882.

A CORRESPONDENCE OF CONFOCAL CARTESIANS WITH THE RIGHT LINES OF A HYPERBOLOID.

[From the Messenger of Mathematics, vol. xviII. (1889), pp. 128-130.]
Take α, β, γ arbitrary, $A, B, C=\beta-\gamma, \gamma-\alpha, \alpha-\beta$ (so that $A+B+C=0$), and writing ρ, σ, τ for rectangular coordinates, consider the hyperboloid

$$
A \rho^{2}+B \sigma^{2}+C \tau^{2}+A B C=0
$$

Let $\rho_{0}, \sigma_{0}, \tau_{0}$ be the coordinates of a point on the surface $\left(A \rho_{0}{ }^{2}+B \sigma_{0}{ }^{2}+C \tau_{0}{ }^{2}+A B C=0\right)$. The equations of a line through this point are $\rho, \sigma, \tau=\rho_{0}+f \Omega, \sigma_{0}+g \Omega, \tau_{0}+h \Omega$ (Ω indeterminate); and if this lies on the surface, we have

$$
\begin{aligned}
& A \rho_{0} f+B \sigma_{0} g+C \tau_{0} h=0, \\
& A f^{2}+B g^{2}+C h^{2}=0,
\end{aligned}
$$

which equations determine the ratios $f: g: h$; the equations give
that is,

$$
\left(A \rho_{0} f+B \sigma_{0} g\right)^{2}=C \tau_{0}{ }^{2} . C h^{2}, \quad=-C \tau_{0}{ }^{2}\left(A f^{2}+B g^{2}\right) ;
$$

whence

$$
\left(A^{2} \rho_{0}{ }^{2}+A C \tau_{0}{ }^{2}\right) f^{2}+2 A B \rho_{0} \sigma_{0} f g+\left(B^{2} \sigma_{0}{ }^{2}+B C \tau_{0}{ }^{2}\right) g^{2}=0
$$

$$
\begin{aligned}
& \left\{\left(B^{2} \sigma_{0}{ }^{2}+B C \tau_{0}{ }^{2}\right) g+A B \rho_{0} \sigma_{0} f\right\}^{2} \\
= & \left\{A^{2} B^{2} \rho_{0}{ }^{2} \sigma_{0}{ }^{2}-\left(A^{2} \rho_{0}{ }^{2}+A C \tau_{0}{ }^{2}\right)\left(B^{2} \sigma_{0}{ }^{2}+B C \tau_{0}{ }^{2}\right)\right\} f^{2}, \\
= & -A B C\left(A \rho_{0}{ }^{2}+B \sigma_{0}{ }^{2}+C \tau_{0}{ }^{2}\right) \tau_{0}{ }^{2} f^{2}, \\
= & A^{2} B^{2} C^{2} \tau_{0}{ }^{2} f^{2} ;
\end{aligned}
$$

that is,

$$
\left\{\left(B \sigma_{0}{ }^{2}+C \tau_{0}{ }^{2}\right) g+A \rho_{0} \sigma_{0} f\right\}^{2}=A^{2} C^{2} \tau_{0}^{2} f^{2},
$$

or say

$$
\left(B \sigma_{0}{ }^{2}+C \tau_{0}{ }^{2}\right) g+A\left(\rho_{0} \sigma_{0} \pm C \tau_{0}\right) f=0,
$$

which equation, together with $A \rho_{0} f+B \sigma_{0} g+C \tau_{0} h=0$, determines the ratios $f: g: h$. We have thus the two lines through the point $\left(\rho_{0}, \sigma_{0}, \tau_{0}\right)$.

But the equations of the line may be conveniently represented in a different form ; writing the equation first obtained in the form

$$
\sigma_{0}\left(B \sigma_{0} g+A \rho_{0} f\right)+C \tau_{0}^{2} g \pm A C \tau_{0} f=0
$$

this is

$$
\begin{aligned}
& -\sigma_{0} C \tau_{0} h+C \tau_{0}^{2} g \pm A C \tau_{0} f=0 \\
& -h \sigma_{0}+g \tau_{0} \pm A f=0
\end{aligned}
$$

and we have the like equations

$$
\begin{aligned}
& -f \tau_{0}+h \rho_{0} \pm B g=0, \\
& -g \rho_{0}+f \sigma_{0} \pm C h=0,
\end{aligned}
$$

where the sign is the same in each of the three equations.
The equations of the line on the surface may be written

$$
\begin{array}{rrr}
\cdot h \sigma & -g \tau-h \sigma_{0}+g \tau_{0}=0, \\
-h \rho & \cdot & +f \tau-f \tau_{0}+h \rho_{0}=0, \\
g \rho & -f \sigma & -g \rho_{0}+f \sigma_{0}=0, \\
\left(h \sigma_{0}-g \tau_{0}\right) \rho+\left(f \tau_{0}-h \rho_{0}\right) \sigma+\left(g \rho_{0}-f \sigma_{0}\right) \tau & =0 ;
\end{array}
$$

and hence from the foregoing three equations, taking the sign - , we have

$$
\begin{array}{r}
h \sigma-g \tau+A f=0 \\
-h \rho+f \tau+B g=0 \\
g \rho-f \sigma+C h=0 \\
-A f \rho-B g \sigma-C h \tau \quad=0
\end{array}
$$

where $A f^{2}+B g^{2}+C h^{2}=0$, for the equations of a line on the surface.
In like manner, taking the sign + , and for f, g, h writing new values $f^{\prime}, g^{\prime}, h^{\prime}$, we have

$$
\begin{array}{r}
h^{\prime} \sigma-g^{\prime} \tau-A f^{\prime}=0, \\
-\quad h^{\prime} \rho \cdot f^{\prime} \tau-B g^{\prime}=0 \\
g^{\prime} \rho-f^{\prime} \sigma \cdot-C h^{\prime}=0 \\
A f^{\prime} \rho+B g^{\prime} \sigma+C h^{\prime} \tau \quad=0
\end{array}
$$

where $A f^{\prime 2}+B g^{\prime 2}+C h^{\prime 2}=0$, for the equations of a line on the surface.
The two systems of equations evidently belong to the lines of the two different kinds respectively. Writing for shortness $P, Q, R=g h^{\prime}+g^{\prime} h, h f^{\prime}+h^{\prime} f, f g^{\prime}+f^{\prime} g$, the two lines in fact intersect in a point, the coordinates say $\left(\rho_{0}, \sigma_{0}, \tau_{0}\right)$ whereof are $=\Theta Q R, \Theta R P, \Theta P Q$, where

$$
\Theta=\frac{A}{g^{2} h^{\prime 2}-g^{\prime 2} h^{2}}=\frac{B}{h^{2} f^{\prime 2}-h^{\prime 2} f^{2}}=\frac{C}{f^{2} g^{\prime 2}-f^{\prime \prime 2} g^{2}},
$$

the three expressions for Θ being equal to each other in virtue of the equations

$$
A f^{2}+B g^{2}+C h^{2}=0, \quad A f^{\prime 2}+B g^{\prime 2}+C h^{\prime 2}=0 .
$$

Take now, in a plane, P, Q, R points on any line, say the axis of x, at distances α, β, γ from the origin, then for a point of the plane, coordinates (x, y), if ρ, σ, τ be the distances of the point from these three points, or say foci, we have

$$
\begin{aligned}
& \rho^{2}=(x-\alpha)^{2}+y^{2}, \\
& \sigma^{2}=(x-\beta)^{2}+y^{2}, \\
& \tau^{2}=(x-\gamma)^{2}+y^{2} ;
\end{aligned}
$$

and if as before $A, B, C=\beta-\gamma, \gamma-\alpha, \alpha-\beta$, we thence have

$$
A \rho^{2}+B \sigma^{2}+C \tau^{2}+A B C=0
$$

A point, coordinates (ρ, σ, τ), of the hyperboloid thus corresponds to a point in the plane, distances ρ, σ, τ from the three foci R, S, T respectively; and to any line

$$
\begin{array}{r}
h \sigma-g \tau+A f=0 \\
-\quad h \rho \cdot f \tau+B g=0 \\
g \rho-f \sigma \cdot+C h=0 \\
-A f \rho-B g \sigma-C h \tau \quad=0
\end{array}
$$

corresponds the Cartesian represented by these linear equations. Similarly, to the line represented by the other system of equations

$$
\begin{array}{r}
h^{\prime} \sigma-g^{\prime} \tau-A f^{\prime}=0 \\
-h^{\prime} \rho+f^{\prime} \tau-B g^{\prime}=0 \\
g^{\prime} \rho-f^{\prime} \sigma \cdot-C h^{\prime}=0 \\
A f^{\prime} \rho+B g^{\prime} \sigma+C h^{\prime} \tau \quad=0
\end{array}
$$

corresponds the Cartesian represented by these equations; the two curves intersect in the point $\rho_{0}, \sigma_{0}, \tau_{0}=\Theta Q R, \Theta R P, \Theta P Q$, corresponding to the intersection of the lines on the hyperboloid; and moreover, quì confocal Cartesians, they intersect at right angles.

