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Integral representation and uniqueness theorem
in generalized thermoelasticity (*)

T. ROZNOWSKI (WARSZAWA)

Tue PAPER deals with the problem of harmonic oscillations according to the generalized linear
theory of thermoelasticity, due to Lorp and SHULMAN [1], in an exterior domain. Basing on
the author’s solution given in [2], the integral representation of a pair (¢, ) and suitable
radiation conditions are derived. The considerations of this part are expressed as Theorem 1.
Next, the uniqueness of the integral representation is proved, Theorem 3. Further, it is shown
that the radiation condition in a form coupling the function ¢ and @ at infinity fulfils the suffi-
cient condition. Finally, certain particular examples are being worked out and some properties
of thermal waves are discussed. It follows that the pure thermal wave is both dissipative and
dispersive. In this case some quantitative data are given, (Figs. 3 and 4). At the end a few con-
clusions of a more general meaning are deduced.

W pracy rozwaza si¢ problem drgan harmonicznych w obszarze zewnetrznym wg uogolnionej
zlinearyzowanej teorii termosprgzystosci prezentowanej przez LORDA i SHULMANA w [1]. Na
podstawie rozwiazania autora przedstawionego w [2] wyprowadzono reprezentacj¢ catkowa
dla pary (¢b,6) wraz z odpowiednimi warunkami wypromieniowania. T¢ cz¢§¢ rozwazan pre-
cyzuje Twierdzenie 1. Nastgpnie dowiedziono jednoznacznosci otrzymanej reprezentacji cal-
kowej formutujac Twierdzenie 3. Dalej wykazano, ze warunki wypromieniowania sprzggajace
funkcje (¢b, 0) w nieskoniczonosci spelniaja warunek wystarczajacy. Rozpatrzono rowniez nie-
ktore przypadki szczegélne, dyskutujac pewne wiasnosci plaskich fal cieplnych. Wykazano,
ze fale czysto cieplne podlegaja dysypacji i dyspersji. Dane ilosciowe wplywu czasu relaksacji
zilustrowano wykresami na rys. 3 i 4, W zakoficzeniu podano pare wnioskow ogdlniejszego
charakteru.

B paGote paccmaTpuBaeTcsl NpoblieMa rapMOHHUeCKHX KoJjieGaHMii BO BHelIHel oGjacTu cor-
JacHO O00OOIIEHHOM JIMHEapU30BaHHOM TEOPHHM TEPMOYNPYTOCTH, IpenacraBicHHoi Jlopaom
u lllymemanom B [1]. Ha ocHOBe peliieHHs aBTOpa, NMPEACTABJICHHOTO B (2], BbIBEICHO MHTe-
rPaBHOE NPECTABICHHE JUIA Napsl (¢ , §) COBMECTHO C COOTBETCTBYIOIMMH YCJIOBHAMH H3-
JIy4eHHsA. OTY 4YacTb pacCyKAeHHit yTouHsier Teopema 1. 3aTem JoKa3bIBaeTcA €IMHCTBEH-
HOCTH TIOJIyYEHHOI'O HHTErPajbHOr0 INpejacTaBlleHus, dopmymupysa Teopemy 3. Hanswe no-
Ka3aHO, YTO YCJIOBHA H3JIy4eHMs, conpsaratoumme (ynxumu (¢, 0) B Geckoneunocts, ymo-
BJIETBOPSIIOT JOCTATOYHOMY YCJIOBHIO. PacCMOTpEHBI TO)Ke HEKOTOpble JYaCTHbIE CIIy4ad, 00-
cy»aasi HEKOTOpbIe CBOMCTBA IUIOCKHX TepMHUYeCKHX BoJH. ITokasaHo, YTO YMCTO TePMHYECKHE
BOJIHBI NOJJIEKAT AUCCHNAiMu M aucnepcuu. KojmuecTBeHHblE NaHHbIE BIMAHUA BpeMeHH
peslaKcalMy WUTIOCTPUPOBAHBI AuarpaMmaMu Ha puc. 3 u 4. B sawumoueHnn npuBeneHo Hec-
KOJIBKO BBIBOJOB Gosiee OOIIEro XapaKTepa.

Introduction

THE PAPER develops the mathematical foundation required for the study of integral repre-
sentations of thermoelastic harmonic waves in exterior domain with one relaxation time.

(*) The main paragraphs of this work, namely Theorem 1 on representation and Thecrem 3 on
uniqueness entitlet: “Radiation conditions and a uniqueness theorem in generalized linear thermoele-
asticity” were submitted to the XVth ICTAM, Toronto 1980, and presented in part at the Polish Solid
Mechanics Conference in 1980 and earlier.
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The linearized system of partial differential equations according to [1] and the method
of analysis as well as the results presented in [2], based on the theory of singular integral
equations and Green's identity, are ac o ted.

The text is divided into two chapters. Starting with the governing equations in the
first chapter, we establish the integral representation of the functions (¢, 6), Theorem 1,
where (¢, 0) denote the thermoelastic displacement potential and temperature, respect-
ively, Sect. 1.

Next, a uniqueness theorem of the integral representation is formulated and the proof
based on the energy concept is carried out, Theorem 3; Sect. 2. The remaining part of
this chapter involves a proposal to extend the uniqueness theorem to a certain class of
singular surfaces, Sect. 3, what may be especially useful in connection with the crack
problems.

Further consideration of the properties of Theorem 1 and 3 is presented in Chapter 2.
Thus it is shown that the radiation conditions coupling the functions ¢, 0 fulfil the suffi-
cient condition of Sect. 4. Particular cases of integral representation are derived and
discussed in Sect, 5. It is of some interest to note that if the interconvertibility of thermal
and mechanical energy is ignored, the thermal wave in the body is found to be both dissi-
pative and dispersive. In this case the relaxation time contribution to the phase velocity
and dissipation decreases. The results obtained make it possible to draw conclusions
of a more general character as shown in Sect. 6.

The integral representation for generalized thermoelasticity and some aspects of dis-
cussion given here bring about a new development. This field theory of integral repre-
sentations in exterior domain for the Laplace and Helmholtz equations well-known in
the potential theory (cf. [3, 6]) and in the theory of elasticity [2, 3, 4, 5, 6, 8, 9], is con-
siderably developed.

Chapter 1

1. Integral representation in generalized thermoelasticity

We assume that an infinite thermoelastic () body B, = E—B; (E is the entire space)
has a cavity B; bounded by a regular surface S with the normal vector from B; to B..

Let x € B, and S, be the spherical surface of a sufficiently large radius r about x con-
taining within it the region B;. Moreover, we assume that the motion is provoked by
a periodic function of time, and once the process is established, the motion of the body
is also periodic, with the same frequency. We seek a solution describing harmonic thermo-
elastic vibration of the body able to propagate the second sound throughout the domain V,
bounded by surface S and S,. Next, we pass with the radius to infinity and derive the
radiation conditions and a regular form of integral representation for our problem.

(*) A thermoelastic medium is the domain D of the three-dimensional Euclidean space and a set of
quantities o, 4, u, y, 7, » satisfying the conditions ¢ >0, x>0, 34+2u >0, ¥/ > 0, » > 0 (cf. p. 51,
[3).
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The linearized system of the generalized theory of thermoelasticity, according to LORD
and SHULMAN given by Eqgs. (23) and (24) in [1], is employed. The principal model used
is seen to be exhibiting a finite heat transport velocity based on a relaxation time 7,. The
energy equation for the body with constant thermal and elastic coefficients may be rewrit-
ten as

(LD KT i = eCu(T+ 70 T)+ 32+ 2p) aTo(Eun+ Tows),
and the equation of motion of continuous medium without body forces is
(1.2) oit; = (A+p)uy, i+ puy,;;— 32+ 2u)eT ;.

Functions u, T, €;; are the displacement vector, absolute temperature and strain tensor,
whereas A and u, o, o, k, 7o, To are the Lamés -moduli, density, coefficient of thermal

expansion, conductivity, the relaxation time and fixed reference temperature, respectiv-
2!

. 2P . ;
ely. Finally Cg = _TT?T—Z denotes the specific heat at constant deformation where @

is Helmholtz free energy defined by the relation
P(eyy, T) = &(ey, T)-Tl(eiy, 7).

Here &, { are known as internal energy density and entropy. The subscripts specify the
components of a vector in the directions of the coordinate axes and the summation con-
vention is adopted. We employ a comma to denote partial differentiation with respect
to a spatial coordinate while the superposed dot implies partial differentiation with respect
to time.

If we look for the solution (¢, 0) of Egs. (1.1) and (1.2) in the form (we are restricted
to the coupled dilatation waves since the remaining deformation is only elastic)

(1.3) u = grad qg, 6 = T—T, (small enough)
and
(1.4) $x, 1) = p(e i, O(x, 1) = B(x)e™ ™, x = x,,%;,x,,
then Egs. (1.1) and (1.2) are satisfied provided
(1.5) O2¢—mb =0, O30+ '% h2vip = 0,
where
T,
”% - ,17 yko =1, 7= 064+2m)a,
1/2
- (“{fﬁ) , mmel
0 10

1.6)
( D%=V2+hf, h1="cﬁ
1

. 1/2
D:zi = V2+h§! h3 = hS(l"inO)llz’ h3 o (l—::—) L]

& = ymx, V?—Laplace operator, w—frequency.

2%
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Equations (1.5) imply that the amplitudes of oscillations ¢ (x) and 0(x) satisfy two separate
equations:

oty R 2 22
(L.7) Di02¢ =0, D;0i0=0, xeB,
where
(1.8) OF = vi+k2, r=1,3.
The values k, are selected in a such a way that the following relations are valid:
(1.9) k3+k2 = h2+(1+)h2, k2k2 = h2h2.
Thus they are both the roots of the equation
(1.10) k4 —[h2 + (1 + e)h3] k2 +h2R2 = 0.
Hence, according to the expression (1.4), we have
(L11) k= 8+if, r=1,3, &%>0, B3>0

The explicit formulae for &, and 23,. may be derived but here they are reduced to be the
following functions of the material parameters

& = a,(¢;, %, €, To, W),

ﬁr = ﬁr(clp %, &, TO’w)-

Now we wish to find regular solutions of Eq. (1.7) in B, for the pair (¢, 0) by means of
surface integrals over S. To do this, we introduce the auxiliary function ¢ which is estab-

lished as a fundamental solution of our problem in a whole space E; this means that
it is the solution of the equation

(1.13) O} 07 ¢(x1®) = —md(xld), x,&eE,

where d(x) is Dirac’s function. The solution of Eq. (1.13) is known and may be written
in our notations as

(1.12)

= m 1 A A
(1‘14) ¢(xl$) Y S S (elh’-elkar)9 X, E € E,
An(ki—k3) T
where r? = (x;— &) (x;—§&), j = 1, 2, 3, is the distance between a point x in which the
potential is to be determined and a source located at &.

A direct calculation shows that ¢ describes the thermoelastic displacement potential
due to a concentrated source of intensity x acting at & and fulfills the radiation condition
in exterior domain., B

‘The temperature field coupled with the thermoelastic displacement potential ¢ denoted
as 0 = 0(x|&) is derived as follows:

1 A A A A
115 0 = R — 2 2y ikyr hz_kz ikyr 3
(1.15) (x1¢) EI ¢ ik T [(h — ket —(hi—k3)e™]
We return to Eq. (1.7) and state that ¢ is a solution of the equation

(1.16) Di02¢ =0, xeB.

1
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under the assumption that ¢ is not singular in the domain B,. If we multiply Eq. (1.13)
by ¢ and Eq. (1.16) by ¢, add them up and integrate over a region ¥, bounded internally
by S and externally by a large sphere S, of radius r, then we find, that

2

A1) ) = f V(O)[$(x1) OF DF ¢ - O DF 6(x19),

where
1, xeV,,
yx)=1{1/2, xeb,
0, x¢V,.
Sr(¢)
Be=E'Bf
Be= lim Vr

FiG. 1. Symbols commonly used.

Using at first an operator identity for two sufficiently regular functions # and v in the
domain of integration

oV*u—uVie = divi(u, v),
where
I(u, v) = vgradV2u—ugrad V?v + (V?v) gradu — (V) grad v,

as well as the divergence theorem, we can find that

118 2@ = [ dS(E){[tﬁ(xIE)*D $()- ¢(s)—uz¢(x1£)]

S+Sp

+ [(V%l?(xlé)) DO (Vo J(xzs)]},
where
02 = V24 k}+K3.

With regard to the relation (1.5),; between the functions ¢ and 0, Eq. (1.18) is transformed
as follows:

a1 awew= [asfsZ 0% Lleyp % s 2 el

S+Sr
where
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A more conventional form of Eq. (1.18) is given below:

(1.19% 1()o(x) = | dS ¢——9 ¢—— =05~ ¢
6 5

S+S8p
1 23 %2 nlr 2 J =
+ m (k3 +k3—2h1) [‘15 _671_4, d"é‘,;“j’]}
We may evaluate the function 6 proceeding in a similar way as for ¢, Egs. (1.16)-(1.19),

but it is simpler to make use of the relation (1.5), and apply the operatorTIn— % to both
sides of Eq. (1.19"), to obtain

120) 200 = [d {[e(xw)——e(a 08) 5 ﬂ(xlé)l

S+Sr .
ow? |— 0 J -
2 [ 2 6100 o #) .

where the relation (1.9),, and the following are applied:

ew ”
and
a m
a= .y .
eh?

Inserting explicit formulae for ¢, Eq. (1.14), and 6, Eq. (1.15), into Egs. (1.19") and (1.20),
one gets for the pair (¢, 6)

_ m_. ril?lr-ia_ _ _1_ 2 ,2
(.2n x(¥)p(x) = pav T [S+ [ dS{ = [6 —(ht k3)¢]

r
A t?:,r
o= Loi-ipe] 22

=
_ fds{ef:;r [B___(hz k2)¢] [6—-—-(’12 k2)¢] d eika ]
S+Sr
m ebr a1,
W ERENS "ﬁrﬁ[f as{ % o o
| G 6 e”‘1 ]
- [7oe- o
ei?:,r a 1 5
ﬂyﬂrgﬂ;m oY ]

[—(h2 20+ 2 ¢] L e"‘””
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We recall Eq. (1.11) and analyze the integral over surface S, occurring in Eq. (1.21).
To do this, we write

f( ) _ f_ -ﬁl eld]" (_g_ -—lk )[6— _ (h2 3)¢]
— e Pargidar (% —il@s) [0— -I«(hf—éf)s‘b]}
as _Br ‘&1" ‘. L 2 — p—FBar ‘“: —(h?
+S!7{e Birg [0 o (hi- )] ePre [ (hi k2)¢]}

dS = risinfdldp, 0<b<=z, 0< < 2n.

(1.23)

In view of the process at infinity, the condition for the integral (1.23) to vanish at r - o
can be satisfied if

sfo A\[, 1 o ]

’e-ﬂ'r(ﬁ "k‘) Le_ W(hf"kﬁ)qb_ = o(1),®

re-bor (0 _ik .e-i(hZ—?cz)qbw = o(1)
or 3 L m -t . ’

1.24 A f "
(1.24 ebelo— L m—ing| = oy,
| m ]

A 1 A
- Byr .- 2__ |12
€ -0 m (hl k1)¢’]

o(1).

Similarly, analyzing the integral over the sphere S, in Eq. (1.22), we find that it disappears
at r - o0 when

I

A a LA [ l A sz 1
=B — (h? -2 L
re (5r lkl) ] (h}i—k3)0+ A ¢ o(l),

s a1 ~ w? ||
e (W —zk;,) | (hi—k3 Qa ] o(1),
(1.25) ~ 1 A 2

emhr|— (Wi —kDo+ L5 ¢ | = o),
e har 1 (h3 - = o(1).
».m !

Making use of the fact that

1
- i —kh-kp) = £

one can show that the asymptotic conditions (1.24) are equivalent to the conditions (1.25).

(@) f(r) = 0o(1) at r—oo0 <> lim f(r) = 0,

r—+oo

f(r)=0Q) at rs00 < lim f(r) = M < 0.

r=o
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Thus, if both Eqgs. (1.24) and (1.25) hold, then Egs. (1.19) or (1.19") and (1.20) yield
the representations for ¢ and 0 in the entire region B, by means of the surface integrals
over the surface S. The above analysis provides us with a proof of the following theorem:

THEOREM 1. Every solution (¢, 0) of equations

(1.26) Di0f¢ =0, Olp=md

in the domain B,, which satisfies suitable radiation condtions (1.24) and (1.25) admits the
representation of the form

th 5

1 52
A7) 900 = = i [ [as| =2 |o- L o=
| d eikik
~[o- L oa-tae] 220

ehR g 5 T 0 ekaR
—de{ = a—[e——(h —kmb] [6——(h k)¢] . }]

S

ka a 1 5
(128)  x(00(x) = — 4n(k2_k3) [ f { [ (h3—kDo+ © d»]

[ i £ ] 2

bRk 9 [1 I e*kaﬂ}]
fd{ I:;(hl ]”‘I:m(’h k3)6+ P ¢ rrawaik

where R = |x—¢&| is the distance between points x € B,, £ € S and S is the surface of cavity.

2. The uniqueness theorem

We now wish to show that the solution in the form of integral representation (1.27)
and (1.28) given in Theorem 1 is unique. The classical method will be used to prove the
auxiliary Theorem 2 and then, on the basis of a corollary and Notes 1 and 2, the theorem
of uniqueness, Theorem 3, is formulated.

THEOREM 2. The solution (¢, 0), (¢ = ¢(x,w), 0= 0(x,w)) e C? in B, and (¢(x,w),
0(x,w) eC'in B, = SuUB,, satisfying the equation system

@2.1) D2¢—md =0, 20+ % hiVi¢ =0 in B,
and the homogeneous boundary conditions

' ¢ ,
(2.2) Tnly= 0 Os=0
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as well as asymptotic relations (radiation conditions) at r — co
(2.3) ¢ ~ f1(6, (ﬁ)fme_(ﬁl_'q”)'-l-fz(é, (i))r"'e_(l,és’ﬁo)"
6 ~ gl(é’ @)rme_(ﬁ:_ﬁu)r'kgz(é, &)r’"e—(ﬁa—ﬂo)"

where
(2.4) fi=00"), f=00"), g =00"), g =00
and o = min (Bl, B3), m — finite integer number (f-e m = —1 for spherical cavity)

is identically equal to zero in B,,

b=0

0 imn B,
(cf. [3], p. 156, Theorem 5.6).

Proof. Let us apply the gradient operation V to Eq. (2.1),. Then we can obtain

(V2+h?)Vp—mVh = 0,

2.5 , o n e
(V2+h3)0+ o h3ivig = 0.
The inner product of Eq. (2.5); by V¢ where the bar over the symbol denotes its complex
conjugate, yields the equation
(2.6 V- (V2¢pVP)— V3¢V +hiVpVp —mVpVh = 0.
Integration of both sides of Eq. (2.6) over the space ¥, and application of the divergence
theorem leads to

@n [ dsv¢)Vé-n— f dV|V3p| +h? f AVIV>—m f dV(Vé - V6) = 0.
S+8r

Taking the conjugate of the equation, we have

28 [ dS(V$)Vé-n— f AVIV2¢| +h? f dV1V¢]2—m f dV(V¢ - VB) = 0.

S+Sr
The next step is to multiply Eq. (2.5), by 0 and to use the identities
0v20 = V- (VO —VO - V0,
0V2p = V(6V)—V0 - Vo.
Hence we obtain
(2.9) V- (6V0)—V8- VO+h200+ % h2[V - (0V)—V6 - V] = 0.

The equation is integrated over a space ¥, and the divergence theorem is used to derive

(2.10) f dsovo - n— de[iVGIz—hzwlz]

S+Sy
v [ deOVrﬁ n— deVB V¢]

S+Sr
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2

Corresponding substitution of Eq. (2.8) into Eq. (2.10) and then multiplication by

eh3
leads to the expression

2

: |V612}

ehy

m
Y

@11) de{ h3 (V|2 + V2|2 + : 16]2—

— 0 = 3¢ m? — 90
— 2 Ry P S A S
= f dS{(V $) 5 —mb - 7 0
S+Sy
If we write the conjugate to Eq. (2.11) and substract the latter from Eq. (2.11), and next

use the relation (2.1); and the conjugate to it, then we may derive

m? (1 L= 0 o
(2.12) T(F - —2—) f dV|vo|? = f dS[h ( = ﬁ)
h3 S8

3 r
2 — 06 0
R e
e \h2 On hz on
Let us now discuss the right hand side of Eq. (2.12).
At first we see that the integral over S vanishes because of the homogeneous boundary
conditions (2.2).
The remaining part of Eq. (2.12) with r tending to infinity takes the form

(2.13) lim | dS(:) =1lim | dS [hz (cl) 00 -9 ¢)

r—o r—o
Sr r
" B _
e L]
e \hz on h? on

When the asymptotic relations given in Eq. (2.3) are substituted into Eq. (2.13), and some
terms are reduced and rearranged, it will be found that

@14y lim [ ggem ‘exp[—(ﬁﬁﬁa—-zﬁo)r]h%d%—ﬁs) Fufs=AiF)
Sr

’ 1 1\m? 2|1 - 3 _l.,._. A
+exp (=208 ~por) (- - ﬁg)T(lgii |5~ Gumfo| #igs2 | - =G0

J
~——

2
3

L o
S —

A N . 1 n
+expl— (B~ B2~ 2611 ™o [g,ga (£ ~Gi-s0]- = |+ -t

nl [ oen]]

The integrand in Eq. (2.14) possesses the terms whose components f;, g;, i = 1,2 are
bounded in the region, whereas the polynomial " has a finite power index. They are
both multiplied by exponential functions with negative exponents depending on r. Such
expressions tend with r —» oo to zero.

1 A
+8133( h§ l_:‘— —(ﬂs‘ﬁo)]“
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Thus we have
lim [dS(-)=0

r—oo S'

and passing in Eq. (2.12) to the limit with » - co0 we obtain

2
i, (L . T) lim fdmve;z -

€ ’;% hl r—+oo

Since
1

,
h3

#0,

=‘>ll —

2

3

we conclude that
[avivez =0, (im¥, = B.),
BB r-=+co

thus 6 = const in B..
The boundary condition (2.2), and the asymptotic condition assumed in infinity

imply that
(2.15) 0=0 in B,.
Substitution of Eq. (2.15) into Eqgs. (2.1) leads to

02 =0 and V2% =0 in B,.
Hence it follows immediately (4% being real) that

(2.16) $=0 inB,,
what completes the proof.

Theorem 2 gives rise to the following

COROLLARY. By virtue of the pair (¢, 0) € C* in B, and the identities (2.15) and (2.16),
it follows that the normal derivatives of the pair (¢, 6) tend to zero on S.

Substituting 0 = ¢ = % = g—e on S into the right hand side of the integral
representations (1.27) and (1.28) one can thus establish that

x(X)p(x) =0, 2(x)6(x) =0

The following remarks should be noted:

Note 1. The asymptotic relations (2.3) are constructed, in particular, with the aim
to assert the mutual implication of the radiation conditions (1.24) and (1.25). It is obvious
that both expressions for ¢ and 6 decay exponentially at infinity.

Note 2. The general equations (2.1),,, which are identical with Egs. (1.5);,, and
(1.7),,, are equivalent except that in the last equations it must be assumed that the pair
(¢, 0) is of the class C*in B.,.

We are ready to formulate the uniqueness theorem.

THEOREM 3. If the hypotheses of Theorem 2 are fulfilled in view of the Corollary and
Notes 1 and 2 given above, the integral representation (1.27) and (1.28) is unique.
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3. Uniqueness in the case when the boundary surface is not smooth

Let the surface .S bounding region B, be not smooth but have a vertex (weak singu-
larity !). A typical example of a surface of that kind in two dimensions is given in Fig. 2.
In this case, at the vertex A, solutions (¢, 6) of equations (or their gradients)

G.1) O2¢—mb =0, [I20+ %ﬁgvzqf; =0, xeB,
with the boundary conditions

]
3.2) ¥} qu =f(x), Ols=g(x),

where f(x) € C(S) and g(x) € C'(S) are given functions, may have singularities.

A similar equation has already been considered for a potential theory and extended
the Helmholtz equation. Our study of the problem requires further investigation. The
singularity in A prevents us from applying Green’s identity directly to the domain B..
Thus we use another region with interior boundary being the surface S; (dashed curve
in Fig. 2).

i s2

F1G. 2. An example of surface singularity in two dimensions.

The proof that Egs. (3.1)-(3.2) with f = g = 0 have only zero solutions may be carried
out along the previous lines subject to the condition that the expression

) 21 - 3 1 , 0 -
2 n Y g ..
(3.3) JdS[h( — - ¢an )+ (;; 050 B e)]
d - m>*1 - 9
— 24 Y
= 2iIm de[hltf) - e g Vo ]
S

(Im — imaginary part) tends to zero, as .S, shrinks to S. Since ¢ and d¢/0n as well as 6
and 00/on are sufficiently regular in a neighbourhood of 4, and d¢/dn and 0 vanishes
on S, it suffices to require that

(3.9 lim Im dS[h2¢ d>+ 6—6]
Sy—p.A

where S, denotes a small sphere with the center at A.



INTEGRAL REPRESENTATION AND UNIQUENESS THEOREM IN THERMOELASTICITY 29

We assume that Eq. (3.4) is satisfied by the difference of two solutions of Eq. (3.1).
This can be accomplished by imposing on the solution of Eq. (3.1) the requirement that

E = |[V¢|*+|V?¢|*+0]*+ V0|

is locally integrable. Physically this means that there is a finite energy in any bounded
region of space and that any singularity of the field at the vertex A is sufficiently weak
so that no sources are concentrated there.

Hence we see that a singularity produces new effects in the material especially in a neigh-
bourhood of the vertex. This phenomenon is examined in some details in “Mechanics
of fracture” devoted to the analysis of three-dimensional cracks in an elastic medium
where joints, faults and distribution of stresses near the tip of a crack are dealt with [10].

It appears that various crack propagation models can be described in a more precise
way by the thermoelastic theory of harmonic vibrations.

If the geometrical singularity of a tip is sharp, it can be identical with a source of energy
depending on the material, stress and crack propagation ability. A moving surface around
the singularity is to be introduced to prove the uniqueness theorem in this case. This
procedure seems to be useful in the description and interpretation of the crack propaga-
tion mechanism.

Chapter 2

4. Discussion of the radiation conditions

The consideration given above provides us with an indication that Note 1 is valid,
but not with a proof of its validity. We now wish to do this and to show that other prop-
erties of the radiation conditions deserve our attention.

At first we deal with the relation between the asymptotic relation (2.3) and the radia-
tion conditions (1.24) and (1.25). The following symbols are introduced:

af __p i 3
Fi=e?'H,, Fy,=ef'H,,

4.1) " n
G LK, Gife MKy,
where
1 P
H, = 0— — (hi =KD,
1 2_1%2
HJ =6- H(hl_kl)d):
(4.2) 1 Qﬂ)z

Klzﬁ(h%"l;f)e'*' P ¢’s

1 s ow?
m(hl k3)0+ 5 ¢.

X
I
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The radiation conditions (1.24) and (1.25) are transformed to the form

r I:% —(i’g1—.§1)]F3 = o(1),

4.3) r ["367 —(iés”ﬁs)]ﬂ = o(l),
F; = 0(1):
Fy = o(1);

|2 - dti—hoe. = o,

(4.9) r [% —(:123—5’3)]03 = o(1),
Gl = 0(1)9
G, = o(1).

Obviously the asymptotic representation of the functions F,, F; and G,, G; given by
Eq. (4.1) is valid if

Hl =eﬁ°r1}1, H3=eﬁ°r}}3:

(4.5) i .
K, = K, K= 'K,
where
(4.6) Bo = min(By, B3),
(H,, Hs, K, K3) € C".
Hence
@7 ¢ ~ Fy+F, = e~ ®i=Por I, 4 o= Gs=bor gy |

0 ~ G, +G; = ePr=org, 1 e=Bs-Po g
From the comparison of Egs. (2.3) and (4.7) we have
I}‘l = r"'fl(é, ?),
Hy = .6, §),
KA’! = rmgl(é’ ?),
1%3 = "mgz(bs ®).
Therefore we have shown that the next mutual coupling at r — co exists.
(1.24) = (2.3),,
(1.25) < (2.3);.
We proceed to examine the behaviour of energy flux at infinity. To show that Eqgs. (1.24)

and (1.25) really characterize the radiation conditions, it suffices to remark that the energy
flux (outward) through the S, surface is non-negative.
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Using Eq. (4.3) and the notations (4.1) and (4.5) one can calculate the energy radiation
flux at infinity.
We write

2
+ (ks> + B H,|?

a ~
o

n 27
(4.8)  lim7 = lim f f rzsinédédqa{e-z@-ﬂo"[

r—+o roo 8 o
A A A 6 ~ __; n 5 a A
—(iky— 1) Hs o H;+(ik, +51)H3'57 H,

A (3 A o A A A
+e—z<ﬂ=-ﬂ«>rlﬁm AL

A A s a ry A A A a A
— (ks —B5)H, Br H1+(‘k3+‘83)H1—67 Hl”

Since, according to definition [3], p. 62, (¢,0) € C*(V,) and (¢,0) € C'(V,), then, by
virtue of Egs. (4.1), (4.2), (4.5) and (4.7), the functions

(4.9) H]sH:ivI%]s-I-}JsKlsKJ!-KAIsKA'J

belong to the class C? in the domain ¥, and to the class C? in ¥, (cf. Note 2),
V,=V,uSuS.,.

Estimation of all the terms in Eq. (4.8) with Eq. (4.6) being taken into account allow to
find in the limiting case as r — oo that the integral vanishes, i.e.

(4.10) lim/ = 0.

The last expression states that the energy flux vanishes at infinity, and therefore the suffi-
cient condition for the coupled form of the radiation conditions (1.24) and (1.25) con-
nected closely with the integral representation given by Theorem 1 is fulfilled.

We may show that if 7, — 0, the radiation conditions (1.24) and (1.25) are equivalent
to those of [2], Egs. (1.8) and (1.9). Moreover, it is possible to form stronger expressions
for the asymptotic relations (1.24) and (1.25) analogous to those in Egs. (1.10)-(1.14)
of [2]. Also remarks similar to those in [2] by all adequate accounts are valid here. Further
discussion in this matter will be continued in the next section where special cases of
generalized thermoelasticity are considered.

5. Particular systems of generalized thermoelastic equations

If the term 7';—1;§V¢2 in Eq. (1.5), is small compared to the remaining terms, then this

equation is independent of Eq. (1.5);. Thus, disregarding the coupling in thermoelastic
equations, we pass to the generalized thermal stress problem divided into two separate
problems to be solved consecutively. Hence we may use known methods for solving Eq.
(1.5); to obtain temperature distribution and then we should be concerned with the
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nonhomogeneous Helmholtz equation (1.5); with a determined temperature function
on the right hand side. Generally, the system of equations for steady harmonic oscillation
 to be solved is then as follows:

(5.1) O2¢-—mb =0, O30 =0.

Eliminating the temperature from Eq. (5.1), one gets the equations we are interested in:

(5.2) DiDi¢ =0, C[I50=0.
Then the relations (1.9) satisfy the simple equalities

(5.3) k2+k2 = n24h02, kK2 = hih2.
Hence

(5.4) k2 =h2, k2=h2

By the use of an analogy between Eqgs. (5.3) and (1.9), we are able to write the integral
representations for the functions ¢ and 0 by replacing Eq. (5.4) in the corresponding
equations (1.27) and (1.28) only. Thus we have

B eihiR _ﬁlﬁ 7 B2 ]
(55) 20 = — %ww)f{R %[ o BE=h

5 3 [ emR ek o [ eihR
o Lz ingl S ()| ¢ g ¢ (E7)]L
[0 m (ki h3)¢] ( R ) [ R on b on ( R )]}'

(5.6) 200 = ja‘S[ ::R ; 0 a_;n_ (_‘3""“)].

The coefficients described by Eq. (5.4) may be expressed explicitly to fulfill the formulae
&1 = hy, By =0,
(5.7

1/2
A w d

1/2 .
oy = (2;) [(w?rd+ D2 +wry], B3 = (2(1_) [(@?73+1)172 —w1,] V2.

The relations (5.5) and (5.6) are valid if the radiation conditions satisfy the asymptotics

r (-;T_— —ihl) [9— *;; (h%—h})q&] = 0(1)’
5.8 A
(58) L (i = o)),

. F] n
—fr | Y _; —
(5.9) re (6r zh3) 6 = o(l),
e=Brg = o(1).
Next, let the relaxation time in Eq. (5.1) be negligible, (n — 0) 7, = 0, then Eq. (5.7)
implies

A A

ki=ht o =h, B, =0,

(5.10) . - 12 - 12
k3 = h3 %3 = (i) , Ba= (_co_) .
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The integral representation takes the form

G1D 2@ = = iy f as\“a- j,,[ )¢]
- MR ek 3 o [ eMr
”[”‘ —““"’3)4’] n (T)_[TE =0 an (T)]}
JhR ihzR
(5.12) £(X)0(%) = f dSl R ;n ";—,,(E-RT")]

Expression (5.12) is in agreement with Eq. (2), p. 569 in [5] providing the outward normal
direction like in Fig. 1 is taken into account.
The radiation conditions are now

(2 ) o L 02-0] - 0,

(5.13) or
0 (kDb = o(D),
o \1/2
G4 o] '(%.—ihg) 0 = o(l),

12
e_(E:) "6 = o(1).
We return again to Egs. (1.5) and (1.6) and suppose that the relaxation time is to be negli-
gible, 7, — 0.

Obviously the result is closely related to the amplitude equations of classical coupled
thermoelasticity, see Eqs. (1.1)-(1.4) in [2]. The outline of the investigations and results
of Sects. 1-4 is now applicable, providing ;13 is replaced by A;.

Hence . R

ky=ky, ki=ksy, a=a,
where k,, k5, a are given by Eq. (1.4) and further in [2].

Introducing the foregoing symbols to Egs. (1.27), (1.28), (1.24) and (1.25), one gets
the integral representations for classical thermoelasticity and the radiation conditions
exactly as Egs. (1.8) and (1.9) in [2].

The proper expressions for the pair (¢, 0) may be deduced immediately from Egs.
(1.5) and (1.6) of [2] as well. The approprlate formulae are not specified here since their
form is rather obvious.

In order to simplify the equations discussed above, condition 5 — 0 leads to the theory
of thermal stresses shown by Eqgs. (5.11)-(5.14).

The particular examples allow us to consider some properties of plane waves, moving
far away from source of disturbances. Equations (5.6) and (5.12), for instance, describe
different but pure thermal waves characterized by the coefficients 713 and hs, respectively.
Referring to Egs. (5.7) and (5.10), it is seen that a damping and phase velocity of plane

wave due to the formulae
(5.15) B, = Imk,, 9= ——
Rek,

may be determined.

3 Arch. Mech. Stos. nr 1/83
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Inserting Eq. (5.7) into Eq. (5.15), one can write

9 3 ® o 2,2 1/2
(5.16) & =F = (2,‘) [(w?75+1)—wTo]'/?,

e w
B = 2= = (2u0) [T+ D=2
3

Equation (5.10) yields

& 1/2
(5.17) Ve = (2;:) »

03 = (2xw)'3,

Denoting

(5.18) z=wty >0, 0< W)= [(2+D"2=-z]'12 < 1,

the damping and velocity coefficient in Eq. (5.16) can be written as
By = 9, W(2),

(5.19) '11}3 = '1/'_3 W(Z).

By virtue of Egs. (5.17) and (5.19) we estimate that the thermal wave motion according
to Eqs. (5.6) and (5.12) is both dissipative and dispersive. Because of 0 < W(z) < 1,
Eq. (5.18) and the relations (5.19), it is seen that the relaxation properties of a medium
reduce the influence on the damping and phase velocity of the wave given by Eq. (5.6)
in relation to Eq. (5.12). The comparison of Egs. (5.17) and (5.19) yields

793 > 53:

(5.20) U3 > V3.

A quantitative contribution of the relaxation time to damping and phase velocity may
be given, too. To this end, it is sufficient to take into account the function W(z) in the form
of Eq. (5.18) or in the following form written for small and large value of z

W(z)~l—%(l—-;—)z, forz <1,
5.21 12
(521 W(z) ~ (%) , for z > 1.

The computed data of W according to the relations (5.18) and (5.21) for a wide range
of argument 0 < z = w7, ~ 100 are plotted in Figs. 3 and 4.
A qualitative explanation of the behaviour of W as a function of 7, and w may be

proposed as follows: for fixed t, = § we calculate 0* = % and thus we obtain W(z).
1]

In particular, for z = 0.1 and 7, = 7§ = 9.95+ 10712 (copper), the value of W (0.1) =
= 0.951 and corresponds to

A
~ 0951012

*

= 1005 10*4,

Assuming the relaxation time in the range 107'2—10"'! (metals) and the ultrasonic
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w(z)
1.0
05
]
! 1 1 1 1 ! 1 I 1 | 1 || 1 1 1 L s
0 50 10 12 98 100 0z 5

Fi1G. 3. Dependence of W(z) on z = wTy, 0 < z < 100.

wiz)

10

09

08
= - 1 L L 1 1 -
01 0.2 03 04 05
Z=WT,

Fi1G. 4. Plot of function W(z) for z < 0.5.

vibration band 0.5:106—5- 10'°, then the values of z and W(z) are limited as follows

(Fig. 4)
5:1077" <z = wTo < 0.5, 0.786 < W(z) < 1.

In this case we see that the dependence W on the oscillation frequency for fixed 7, is

almost linear.

6. Conclusions

1. The integral representation of the harmonic oscillation in exterior thermoelastic
domain with one relaxation time according to the generalized theory of thermoelasticity
was established in a three-dimensional coordinate system. Adopting suitable kernels
one can specify the proper relations for the two or one-dimensional problem.

3=



36, T. ROZNOWSKI

2. From the feature of integral representation (1.27) and (1.28) and the radiation
conditions (1.24) and (1.25), it follows that the disturbances in a material far enough
from the boundary surface of a cavity seem to be vanishing because of the exponentially
damping factor in the integrand, exp [—-fir], /1 > 0,1= 1,2,

3. Some modification of the procedure applied here may be useful in the investigation
of integral representation for internal domain but it does not refer to the uniqueness
theorem.

4. The integral representation facilitates the understanding of fatigue phenomena in
the surface layer and in a substractum of a thermoelastic body.

5. If the cavity is assumed to have an extended flat, ellipsoidal form, then the given
consideration connected with the vertex, Sect. 3, may be effective in crack problem explo-
ration, especially in the stress analysis and the failure criterion under thermoelastic oscil-
lation of the body.

6. Theorems 1 and 3 hold also if any linear coupled field of a more complicated struc-
ture is assumed, for instance, the generalized linear thermoelastic field with two relax-
ation times.
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