279.

ON A THEOREM RELATING TO SPHERICAL CONICS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. III. (1860), p. 53.]
The following theorem was given by Prof. Maccullagh: "If three lines at right angles to each other pass through a fixed point O so that two of them are confined to given planes: the third line traces out a cone of the second order whose sections parallel to the given planes are circles, and the plane containing the other two lines envelopes a cone of the second order whose sections by planes parallel to the given planes are parabolas."

Referring the figure to the sphere we have a trirectangular triangle $X Y Z$, of which two angles X, Y lie on fixed arcs A, B. The angle Z generates a spherical conic U^{\prime} having A, B for its cyclic arcs. The side $X Y$ envelopes a spherical conic U touched by the $\operatorname{arcs} A, B$. The conic U^{\prime} is evidently the supplementary conic of U, hence the poles of A, B are the foci of U. We may drop altogether the consideration of the triangle $X Y Z$ and consider only the side $X Y$, we have then the theorem:

If a quadrantal arc $X Y$ slides between the two fixed arcs A, B, the envelope of $X Y$ is a spherical conic U touched by the fixed arcs A, B, and which has for its foci the poles of these same arcs A, B.

It is worth while to notice the great reduction of order which takes place in consequence of the arc $X Y$ being a quadrant. If $X Y$ had been an arc of a given magnitude θ, the envelope would have been a spherical curve of an order certainly higher than 6. For considering the corresponding problem in plano, the envelope in the particular case where the fixed lines A, B are at right angles to each other is a curve of the sixth order, and in the general case where the two fixed lines are not at right angles the order is higher: the problem in plano corresponds of course, not to the general problem on the sphere, but to that in which θ is indefinitely small.

