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BRIEF NOTES 

Integration of boundary layer equations at low speeds 

E. A. AKINRELERE (ILE:.IFE) 

THE METHOD of integral relations [1] is applied to the bounda,ry layer flow where 
viscosity and conductivity are assumed to depend on temperature. Viscous heating 
is not neglected but the flow speed is taken to be low so that the fluid can be assumed 
incompressible. 

l. Governing equations 

IN LOW speed flow [2] where the difference between the temperature of the .stream and 

that of the plate is not too great (so that density is sensibly constant), the set of differen

tial equations of laminar boundary layer is of the form 

( 1.1) ou + _ov = 0 
OX oy ' 

( 1.2) u __ o!!_ + v ~ = - _!_ ~ + -~ (v ~) , ox oy e ox oy oy 

(1.3) u o (c 1 2) o ( 1 2) Tx pT+Tu +vay CpT+Tu 

= :Y (• ~ (c,T+ ~ u2}}+(~ -.I) :Y (• ~- (c,T)), 
where 

J.l 
V= - , 

e 
u and v are tangential and normal velocity components while P, e, Tare pressure, density 

and temperature, respectively. CP, J.l, x are the specific heat at the constant pressure coeffi

cient of viscosity and the coefficient of thermal conductivity, respectively. 

10* 

Now transform to new variables given by [4] 

X 

e = j Udx, 
0 

Uy . 
'Y} = y;d · 
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The subscript d denotes the stagnation value. Equations (1.1) to (1.3) are then put in 
the divergence form 

... (1.4) 

(1.5) 

(1.6) 

where U(x) is the upstream velocity and 

u 
q = u ' W= 

(1.7) 
T 1 U 2 

h=y+ -2CT' 
d . , d 

1 U2 

n2--2 C,T4 ' 

The bounqary conditions are 

(1.8) 
q = w = 0 when 'YJ = 0, 

q --+ 1 , h --+ 1 as 'YJ --+ oo . 

2. Integral relations 

Multiplying Eq. (1.4) by f'(q) and Eq. (1.5) by f(q) and adding the results, we have 

(2.1) ~ (fq)+ ! _ (fw) = ~ dU (1-q2)f'(q)+f'(q) _!___ ( boq ) . 
o~ O'YJ U d~ O'YJ O'YJ 

wheref(q) is an arbitrary function of q to be determined later. Integrating Eq. (2.1) across 
the boundary layer with respect to 'YJ and then changing to the variable q(O ~ q ~ 1 ), 
we have 

1 1 1 

d I 1 dU I [ b 1 ~ ·r bf"( ) d~ pqfdq + [fw]A = U d~ p(l-q2) f'(q)dq + f'(q)- -. q dq, 
o o P . o o p 

(2.2) 

where p = I j ~q . 
. 'YJ 

This is the first integral relation. To obtain the second we multiply Eq. (1.4) by 
(1-p)f(q), Eq. (1.5) by (1-p)f'(q) and Eq. (1.6) by f(q) and add all the three results 
to obtain 

(2.3) ~ (fqh) + _!_ (fwh) = hf'(q) __!__ du_ (1-q 2 ) oe O'YJ u de 

, a ( aq ) 1 o { oh ) 2 { 1 ) o { a q ) +hf (q) at} b a:;; +a fat} b 8ri +2n 1- a fat} bq a;; . 
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Integrating this with respect to 'YJ and again passing to the variable q, we have 

This is the second integral relation. 
For the first approximation we have to choose f(q) to ensure the convergence of the 

integrals in Eqs. (2.2) and (2.4) and also such thatf(q) shall tend to zero sufficiently quickly 
as q-+ 1. We therefore take f(q) = I-q. Equation (2.2) becomes 

(2.5) 

1 1 

d r I dU f 2 [ b] 
1 

- pq(l-q)dq = - - - p(l-q )dq- -
d~. u dE p o 

0 0 

and Eq. (2.4) becomes 

(2.6) 

. 1 1 

d f I dU f 2 f a (b) - phq(I-q)dq = - - - ph(l-q )dq- h - - dq 
dE u d~ aq P 

0 0 

f
1 

I a ( b ah ) J1 

2 ( I ) 2 a ( b ) + - (I-q) - -- dq+2 n I- - (1-q ) - - -q dq. 
a aq P aq a aq P 

0 0 

3. Solution 

Now let us represent the integrands by 

(3.1) p = !~q a0 , h = .50 H;q, b = (;. )'. 

Considering the case U(x) = U0 xm whence 

Eq. (2.5) becomes 

(3.2) 

which has a solution 

(3.3) 

i.e. 

2 _ 4(m+I) E 
ao- 7m+I ' 

a = J 4Uo xm+t }1/2 
0 1 7m+I 
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and p is then given by 

(3.4) 

which, on integration, gives 

(3.5) 

m+1 
where ex = ---

7m+1 · 

= _1_ (4(m+1)~)
112 

= ~' 
p . 1-q 7m+1 oq 

-(-7) 1f2) 
q = 1-e 2a:1tl e ' 

In terms of x andy Eq. (3.5) ·becomes 

(3.6) ( m-1) 
q = 1-e- {Jyx_ l_' 

where 
UJI2 

fJ= . 
2 yv4 (1m+ I)1

'
2 

If m = 0, which corresponds to the flat plate, ex = I and 

(3.6') 

4. a = I 

E. A. AKINRELERE 

When the Prandtl number (a) is equal to unity [3] and there is no pressure gradient 
(U = constant), Eqs. (1.5) and (1.6) are identical if h is replaced by q in Eq. (1.6). In 
this case 

(4.1) h = Bq, 

where B is a constant. 
Also Eq. (I .6) always has a solution 

(4.2) h =constant= A. 

Hence the general solution is 

(4.3) h = A+Bq. 

This means that wherever (] = I, regardless of the viscosity-temperature relationship, 
Eq. (4.3) always satisfies Eq. (1.6) for the. zero pressure gradient and Eq. (1.5) is satisfied 
by Eq. (3.6'). 

If Tw is the wall temperature which is uniform, then Eq. (4.3) becomes 

(4.4) 

where q is given by Eq. (3.6'). 
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