877.

NOTE ON THE TWO RELATIONS CONNECTING THE DISTANCES OF FOUR POINTS ON A CIRCLE.

[From the Messenger of Mathematics, vol. xviI. (1888), pp. 94, 95.]
Consider a quadrilateral $B A C D$ inscribed in a circle; and let the sides $B A$, $A C, C D, D B$ and diagonals $B C$ and $A D$ be $=c, b, h, g, a,-f$ respectively; f is for convenience taken negative, so that the equation connecting the sides and diagonals may be

$$
\Delta,=a f+b g+c h,=0 .
$$

We have between the sides and diagonals another relation

$$
V,=a b c+a g h+b h f+c f g,=0,
$$

as is easily proved geometrically; in fact, recollecting that the opposite angles are supplementary to each other, the double area of the quadrilateral is $=(b c+g h) \sin A$, and it is also $=(b h+c g) \sin B$; that is, we have

$$
(b c+g h) \sin A-(b h+c g) \sin B=0 .
$$

But from the triangles $B A D$ and $B A C$, in which the angles D, C are equal to each other, we have

$$
\frac{c}{\sin D}=-\frac{f}{\sin B}, \quad \frac{c}{\sin C}=\frac{a}{\sin A}
$$

that is,

$$
f \sin A+a \sin B=0 ;
$$

and thence the required relation

$$
a(b c+g h)+f(b h+c g)=0 .
$$

The distances of the four points on the circle are thus connected by the two equations $\Delta=0, V=0$. Considering a, b, c, f, g, h as the distances from each other of any four points in the plane, we have between them the relation

$$
\begin{aligned}
\Omega,= & a^{2} f^{2}\left(-a^{2}-f^{2}+b^{2}+g^{2}+c^{2}+h^{2}\right) \\
& +b^{2} g^{2}\left(a^{2}+f^{2}-b^{2}-g^{2}+c^{2}+h^{2}\right) \\
& +c^{2} h^{2}\left(a^{2}+f^{2}+b^{2}+g^{2}-c^{2}-h^{2}\right) \\
& -a^{2} b^{2} c^{2}-a^{2} g^{2} h^{2}-b^{2} h^{2} f^{2}-c^{2} f^{2} g^{2},=0
\end{aligned}
$$

and it is clear that this equation should be a consequence of the equations $\Delta=0$, $V=0$. To verify this, forming the sum $\Omega+V^{2}$, we have

$$
\begin{aligned}
\Omega+V^{2}= & \left(a^{2}+f^{2}\right)\left(-a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}+2 b g c h\right) \\
& +\left(b^{2}+g^{2}\right)\left(-b^{2} g^{2}+c^{2} h^{2}+a^{2} f^{2}+2 c h a f\right) \\
& +\left(c^{2}+h^{2}\right)\left(-c^{2} h^{2}+a^{2} f^{2}+b^{2} g^{2}+2 a f b g\right)
\end{aligned}
$$

viz. this is

$$
\begin{aligned}
= & \left(a^{2}+f^{2}\right)\left\{-a^{2} f^{2}+(\Delta-a f)^{2}\right\} \\
& +\left(b^{2}+g^{2}\right)\left\{-b^{2} g^{2}+(\Delta-b g)^{2}\right\} \\
& +\left(c^{2}+h^{2}\right)\left\{-c^{2} h^{2}+(\Delta-c h)^{2}\right\}
\end{aligned}
$$

or, since

$$
-a^{2} f^{2}+(\Delta-a f)^{2}=\Delta(\Delta-2 a f)=\Delta(-a f+b g+c h), \& c .
$$

this is

$$
\begin{aligned}
\Omega+V^{2}=\Delta[& \left(a^{2}+f^{2}\right)(-a f+b g+c h) \\
+ & \left(b^{2}+g^{2}\right)(a f-b g+c h) \\
& \left.+\left(c^{2}+h^{2}\right)(a f+b g-c h)\right],
\end{aligned}
$$

which proves the theorem.
It may be remarked that the equation $V=0$ may be written

$$
a(b c+g h)+f(b h+c g)=0
$$

viz. multiplying by a, and for af writing its value, $=-(b g+c h)$ from the equation $\Delta=0$, this gives
that is,

$$
-a^{2}(b c+g h)+(b g+c h)(b h+c g)=0
$$

$$
b c\left(g^{2}+h^{2}-a^{2}\right)+g h\left(b^{2}+c^{2}-a^{2}\right)=0
$$

which expresses that the angles A, D are supplementary to each other; and, similarly, by the elimination of any other of the six quantities from the equations $\Delta=0, V=0$, we have five other like equations.

