853.

NOTE ON A FORMULA FOR $\Delta^{n} 0^{i} / n^{i}$ WHEN n, i ARE VERY LARGE NUMBERS.

[From the Proceedings of the Royal Society of Edinburgh, t. xiv. (1887), pp. 149-153.]

The following formula

$$
\frac{\Delta^{n} 0^{i}}{n^{i}}=e^{-n q}\left[1+\left(\frac{i+1-2 n}{2 n}\right) q-\left(\frac{n+i+2}{2}\right) q^{2}\right], q=e^{-(i+1) / n},
$$

is given by Laplace (Théorie Analytique des Probabilités, 2nd ed., Paris, 1814, p. 195) as an approximate value of $\Delta^{n} 0^{i} / n^{i}$, when n and i are very large numbers, and is applied immediately afterwards to the case where i is of the order $n \log n$. As remarked by Professor Tait, it is certainly not applicable to the case where i is of the order n; for taking $i=A n$, where A is a given number however large, then q is indefinitely near to the very small value e^{-A}, but nevertheless the last term $-\frac{1}{2}(n+i+2) q^{2}$, by taking n sufficiently large, may be made as large as we please, and the value would thus come out negative. It is thus necessary that i should be at least of the order $n \log n$; but it may be of any higher order.

Writing for greater convenience $r=n e^{-i / n}$ (where r is not very large), then $n q=r e^{-1 / n}=r(1-X)$, if $X=1-e^{-1 / n}$; and the formula becomes

$$
\frac{\Delta^{n} 0^{i}}{n^{i}}=e^{-r(1-X)}\left[1+\frac{i+1-2 n}{2 n} e^{-1 / n} \frac{r}{n}-\frac{n+i+2}{2} e^{-2 / n} \frac{r^{2}}{n^{2}}\right] .
$$

Here $X=\frac{1}{n}-\frac{1}{1.2} \frac{1}{n^{2}}+\frac{1}{1.2 .3} \frac{1}{n^{3}}+\& c$., and the exponential $e^{r X}=1+r X+\frac{r^{2} X^{2}}{1.2}+\ldots$ is thus also expansible in negative powers of n; the formula becomes

$$
\frac{\Delta^{n} 0^{i}}{n^{i}}=e^{-r}\left(1+r X+\frac{r^{2} X^{2}}{1.2}+\ldots\right)\left[1+\frac{i+1-2 n}{2 n} \cdot e^{-1 / n} \frac{r}{n}-\frac{n+i+2}{2} e^{-2 / n} \frac{r^{2}}{n^{2}}\right]
$$

viz. putting for X its value,

$$
\begin{aligned}
=e^{-r}\{ & 1 \\
& +r\left(\frac{i+1-2 n}{2 n^{2}} e^{-1 / n}+1-e^{-1 / n}\right) \\
& +r^{2}\left(\frac{-n-i-2}{2 n^{2}} e^{-2 / n}+\frac{i+1-2 n}{2 n^{2}}\left(1-e^{-1 / n}\right) e^{-1 / n}+\frac{1}{2}\left(1-e^{-1 / n}\right)^{2}\right) \\
& +\& \text { c. }\}
\end{aligned}
$$

or finally, expanding $e^{-1 / n}$ and taking the whole result as far as $\frac{1}{n^{2}}$, the coefficient of r is

$$
\left(-\frac{1}{n}+\frac{i+1}{2 n^{2}}\right)\left(1-\frac{1}{n}\right)+\frac{1}{n}-\frac{1}{2 n^{2}}, \quad=\frac{1+\frac{1}{2} i}{n^{2}}
$$

the coefficient of r^{2} is

$$
\left(-\frac{1}{n}+\frac{-2-i}{n^{2}}\right)\left(1-\frac{2}{n}\right)+\left(-\frac{1}{n}+\frac{4 i}{2 n^{2}}\right) \frac{1}{n}+\frac{1}{2 n^{2}}, \quad=-\frac{1}{2}+\frac{-\frac{1}{2}-\frac{1}{2} i}{n^{2}} ;
$$

whence the formula becomes

$$
\frac{\Delta^{n} 0^{i}}{n^{2}}=e^{-r}\left\{1+r \frac{1+\frac{1}{2} i}{n^{2}}+\frac{r^{2}}{1.2}\left(-\frac{1}{n}+\frac{-1-i}{n^{2}}\right)+\ldots\right\} .
$$

It seems to me that the correct result up to this order of approximation is

$$
\frac{\Delta^{n} 0^{i}}{n^{2}}=e^{-r}\left\{1+r \frac{\frac{1}{2} i}{n^{2}}+\frac{r^{2}}{1.2}\left(-\frac{1}{n}+\frac{-i}{n^{2}}\right)\right\} .
$$

My investigation is as follows: we have

$$
\frac{\Delta^{n} 0^{i}}{n^{i}}=1-\frac{n}{1}\left(1-\frac{i}{n}\right)^{i}+\frac{n \cdot n-1}{1.2}\left(1-\frac{2}{n}\right)^{i}+\ldots
$$

the series being a finite one; but the number of terms is very large. But observe that, however large n is, we can take i so large that the second term $n\left(1-\frac{1}{n}\right)^{i}$ may be as small as we please; taking this term to be of moderate amount, say $=r_{1}$, the subsequent terms will be not very different from $\frac{r_{1}{ }^{2}}{1.2}, \frac{r_{1}{ }^{3}}{1.2 .3}, \ldots$, and the approximate value is $1-r_{1}+\frac{r_{1}{ }^{2}}{1.2}-\& c$ c, which is a convergent series having its
sum $=e^{-r_{1}}$. To work this properly out, I represent the successive terms by $r_{1}, \frac{r_{2}}{1.2}, \frac{r_{3}}{1.2 .3}, \ldots$, so that the series is

$$
=1-r_{1}+\frac{r_{2}}{1.2}-\frac{r_{3}}{1.2 .3}+\ldots
$$

Taking r a value at pleasure not very different from r_{1}, and multiplying by

$$
(1=) e^{-r} \cdot e^{r}=e^{-r} \cdot\left(1+r+\frac{r^{2}}{1.2}+\ldots\right)
$$

the sum is

$$
\begin{aligned}
&=e^{-r} \cdot\left\{1+\left(r-r_{1}\right)+\frac{1}{1.2}\left(r^{2}-2 r r_{1}+r_{2}\right)\right. \\
&\left.+\frac{1}{1.2 \cdot 3}\left(r^{3}-3 r^{2} r_{1}+3 r r_{2}-r_{3}\right)+\ldots\right\}
\end{aligned}
$$

Assuming now $r=n e^{-i / n}$, we have

$$
r_{1}=n\left(1-\frac{1}{n}\right)^{i}=n e^{i \log \left(1-\frac{1}{n}\right)}=r\left(1+X_{1}\right)
$$

where $X_{1}=e^{-\frac{1}{2} \frac{i}{n^{2}-\frac{1}{3} \frac{i}{n^{3}}-\ldots} \text {; and similarly }}$

$$
\begin{aligned}
r_{2} & =n \cdot n-1 \cdot\left(1-\frac{2}{n}\right)^{i}=n^{2}\left(1-\frac{1}{n}\right) e^{i \log \left(1-\frac{2}{n}\right)} \\
& =\left(1-\frac{1}{n}\right) r^{2}\left(1+X_{2}\right)
\end{aligned}
$$

where $X_{2}=e^{-\frac{14 i}{2 n^{2}} \frac{18 i}{3} n^{4}-\ldots}$; also

$$
\begin{aligned}
r_{3} & =n \cdot n-1 \cdot\left(1-\frac{2}{n}\right)^{i}=n^{2}\left(1-\frac{1}{n}\right) \cdot e^{i \log \left(1-\frac{2}{n}\right)} \\
& =\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) r^{3}\left(1+X_{3}\right)
\end{aligned}
$$

where $X_{3}=e^{-\frac{192}{2} n^{2}-\frac{127 i}{3} n^{3}-\ldots}$, and so on. It is now easy to calculate the successive terms $r-r_{1}, r^{2}-2 r r_{1}+r_{2}$, \&c.; and it is to be observed that, in the parts independent of the X 's, we have only terms divided by n, n^{2}, or higher powers of n : thus in $r^{4}-4 r^{3} r_{1}+6 r^{2} r_{2}-4 r^{3} r_{3}+r_{4}$, we have r^{4} multiplied by

$$
\begin{gathered}
1-4+6\left(1-\frac{1}{n}\right)-4\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right) \\
=\frac{3}{n^{2}}-\frac{6}{n^{3}}
\end{gathered}
$$

We thus obtain the formula

$$
\begin{aligned}
& \frac{\Delta^{n} 0^{i}}{n^{i}}=e^{-r}\left\{\begin{array}{l}
1
\end{array}\right. \\
& +r \quad\left(\quad-1 X_{1}\right) \\
& + \\
& +\frac{r^{2}}{1.2} \begin{cases}-\frac{1}{n} & \left.-2 X_{1}+\left(1-\frac{1}{n}\right) X_{2}\right\}\end{cases} \\
& +\frac{r^{3}}{1.2 .3}\left\{-\frac{2}{n^{2}} \quad-3 X_{1}+3\left(1-\frac{1}{n}\right) X_{2}-\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) X_{3}\right\} \\
& +\frac{r^{4}}{1.2 .3 .4}\left\{-\frac{3}{n^{2}}-\frac{6}{n^{3}}-4 X_{1}+6\left(1-\frac{1}{n}\right) X_{2}-4\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) X_{3}\right. \\
& \left.+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right) X_{4}\right\}+\ldots
\end{aligned}
$$

where $r=n e^{-i / n}$ as above, and X_{1}, X_{2}, \ldots have the above-mentioned values, the exponentials being expanded in negative powers of n.

Writing

$$
X_{1}=\frac{-\frac{1}{2} i}{n^{2}}, \quad X_{2}=\frac{-2 i}{n^{2}}
$$

we have

$$
\frac{\Delta^{n} 0^{i}}{n^{2}}=e^{-r}\left\{1+r \frac{\frac{1}{2} i}{n^{2}}+\frac{r^{2}}{2}\left(-\frac{1}{n}+\frac{-i}{n^{2}}\right)\right\},
$$

which is the foregoing approximate value.

