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ON THE DIOPHANTINE RELATION, #*+#”=SQUARE.
[From the Proceedings of the London Mathematical Society, vol. XX. (1889),
pp. 122—127.]
THE diophantine relation #*+ 2= Square, where y is a function of #, and %’
denotes %’ is considered by Prof. Sylvester in his paper “On Reducible Cyclodes,”

Proc. Lond. Math. Soc., t. 1. (1865—66), pp. 137—160. It is at once seen that there
exists a solution
y=(x+a)(z+bF (x+c)y(z+dy...,

where the roots @, b, ¢, d, ... are essentially unequal, and the number of simple
factors #+a, +b, #+c, z+d, ... is even; the exponents a, B, ¢, 9§, ... are taken
to be positive integer numbers. Sylvester assumes, and it will be shown, that the
factors must separate themselves into two sets, or, as he calls them, diptychs, each
containing the same number of simple factors and such that the sum of the exponents
for the one diptych is equal to the sum of the exponents for the other diptych;
viz. the form is y = UU,, where

U=@+a)y(@+bPf..., Ui=@+a)(x+b) ...,

with the same number of simple factors, and with the relation a+ B8+ ...=0+ B +...
between the exponents. Hence, if the number of simple factors be called the class
and the sum of the exponents be called the order, the class and the order are each
of them even; or, what is the same thing, the semi-class {(say w) and the semi-order
(say ») are each of them integral.

The separation of the factors into two diptychs is a remarkable theorem. I
consider the analytical theory; for greater simplicity, first in the case, class =2, and
secondly in the case, class =4; but it is easy to see that the like process is
applicable to the case of any even value whatever of the class. J
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I write as usual ¢=#—1; the equation g2+ y”=square, implies ¥ + 1y =square,
and y — 1y = square; at least this is so, save as to a common denominator, as will
appear.

First, if the class is =2; we have

y=(a+a)* (z+b)F;

hence ‘ :
y+iy'=y(l +xzja+:%)’
y—iy'=g/(1 _w?a_%>’
say these are = m(f :?: _:Zb and x(ﬁ_-; ﬁ?sz respectively ; and, this being so, we have
¢+W=%X;g$:£ﬁ=@+@W%www»@+ww+ma

It is to be shown that the assumed relations lead to a=pB. Resolving the last-
mentioned expressions for y+1y’, ¥y — vy’ each into simple fractions, we have

ia(b—a)=(—-0p, —ia(b—a)=(m—>),
iBa—b)=0—-a), —iB(a—b)=(m—a)

Hence
@=0bp+(m—-02=0, (I—a)y+(m—a)y=0;
these cannot give
=) +i(m—=0)=0, (I—a)+i(m—a)=0,

with the same sign for ¢ in the two equations; for we should then have
A+ (b—a)=0,

but 1+4¢ is-not =0, and @, b are essentially unequal. Hence, taking (as we may
do) +7 in the first equation, we must have —¢ in the second equation, and the two
equations are

Il—b+i¢(m—10)=0, that is, [ +im=(1+7) b,

l—a—1t(m—a)=0, , Il—im=(1-17)a,

and thence ]
20 =(1+12)(b—ra),
2m = (1 +7) (b + ta).
Hence also
2(l—b)= @1—=7)(a—0) 2i(m—b)=(1—1)(b—a),
2(l—a)=—A+19)(a=b), Zt(m—a)=1+1)(b—a);
consequently

2(l-bp=—1i(a—b), =—2ia (a—D>),
2(l—a)3= 1(a=0p, = 2B (a—Db).
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Hence a= =1} (a—0b), and the solution thus is
y=(@+a)(z+b)e, a=3%(a-D>),
I=}{a+b+i(a—0)},
m=%{a+b—1i(a-0)},
Py = o+ af o+ D o+ P ok

The class is here =2, and the order is =2a; considering the order as given, say
it is =2», we have a=w, and the equation v =% (a—b) then shows that one of the
roots @, b is arbitrary. Taking it to be a, we have b=a—2v, or the solution, class 2

and order 2w, is
- y=(z+ay(@+a—2vy,

l=a—v+iy, m=a—v—1ip,

Y4y = (a4 a) " (x+a — 20)" 2 (@ + 1) (@ + m):

Considering next for the case, class= 4, the solution

=(x+a)(z+bf (x+c) (z+d)y,
we have
toh i3 )
y+w =y(1 x+a+w+b+x+o+m+d)
T g o _}E_ﬂ_‘iﬁ).
y—%y——y( 740 z+b x+c z+d)’

or, putting these
(@+1y (@+p)y g —(@+mp@+qry
PO SR AR el 0 o SR an
w+a.o+b.otc.ot+d z+a.x+b.a+c.x+d

respectively, we have
1y p L@t (@tp) @+ m)(e+qy
i g (w+a)’(m+b)"($+0)’($+d)“ ’

=(@+a)ye? (z + by (z + o) (2 + dP** (@ + 1) (& + p)* (& + m)* (@ + ¢)”
Also, by decomposing the expressions for ¥+, y—iy into simple fractions and
comparing with the original values, we find
ia (b —a)(c—a)(d—a)=(a— 1) (a—p)
iBa—0b)(c—b)(d—b)=0~ 10 -p)
vy (@a—c)(b—c)(d—c)=(c— I —p)
® (a—d)(b—d)(c —=d)=(d— 1)(d-p),
— 1o (b —a)(c—a)(d-a)=(a—m)(a—q),
—iB(a—b)(c—Db)(d—b)={b—mp (- q)
— iy (a—¢)(b— ¢)(d—¢)=(c —m}(c — q),
-8 (a—d)y(b—d)(c —d)=(d—mp(d- g%
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Hence

(a=0(@—py+(a—m)(a—q)P=0,
b—=1p0—-pP+(b-m)yd-qr=0,
(¢ =0y (c—py+(c —m)y(c—qpr=0,
(d=1yp(d—py+(d—my(d—qr=0;

we cannot from these obtain three equations
(@-=m)(a—q)—r(a—1)(a—p)=0,
b-m)(b—q)—t(d—-0D(®~-p) =0,
(c=m)@c—q)—t(c—)(c-p)=0,

with the same sign for ¢; in fact these would give

1+ (b-c)(c—a)(a—b)=0,
but 144 is not =0, and the a, b, ¢ are essentially unequal. Hence we must have
equations such as
(@=m)(@—g)=i(a=(a=p)=0; (c—m)(c—g)+i(c—I)(c—p)=0,
G-m)b-—q)—i(b-D(b-p)=0; (d—m)(d—q)+i(d-1)(d—-p)=0,
two of them with —¢, and two of them with +4¢; viz. the a, b, ¢, d divide themselves
into pairs which are taken to be @, b and ¢, d.
We hence easily obtain
a+b-m—qg—i(a+b—-1l—-p)=0, ab—mg—i(ab—1Ip)=0,
c+d—m—qg—i(c+d—1—p)=0, ed—mq—i(cd—Ip)=0,

and thence
a+b—c—d=i(a+b+c+d)—2i(l+ p),

ab—cd =1 (ab + cd) — 2ilp.
Forming from these values of l+p, Ip the expression for 2¢(a—1)(a—p), we find
2i(a—1)(a—p)=(@+1)(@a—c)(a—d); and we have thus the set of equations
% (a—1) (a—p)=(i+1)(a - o) (a—d),
20 -G —p)=@E+1)(b—1c)(b—d),
2Zic—l)(—p)=@—-1)(c—a)(c—-b)
2i(d—=1)(d—p)=(i—1)(d—a)(d— D).
2@-Iy(@a—pyr=—i(a—cy(a—ady
20 =1p@®—pr=—1i(b—cy(b—dy,
2(c—0p(—ppr= i(c—ay(c->y
2(d—0pd—pr=i(d—a)(d->by;
and, substituting these values in a former set of equations, we obtain
22 (b—a)=—(a— c)(a—d),
28 (a—by=—(b— ¢) (b —d),
2y (d— )= (c—a)(c—D),
28 (¢ —d)= (d—a)(d-0b);

Hence also
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and thence
2(a+PB)= a+b-—c—d,

2(y+8)=—(c+d—a-10),
that is, a+ 8=+ 8; viz. there are, in this case also, two diptychs.

If, as before, the order is taken to be =2y, then a+B=v, y+8=vr; supposing
that » is a given positive integer, and that a, B3, r, 8 are positive integers satisfying
these equations a+B=v, y+06=v, then the last-mentioned four equations between
a, B3, v, 6 and @, b, ¢, d are equivalent to three relations serving to determine the differences
of a, b, ¢, d (say a —d, b—d, ¢c—d) in terms of a, B, v, &. And we then further have

(@=D(@—p)=—A—-2a(b—-a), (a—m)(@a—q)=—A+72)a (b —a),
G-Db-p)=—1-)B@=b), G-m)@d-g=—1+i)B@—"b)
c=Dc-p= Q+D)y@d-¢), (c=m)(c—-g)= A=)y (c—ad),
@-D@d-p)= 1+ c—d), @d—myd-g)= (1-4)8 (- o),

each set equivalent to two equations; or, as these may be written,

20 +p)=a+b+c+d+i(a+b-c—d),

2lp =ab+cd +1 (ab —cd),
2(m+q)=a+b+c+i—r(a+b—c—d),
2myg =ab+cd — 1 (ab— cd),

serving to determine [, p, m, ¢ in terms of a, b, ¢, d.

Observe also that, » being arbitrary, we have
2(uw— D(u—p)=A+7)(u—a)(w—>b)+ (1 —17)(u—c)(u—d),
2(w—m)(u—q@)=(1-1)(u=-a)(@-0)+(1+19)(u—c)(u-d),
(which equations, writing therein w=a, b, ¢, or d, in fact reproduce the two systems
of four equations).
We have also
l+p+m+qg=a+b+c+d, l+p-m—q=i(a+b—c-d),
Ip +mq =ab + cd, Ip—aq =1 (ab—cd);
and moreover
4 —pr= 2{(a=br—(c—d)}+4(a+bd)(c+d)—8(ab+ cd),
d(m—-qr=—2i{(a—bpF—(c—dy}+4(a+b)(c+d)—8(ab+ cd),
which equations, combined with the foregoing values of 2(l+p) and 2 (m+gq), give
the values of I, p, m, ¢ We have thus the complete solution for the case class =4,
order = 20; say
y=@+a)(@+bf.(@+c)(@+d)’; a+B=y+d=v,
Y1y’ =(e+a) (@ + by (@ + o1 (24 d)** (2 + I (2 + p)* (@ + m) (2 +9)°,

with the foregoing relations between the constants.
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