854.

AN ALGEBRAICAL TRANSFORMATION.

[From the Messenger of Mathematics, vol. xv. (1886), pp. 58, 59.]

The following algebraical transformation occurs in a paper by Hermite "On the theory of the Modular Equations," Comptes Rendus, t. xLviII. (1859), p. 1100.

Writing $q=1-2 u^{8}, l=1-2 v^{8}$, then in the transformation of the fifth order, the modular equation was expressed by Jacobi in the form

$$
\Omega,=(q-l)^{6}-256\left(1-q^{2}\right)\left(1-l^{2}\right)\left\{16 q l(9-q l)^{2}+9(45-q l)(q-l)^{2}\right\},=0
$$

and if we write herein $q=1-2 x, l=\frac{x+1}{x-1}$, or, what is the same thing, establish between q, l the relation $q-l=3+q l$, that is, between u, v the relation $v^{8}=1 \div\left(1-u^{8}\right)$, then the function Ω becomes

$$
\Omega=\frac{64}{(1-x)^{6}}\left\{\left(x^{2}-x+1\right)^{3}+2^{7}\left(x^{2}-x\right)^{2}\right\}\left\{\left(x^{2}-x+1\right)^{3}+2^{7} \cdot 3^{3}\left(x^{2}-x\right)^{2}\right\}
$$

or, what is the same thing, the equation $\Omega=0$ gives for $\frac{\left(x^{2}-x+1\right)^{3}}{\left(x^{2}-x\right)^{2}}$ the values -2^{7} and $-2^{7} \cdot 3^{3}$.

We, in fact, have

$$
\begin{aligned}
& q-l=3+q l=\frac{2\left(x^{2}-x+1\right)}{1-x} \\
& 1-q^{2}=4 x(1-x), \quad 1-l^{2}=\frac{-4 x}{(1-x)^{2}}
\end{aligned}
$$

and therefore

$$
\left(1-q^{2}\right)\left(1-l^{2}\right)=\frac{-16 x^{2}}{1-x} .
$$

Hence

$$
\Omega=\frac{64}{(1-x)^{6}}\left[\left(x^{2}-x+1\right)^{6}+64(1-x)^{5} \times x^{2}\left\{16 q l(9-q l)^{2}+9(45-q l)(3+q l)^{2}\right\}\right]
$$

and, putting for a moment $q l=\theta-3$, the term in $\}$ is found to be

$$
=7 \theta^{3}+3456 \theta-6912 ;
$$

viz. this is

$$
\begin{aligned}
& =\frac{56\left(x^{2}-x+1\right)^{2}}{(1-x)^{3}}+\frac{6912\left(x^{2}-x+1\right)}{1-x}-6912, \\
& =\frac{8}{(1-x)^{3}}\left\{7\left(x^{2}-x+1\right)^{3}+864(x-1)^{2}\left(x^{2}-x+1\right)+864(x-1)^{3}\right\}, \\
& =\frac{8}{(1-x)^{3}}\left\{7\left(x^{2}-x+1\right)^{3}+864\left(x^{2}-x\right)^{2}\right\} .
\end{aligned}
$$

Hence

$$
\Omega=\frac{64}{(1-x)^{6}}\left[\left(x^{2}-x+1\right)^{6}+512\left(x^{2}-x\right)^{2}\left\{7\left(x^{2}-x+1\right)^{3}+864\left(x^{2}-x\right)^{2}\right\}\right],
$$

which is

$$
=\frac{64}{(1-x)^{6}}\left\{\left(x^{2}-x+1\right)^{3}+2^{7}\left(x^{2}-x\right)^{2}\right\}\left\{\left(x^{2}-x+1\right)^{3}+2^{7} \cdot 3^{3}\left(x^{2}-x\right)^{2}\right\} .
$$

