864.

ON RUDIO'S INVERSE CENTRO-SURFACE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxir. (1887), pp. 1556-158.]

Dr F. Rudio, in an inaugural dissertation "Ueber diejenigen Flächen deren Krümmungsmittelpunktsflächen confokale Flächen zweiten Grades sind," Berlin, 1880, and Crelle's Journal, t. xcv., p. 240, has determined the surfaces having for their centro-surface (i.e., the locus of centres of curvature) the aggregate of the confocal quadric surfaces

$$
\begin{aligned}
& \frac{x^{2}}{a-\lambda}+\frac{y^{2}}{b-\lambda}+\frac{z^{2}}{c-\lambda}=1, \\
& \frac{x^{2}}{a-\mu}+\frac{y^{2}}{b-\mu}+\frac{z^{2}}{c-\mu}=1,
\end{aligned}
$$

or, what is the same thing, the surfaces orthotomic to the common tangents of these two surfaces. He obtains, as the final result of an elegant analytical investigation, the following formulæ:

$$
\begin{aligned}
& x=\sqrt{ }(a-\lambda) \sqrt{ }\left(\frac{a-u \cdot a-v}{a-b \cdot a-c}\right), \\
& y=\sqrt{ }(b-\lambda) \sqrt{ }\left(\frac{b-u \cdot b-v}{b-c \cdot b-a}\right), \\
& z=\sqrt{ }(c-\lambda) \sqrt{ }\left(\frac{c-u \cdot c-v}{c-a \cdot c-b}\right), \\
& U=\sqrt{ }\left(\frac{a-u \cdot b-u \cdot c-u}{\lambda-u \cdot \mu-u}\right), \\
& V=\sqrt{ }\left(\frac{a-v \cdot b-v \cdot c-v}{\lambda-v \cdot \mu-v}\right),
\end{aligned}
$$

c. XII.

$$
\begin{aligned}
& \xi \frac{U-V}{x}=1-\frac{b-\lambda \cdot c-\lambda}{\lambda-u \cdot \lambda-v}-\frac{a-\mu}{a-u \cdot a-v} U V \\
& \eta \frac{U-V}{y}=1-\frac{c-\lambda \cdot a-\lambda}{\lambda-u \cdot \lambda-v}-\frac{b-\mu}{b-u \cdot b-v} U V \\
& \zeta \frac{U-V}{z}=1-\frac{a-\lambda \cdot b-\lambda}{\lambda-u \cdot \lambda-v}-\frac{c-\mu}{c-u \cdot c-v} U V
\end{aligned}
$$

(values which are such that $\xi^{2}+\eta^{2}+\zeta^{2}=1$),

$$
\rho=\frac{1}{2}\left(\int \frac{d u}{U}+\int \frac{d v}{V}\right)+C .
$$

And then

$$
x^{\prime}=x+\rho \xi, \quad y^{\prime}=y+\rho \eta, \quad z^{\prime}=z+\rho \xi,
$$

viz. the equations give $x, y, z, U, V, \xi, \eta, \zeta$, each of them as a function of two independent parameters $u, v ; \rho$ is a function of u, v and of the arbitrary constant C; hence, giving to C any assumed value, we have $x^{\prime}, y^{\prime}, z^{\prime}$ each of them a function of the two arbitrary parameters u, v; that is, $x^{\prime}, y^{\prime}, z^{\prime}$ are the coordinates of a point on a surface, one of a system of parallel surfaces (corresponding to the different values of C) which are the surfaces in question.

Observe that u, v are the elliptic coordinates of the point (x, y, z) on the first of the two confocal surfaces, and that ξ, η, ζ are the cosine-inclinations of one of the tangents from this point to the other confocal surface; so that, if ρ were left arbitrary, the equations $x^{\prime}=x+\rho \xi, y^{\prime}=y+\rho \eta, z^{\prime}=z+\rho \zeta$ would be the equations of a common tangent of the two confocal surfaces; but ρ, as determined, is the distance of the point x, y, z from the point $x^{\prime}, y^{\prime}, z^{\prime}$ on the required surface. The expression for ρ involves hyper-elliptic integrals of the first species, which are the same as those which present themselves in the determination of the geodesic lines upon either of the two confocal surfaces.

I have, in quoting these remarkable results, written for greater simplicity a, b, c instead of the author's a^{2}, b^{2}, c^{2}.

Cambridge, Dec. 20, 1886.

