878.

NOTE ON THE ANHARMONIC RATIO EQUATION.

[From the Messenger of Mathematics, vol. xviI. (1888), pp. 95, 96.]

Given any four quantities $\alpha, \beta, \gamma, \delta$, if θ be one of the values of the anharmonic ratio, the other values are

$$
\frac{1}{\theta}, \quad-(1+\theta),-\frac{1}{1+\theta},-\frac{\theta}{1+\theta},-\frac{1+\theta}{\theta} ;
$$

and hence the equation having these six roots is

$$
(x-\theta)\left(x-\frac{1}{\theta}\right)(x+1+\theta)\left(x+\frac{1}{1+\theta}\right)\left(x+\frac{\theta}{1+\theta}\right)\left(x+\frac{1+\theta}{\theta}\right)=0
$$

or, multiplying out, the equation, as is well known, takes the form

$$
\left(x^{2}+x+1\right)^{3}-\frac{\left(\theta^{2}+\theta+1\right)^{3}}{\theta^{2}(\theta+1)^{2}} x^{2}(x+1)^{2}=0
$$

But to effect the multiplication in the easiest manner we may proceed as follows: writing

$$
a, b, c=(\alpha-\delta)(\beta-\gamma), \quad(\beta-\delta)(\gamma-\alpha), \quad(\gamma-\delta)(\alpha-\beta),
$$

so that $a+b+c=0$, the equation is

$$
\left(x-\frac{b}{c}\right)\left(x-\frac{c}{b}\right)\left(x-\frac{c}{a}\right)\left(x-\frac{a}{c}\right)\left(x-\frac{a}{b}\right)\left(x-\frac{b}{a}\right)=0
$$

The product of the first pair of factors is

$$
x^{2}+1-\left(\frac{b}{c}+\frac{c}{b}\right) x,=(x+1)^{2}-\frac{a^{2}}{b c} x ;
$$

thus the equation is

$$
\left\{(x+1)^{2}-\frac{a^{2}}{b c} x\right\}\left\{(x+1)^{2}-\frac{b^{2}}{c a} x\right\}\left\{(x+1)^{2}-\frac{c^{2}}{a b} x\right\}=0
$$

that is,

$$
(x+1)^{6}-\left(\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right) x(x+1)^{4}+\left(\frac{b c}{a^{2}}+\frac{c a}{b^{2}}+\frac{a b}{c^{2}}\right) x^{2}(x+1)^{2}-x^{3}=0
$$

and recollecting that $a+b+c=0$, and writing $q=b c+c a+a b, r=a b c$, the equation becomes

$$
(x+1)^{6}-3(x+1)^{4} x+\left(3+\frac{q^{3}}{r^{2}}\right)(x+1)^{2} x^{2}-x^{3}=0
$$

that is,

$$
\left(x^{2}+x+1\right)^{3}+\frac{q^{3}}{r^{2}}(x+1)^{2} x^{2}=0
$$

But, writing $\theta=\frac{b}{a}$, we have

$$
\left(\theta^{2}+\theta+1\right)^{3}+\frac{q^{3}}{r^{2}}(\theta+1)^{2} \theta^{2}=0
$$

or finally,

$$
\left(x^{2}+x+1\right)^{3}-\frac{\left(\theta^{2}+\theta+1\right)^{3}}{\theta^{2}(\theta+1)^{2}} x^{2}(x+1)^{2}=0
$$

the required result.

