857.

ANALYTICAL GEOMETRICAL NOTE ON THE CONIC.

[From the Messenger of Mathematics, vol. xv. (1886), p. 192.]
Take (X, Y, Z) the coordinates of a point on the conic $y z+z x+x y=0$, so that $Y Z+Z X+X Y=0$; clearly (Y, Z, X) and (Z, X, Y) are the coordinates of two other points on the same conic; I say that the three points are the vertices of a triangle circumscribed about the conic

$$
x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y=0 .
$$

In fact, the equation of one of the sides is

$$
\left|\begin{array}{lll}
x, & y, & z \\
X, & Y, & Z \\
Y, & Z, & X
\end{array}\right|=0
$$

say this is $A X+B Y+C Z=0$, where $A, B, C=X Y-Z^{2}, Y Z-X^{2}, X Z-Y^{2} ;$ and the condition in order that this side may touch the conic
is

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y=0 \\
B C+C A+A B=0
\end{gathered}
$$

But we have

$$
\begin{aligned}
B C+C A+A B= & Y^{2} Z^{2}+Z^{2} X^{2}+X^{2} Y^{2}-X\left(Y^{3}+Z^{3}\right)-Y\left(Z^{3}+X^{3}\right)-Z\left(X^{3}+Y^{3}\right) \\
& +X^{2} Y Z+X Y^{2} Z+X Y Z^{2} \\
= & (Y Z+Z X+X Y)\left(-X^{2}-Y^{2}-Z^{2}+Y Z+Z X+X Y\right)=0
\end{aligned}
$$

and similarly for the other two sides. The point (X, Y, Z) is an arbitrary point on the conic $y z+z x+x y=0$; and we thus see that we have a singly infinite series of triangles each inscribed in this conic and circumscribed about the conic

$$
x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y=0 .
$$

