879.

NOTE ON THE DIFFERENTIAL EQUATION

$$
\frac{d x}{\sqrt{ }\left(1-x^{2}\right)}+\frac{d y}{\sqrt{ }\left(1-y^{2}\right)}=0
$$

[From the Messenger of Mathematics, vol. xviil. (1889), p. 90.]
We have

$$
\frac{\sin u-\sin v}{\cos u-\cos v}=-\cot \frac{1}{2}(u+v),=-\sqrt{ }\left\{\frac{1+\cos (u+v)}{1-\cos (u+v)}\right\},
$$

and thence, writing $\cos u=x, \sin u=\sqrt{ }\left(1-x^{2}\right)=\sqrt{ }(X)$, and similarly

$$
\cos v=y, \sin v=\sqrt{ }\left(1-y^{2}\right)=\sqrt{ }(Y)
$$

we have

$$
\frac{\sqrt{ }(X)-\sqrt{ }(Y)}{x-y}=-\sqrt{ }\left\{\begin{array}{l}
1+x y-\sqrt{ }(X Y) \\
1-x y+\sqrt{ }(X Y)
\end{array}\right\},
$$

an identical equation which, in the form

$$
\frac{2-x^{2}-y^{2}-2 \sqrt{ }(X Y)}{(x-y)^{2}}=\frac{1+x y-\sqrt{ }(X Y)}{1-x y+\sqrt{ }(X Y)}
$$

may be verified directly without any difficulty. The integral of the proposed differential equation can of course be taken to be $c=x y-\sqrt{ }(X Y)$; and we have thus another form of integral

$$
\frac{\sqrt{ }(X)-\sqrt{ }(Y)}{x-y}=-\sqrt{ }\binom{1+c}{1-c}, \text { say }=\sqrt{ }(C)
$$

viz. we have the integral

$$
\left\{\frac{\sqrt{ }(X)-\sqrt{ }(Y)}{x-y}\right\}^{2}=C
$$

which is what Lagrange's integral of the differential equation

$$
\frac{d x}{\sqrt{ }(X)}+\frac{d y}{\sqrt{ }(Y)}=0
$$

becomes when the quartic functions X, Y reduce themselves to the quadric functions $1-x^{2}$ and $1-y^{2}$ respectively.

