$

or, omitting the even number $2 P \nu$,

$$
\delta \delta^{\prime}=(-)^{\Theta+Q \mu} .
$$

Observe that $(-)^{\ominus}$ denotes, and it might properly have been written, $\exp i \pi \Theta$. The foregoing equation

$$
\frac{\delta \delta^{\prime} H H^{\prime}}{\sqrt{ }(+1)}=(-)^{-Q \mu+\mu \nu-m n}
$$

becomes thus

$$
(-)^{\ominus+Q_{\mu}} \frac{H H^{\prime}}{\sqrt{ }(+1)}=(-)^{-Q \mu+\mu \nu-m n},
$$

that is,

$$
\frac{H H^{\prime}}{\sqrt{ }(+1)}=(-)^{-\theta-2 Q \mu+\mu \nu-m n},
$$

where the even term $-2 Q \mu$ may be omitted. We have moreover

$$
\begin{aligned}
m n & =a c \mu^{2}+(a d+b c) \mu \nu+b d \nu^{2}+a c(b+d) \mu+b d(a+c) \nu+a b c d, \\
-\mu \nu & =\quad(-a d+b c) \mu \nu
\end{aligned}
$$

and thence

$$
m n-\mu \nu=a c\left(\mu^{2}-\mu\right)+2 b c \mu \nu+b d\left(\nu^{2}-\nu\right)+a c(b+d+1) \mu+b d(a+c+1) \nu+a b c d,
$$

where each term is even; hence $m n-\mu \nu$ is even, and we have simply

$$
\frac{H H^{\prime}}{\sqrt{ }(+1)}=(-)^{-\theta}
$$

where

$$
\Theta=\frac{1}{4} a b c d(a b+c d-2 b c+2 b-2 d)-\frac{1}{4} b^{2} c(a-d) .
$$

I write $M=\frac{1}{4} b(a-d)$, then

$$
\Theta-M=\frac{1}{4} a b c d(a b+c d-2 b c+2 b-2 d)-\frac{1}{4}(b c+1) b(a-d),
$$

where the second term is $=-\frac{1}{4} a b d(a-d)$, and we have therefore

$$
\Theta-M=\frac{1}{4} a b d\left(a b c+c^{2} d-2 b c^{2}+2 b c-2 c d-a+d\right) .
$$

I assume, as above, that b and c are each of them odd; therefore $a d$ is even. I suppose, first, that $a d$ divides by 4 , then $\frac{1}{4} a b d$ is an integer, and in the expression of $\Theta-M$, omitting even numbers, we have

$$
\Theta-M=\frac{1}{4} a b d\left(a b c+c^{2} d-a+d\right)
$$

which, putting therein $b c=a d-1$, becomes

$$
\begin{aligned}
& =\frac{1}{4} a b d\left(a^{2} d+c^{2} d-2 a+d\right) \\
& =\frac{1}{4} a b d\left\{a^{2} d+\left(c^{2}-c\right) d+(c+1) d-2 a\right\},
\end{aligned}
$$

where inside the $\}$ each term is even; hence $\Theta-M$ is even.
Next, if $a d$ is even but not divisible by 4 , then $b c=a d-1$, which is $\equiv 1(\bmod .4)$, thus b and c are

$$
\begin{aligned}
& =4 \sigma+1 \text { and } 4 \tau+1 \\
& =4 \sigma-1 \text { and } 4 \tau-1
\end{aligned}
$$

and, moreover, $b c=4 \theta+1$, and $c^{2}=4 \phi+1$; hence

$$
\Theta-M=\frac{1}{2} b \cdot \frac{1}{2} a d\{a(4 \theta+1)+d(4 \phi+1)-2 b(4 \phi+1)+2(4 \theta+1)-2 c d-a+d\},
$$

or, omitting even numbers, that is, inside the $\}$ numbers which contain the factor 4 , this is

$$
\begin{aligned}
& =\frac{1}{4} a b d(a+d-2 b+2-a+d), \\
& =\frac{1}{2} a b d(d-b+1-c d), \\
& =\frac{1}{2} a b d\{d(1-c)+1-b\},
\end{aligned}
$$

or, since each term within the $\}$ is even, we have in this case also $\Theta-M$ even. And this being so, the foregoing equation for $H H^{\prime}$ becomes

$$
\frac{H H^{\prime}}{\sqrt{(+1)}}=(-)^{-M},=(-)^{\frac{1}{b} b(d-a)}, \text { or say }=i^{\frac{1}{b}(d-a)}
$$

The values of H, H^{\prime}, refer each of them to a positive odd value of b, and they thus are

$$
\begin{aligned}
H & =\left(\frac{a}{b}\right) \quad i^{-\frac{1}{2} a-\frac{1}{2}(a-1)(b-1)} \\
H^{\prime} & =\left(-\frac{d}{b}\right) i^{\frac{1 d-d-\frac{1}{2}(-d-1)(b-1)}{}}
\end{aligned}
$$

hence

$$
H H^{\prime}=\left(\frac{a}{b}\right)\left(\frac{-d}{b}\right) i^{-\frac{1}{2}(a-d)-\frac{1}{2}(a-d-2)(b-1)}=\left(\frac{a}{b}\right)\left(\frac{-d}{b}\right) i^{b-1+\frac{1}{2} b(d-a)},
$$

or, since

$$
\left(\frac{-d}{b}\right)=(-)^{\frac{1}{2}(b-1)}\left(\frac{d}{b}\right)=i^{b-1}\left(\frac{d}{b}\right)
$$

and $2(b-1)$ divides by 4 , this is

$$
H H^{\prime}=\left(\frac{a}{\bar{b}}\right)\left(\frac{d}{b}\right) i^{z^{3(d-a)}} .
$$

Also $\left(\frac{a}{b}\right)\left(\frac{d}{b}\right)=\left(\frac{a d}{b}\right)$, but from the equation $a d-b c=1$, or $\frac{a d}{b}=c+\frac{1}{b}$, we have $\left(\frac{a d}{b}\right)=\left(\frac{1}{b}\right)=1$; whence

$$
H H^{\prime}=i^{\frac{3}{b}(d-a)}
$$

We have $\omega=x+i y$, where y is positive; hence

$$
-d+b \omega=-d+b x+i b y=\alpha+2 b y, \text { if } \alpha=-d+b x ;
$$

hence

$$
\begin{gathered}
a+b \Omega=\frac{-1}{\alpha+i b y}=\frac{-\alpha+i b y}{\alpha^{2}+\beta^{2} y^{2}} \\
-i(-d-b \Omega)=b y-i \alpha=R(\cos \theta+i \sin \theta) \\
-i(\quad a+b \Omega)=\frac{b y+i \alpha}{\alpha^{2}+\beta^{2} y^{2}}=\frac{R(\cos \theta-i \sin \theta)}{\alpha^{2}+\beta^{2} y^{2}},
\end{gathered}
$$

where R is positive; and $\cos \theta$ is positive since y is positive, and thus θ lies between $\frac{1}{2} \pi$ and $-\frac{1}{2} \pi$. Hence

$$
\sqrt{ }\{-i(-d+b \Omega)\}=\sqrt{ } R\left(\cos \frac{1}{2} \theta+i \sin \frac{1}{2} \theta\right)
$$

$\cos \frac{1}{2} \theta$ being positive,

$$
\sqrt{ }\{-i(\quad a+b \Omega)\}=\frac{\sqrt{ } R\left(\cos \frac{1}{2} \theta-i \sin \frac{1}{2} \theta\right)}{\sqrt{ }\left(\alpha^{2}+\beta^{2} y^{2}\right)}
$$

and thus

$$
\sqrt{ }\{-i(a+b \Omega)\} \sqrt{ }\{-i(-d+b \Omega)\}=\frac{R}{\sqrt{\left(\alpha^{2}+\beta^{2} y^{2}\right)}}=+1
$$

that is, $\sqrt{ }(+1)=+1$, and we thus have, as we should do,

$$
\frac{H H^{\prime}}{\sqrt{ }(+1)}=i^{\frac{1}{z}(d-a)}
$$

the equation which was to be verified.

