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Generalized coupled thermoplasticity 
Part. I. Fundamental equations and identities 

z. SLODERBA~H (WARSZAWA) 

IN nus PAPER the field equations of the generalized coupled thermoplasticity theory are derived 
using the postulates of classical thermodynamics of irreversible processes. The most general 
form for the thermodynamic potentials (e.g. for the free energy) is assumed instead of the usually 
used additive form. Due .to this assumption, it is possible to desCribe all the effects of thermo­
mechanical couples and also the elastic-plastic coupling effects. The plastic flow constitutive 
equations have the character of non-associated flow laws even when the Gyarmati postulate 
is assumed. 

W pracy wyprowadzono r6wnania pola sprz~zonej uog6lnionej termoplastyczno8ci wykorzystu­
jC:\C postulaty klasycznej termodynamiki proces6w nieodwracalnych. Przyj~to tutaj najog6lniejsZC:l 
postac dla potencjal6w termodynamicznych (np. dla energii swobodnej), nie za8 w postaci 
addytywnej. Dzi~ki przyj~u takiego zaloi:enia moi:liwe stalo si~ nie tylko wyspecyfikowanie 
i opis wszystkich efekt6w sprz~i:en termo-mechanicznych, lecz r6wniez efektu spr~i:enia 
spr~ysto-plastycznego, a r6wnania konstytutywne plastycznego plyni~ia maj'l charakter 
niestowarzyszonych praw nawet w przypadku przyj~ia postulatu Gyarmatiego. 

B pa6oTe BbiBe~eHbi ypasHeHIDI noru1 conp.IDHeHHoH: o6o6~eHHoH: TepMonnaCTINHoCTH, uc­
no.m.3y.R nocrynaTbi }(JIBCCJNeCKoH: TepMOAHHBMHI<H Heo6paTHMbiX npoueccoB. IlpmmT 3~ecL 
caMbiH o6I.UHit B~ .~ TepMOAHHaM~eCKHX llOTCHUHaJIOB (HanpHMep ~ CBoOO~OH 3Hep­
nm), HO He B a~BHOM B~e~ Enaro~ap.R npmmTHIO Tai<oro npe~oJio>KeHIDI CTaJIO B03-
MO>KHbiM He TOJibKO BbiClleUH<I>HKOB8Th H onucan. BCe a<t><l>ei<Tbi TepMo-Me:xaH~AeCKHX conp.R­
>Kemm, Ho TBK>Ke a<P<I>eKT ynpyro-Wia~eCKoro conpiDHeHIDI, a onpe~eruno~e ypas­
HeHIDI WIBCTHtieCKoro TetieHH.R HMeiOT xapaKTep He8CCOUHHPOB8HHbiX 38KOHOB, ~a>Ke B cnyqae 
npHIUITHSI nocryJiaTa rapMaTH. 

Syml;ols and abbreviations 

A·B=>A1B1 or A,1B,1 (i,j,k,l,m,n, ... =l, ... ,3), 
l( ... M 

A<.K, • o<&) = L; A<x). o<&), 
K=l 

r ... M 
~(I)B<I)o = L: A'')B<'), 

[ ... •t 

trA "==Au, 

AD=> AtJBJ or AmntJBtJ> 
1 

devA .=A-- (trA)l, 
3 

A®B => AtBJ or A,JBmn, 

1 => ~,1 (Kronecker's delta), 

a A, 
A,,J = -- (x1 - coordinates of a particle) 

ax) 
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. oA 
A= - ­ot 

gradA => At,Jo 

(t- time), 

divA=> A,,, or Au,J 

oA oAu 
--dB=>--dBmn, oB oBmn 

z. SLODERBACH 

If II and K denote "vectors of pairs" of tensors of the second and zero order, the operation II· K gives 
a scalar 

N=n M=m 

II. K = 2 II1J> K~J>+ .r [J(M) KCM). 
N=1 M=;l 

If Z is a "vector of pairs" of tensors of the fourth and second order 

Z ¢> {Z~~lr; z~:>}N= t. . n 
M=t. .. m 

and M is a tensor of fourth order, then MZ is the following "vector of pairs" of the sum of tensors of the 
fourth and second order 

N=n M=m 

MZ ¢> { J: . MIJmn Z~lr; ~ MIJmn Z~~>}. 
N=l M=l 

If ex is a tensor of the second order, the operation exG) (MZ) gives a "vector of pairs" of a sum of tensors 
of the second and zero orders 

N=n M=m 

exG)(MZ) «> { .J: rxi/MtJmnZ~~lr; ~ rxiJMI}mnZ~~>}. 
N=1 M=1 

If Z is, as before, a "vector of pairs" of tensors of the fourth and second orders and K is a "vector of pairs" 
of tensors of the second and zero orders, the expression Z o K denotes the vector of the sum of ten~ors 
of the second order 

N=n M=m 
z r-: K = ~ z<N) K(N) + ~., z<M) K<M) 

~- L,; t}mn mn ,!.,; iJ • 
N=1 M=1 

If ex is, as before, a t~nsor of the second order, the expression ex· (Z o K) is the following scalar 
N=n M=m 

ex· (Z o K) = ~ rxiJZ}J~,.K~Z>+ }; rx11Z)J'> K<M>. 
N=1 M=1 

If II is a "vector of pairs" of tensors of the second and zero orders and e is a tensor of the second order, 
the differential of the "vector of pairs" II with respect toe is the following "vector of pairs" of a sum of 
tensors of second and zero orders 

oil { N=n ol11J"> M=m oll<M> } 
--G)de ¢> ~ ---de,.,: ~ --- de~cr . 

OE N= 1 oe,., M=l Oe~cr 

The differential of the "vector of pairs" II of tensors of the second and zero orders with respect to the 
"vector of pairs" K of tensors of the second and zero orders is a "vector of pairs" of a sum of tensors 
of the second and zero orders as ·follows 

oil N=n r=n o[J(N) s=m o[J(N) --* dK ¢> { · ~ ( ~ -
0
- dK1P + ~ - 0

- dK<'>)· 
oK L.J L..J oK~f> .;....J oK<'> ' 

N=l r=l · s=l 

M=';' r=~ oii<M> s=-!' oii<M> )} 
y ( ~· -- dK1f>+ ,~. -- dK<"> . 

L..J .t:. oK1P L..J oK<'> • 
M=l r=l s=l ' 

It is seen that summation must be carried out over all r from 1 to n and over all .<; from 1 to m for each N 
and M, respectively. 

http://rcin.org.pl



GENERALIZED COUPLED THERMOPLASTICITY. PART I 339 

1. Introduction 

FIELD equations of the generalized theory of thermoplasticity will be derived making 
use of the notions of classical thermodynamics of irreversible processes. The concept of 
macroscopic internal parameters will be used to describe the thermodynamic state of an 
elastic-plastic body (cf., for instance, Refs. [1-11]). The former papers [1-6, 8, 12, 13], 
concerning the same problems will be used as a model, the essential difference consisting 
in the fact that the free energy is no more represented by a sum of two energies, one of 
which characterizes the thermoelastic properties of the body and the other - the strain­
hardening process independent of the thermoelastic properties of the body. As a result 
it is possible to describe the effects of elastic-plastic coupling observed in Ron-metal bodies 
such as, for instance, rocks; nor the usual pos~ulate of existence of a dissipation potential 
(the GYARMATI postulate [14]) is used to derive the velocity equation. The use of that 
postulate does not necessarily lead to associated laws of plastic flow. If turns out, however 
(cf. Sect. 4.2), tfiat, as a consequence of that assumption, the direction of the sum ofthe 
plastic strain rate tensor and the irreversible plastic strain tensor is normal to the instan­
taneous surface of plasticity. This important fact does not appear to be sufficiently empha­
sized in the existing literature. In Refs. [15-16], in which it was attempted to derive non­
associated laws of plastic flow, making use of the KADASHEV .cH-NovozH LOV theory [17], 
this effect has not been observed. Making use of the postulates and assumptions of rational 
thermodynamics and making use of the concept of macroscopic internal parameters, the 
effect of elastic-plastic coupling was studied by DEFALIAS (Refs. [24] and [25]Y assuming 
a general form of the free-energy function for the yield condition formulated in deforma­
tion spaces. The limitations on the elastic-plastic coupling effect by the second law of 
thermodynamics were studied, it being show·n that the plastic strain-rate tensor is not 
normal to the yield surface. · 

Section 2 is devoted to the fundamental assumptions concerning the eqmi.tion of stale 
(the Gibbs equations) and the source of entropy. 

It will be assumed throughout the entire paper that the displacement and velocity gradi­
ents are small, which means that the assumptions of the infinitesimal theory of the conti­
nuum are used. These assumptions enable more lucid analysis of the physical aspects of 
the theory, the analysis of any thermodynamic couplings, in particular (cf., for instance, 
Refs. [1] to [5]). 

It is assumed for simplicity that all the equations and the entire description are expressed 
in rectangular Cartesian coordinates. 

2. Fundamental assumptions. The Gibbs equation and the source of entropy 

Let us ·assume that the local thermodynamic state is described by the following par­
ameters of state [1]: Ee- the tensor of small elastic strain, s- specific entropy (per unit 
mass), x<N>- the set of symmetric internal tensor param~ters of second order (N = 
I, ... , n), x<N> = x<N>T, that is uiJ> = u}f>, ucM>- the set of internal scalar parameters 
(M = 1, ... , m). 
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340 z. SLOOERBACH 
- -------- - - --- ·-------- - -------- - - -- - -----'-- ---

The symbol K will denote the set of internal parameters in the form of a ,vector of 
pairs" 

K <=> {x<N>, xcM>}, N = 1 ... n, M = 1 ... m. 

Let us assume that the fundamental equation of state, that is the Gibbs equation, has the 
following form of a differential of the specific internal energy u 

(2.1) 
1 - 1 . 

du(s, £e, K) = Tds+- a· d£e+-.-Il· dK, 
eo eo 

where II is the ,vector of pairs" of the internal forces associated with the set of internal 
parameters 

., n <=> {fi<N)' II<M>}' N = 1 ,- ... ' n' M = 1 ' ... ' m' 

where D<N> = D<N>T, that is Ilff> = Il}f>. The local approach to the principle of conserva­
tion of energy is as follows: 

(2.2) . 1 . 1 d' u= - a·e- - 1vq, 
eo eo 

where q denotes the heat flux exchanged with the neighbourhood per unit time across a unit 
area, T- the absolute temperature, a - the stress, eo - the mass density of the body in 
the natural state, divq = oqtfoxi, and the orthogonal coordinates x1 express the initial 
location of the particle. 

The equation of local entropy balance per unit volume of the body has the form 

(2.3) eoS = -div ( ~)+a<'> , 
where (qfT) is the entropy flux and ac•> is the entropy produced in a definite particle per 
unit time ·and volume. The other (local) formulation of the second law of thermodynamics 
is given by the inequalit~ 

(2.4) 

The entropy production can be evaluated by solving a set of three equations (2.1) to (2.3) 
for u, s and a<•> 

(2.5) 

(2.6) 

(2.7) 

1 
Ta<•> = D-Tq · VT, VT= gradT, 

D=a·£P-Jl·K, 

D expresses the dissipation of mechanical energy per unit time and volume. The set of 
·forces -involved in (2.5) 

(2.8) x• ={a; -II; ~ vrj 
is referred to as a set of dissipation forces or a set of thermodynamic impulses and 

(2.9) Xa = {£P; K; q} 

is a set of measures of thermodynamic flow rates ([2, 10, 14, 18 and .19]). 
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GENERAUZED COUPLED THERMOPLASTICITY. PART I 341 

3. Discussion of the thermostatie properties of an elastic-plastic body 

Some different thermodynamic potentials may be used for thQ description of the thermo­
static properties of a material. This leads, of course, to equivalent descriptions. ~et us de­
note the sets of independent parameters of state as follows: 

(3.1) yss - {s Ee K} • " - ' ' ' 
Yl' = {T, Ee, K}, and Yla = {T, a, K}. 

The relevant thermodynamic potentials will be denoted 

u = u(Y~) internal energy, 

(3.2) 
T . 

A(YK') = [u- Ts],,..q.I•> free energy, 

G(Yla) = [A--1
- a· EeJ Gibbs function. 

eo •"=•"<Yia> 
Their total differentials are 

1 . 1 
dA = -sdT+- a·d£e+-Il·dK, eo . eo 

(3.3) 
1 1 

dG= -sdT7-Ee·da+-Il·dK, 
eo eo 

respectively (cf. (2.1)), and the resulting thermal equations of state are given in Table 1. 

Table 1 

(3.4) 

(3.5) 

(3.6) 

internal energy 
u=u(Yf> 

T(n') = ou(Yt} 
as . 

1 
- a(Y~') == 
eo 

ou(m 
= oc• 

1 
-11(}7) = 
eo 

ou(JT) 
= ax 

free energy 
A = .A(YI~ 

-s(Y1') = oA(yr.!> 

ar 

!....a(Yl'> = 
oA<Y1~ 

eo 0£11 

1 TB oA(Yl') 
-ll(Y~) = ax eo 

-

Gibbs function 
G = G(Y1"} 

-s(Yi") = oG(Yi~ 
vT 

_!._E" = oG(Y'I:a) 

eo oa 

1 oG(Yla) 
-II(Yia) == ax eo 

Differentiation with respect to the "vector of pairs" in Table 1 is thus defined as follows 

o( . ) { a( . ) o( . ) l 
(3. 7) ---ax-~ ox<N> ' . ;m<M> f' N = 1 ... n' M = 1 ... m . 

Similarly we have 

(3.8) o( · ) { a( • ) a( . ) } 
au ~ an<~> ' aTI<M> ' N= 1 ... n, M = 1 ... m. 

http://rcin.org.pl



342 z. SLODERBACH 

the symbol ( · ) denoting the function to be differentiated. The fundamental physical 
quantities describing the thermostatic properties of solids are defined as follows 

Ca(Y_l•) = T os(Yj•) = iJu(Y_l•) 
ar ar 

(3.,9) 
C (YTa) = T 8s(Y_la) . 

a K oT ' 

(3.10) L(Yla) = 
o~(Y_la) 

· Oa 

(3.11) CI(Yla) = 
O£e(y_la) • 

ar ' . 

(3.12) Z(Yla)::::, 
o~!(Yla) 

ax 
N(Yra) = iJa(Yla) . 

" ax ' 
where c. and Ca are specific heats with constant (Ee, K) and (cr, K), respectively, M is the 
tensor of isothermal moduli of elasticity in the state Yia and L -:- the tensor of isothermal 
elasticity in the state Yla. The symbol« denotes the tensor of thermal expansion of the ma­

terial. 
· N is the "vector of pairs" of tensors of orders 4 and 2 representing the isothermal vari­

ation the state of stress due to the · internal processes accompanying plastic deformation 
in the state Y_l•. 

Z is the "vector of pairs" of tensors of orders 4 and 2 representing isothermal variation 
of elastic deformation due to internal processes in the state Y1°. 

The quantities (3.9) to (3.12) are not independent. They satisfy the following identities 
resulting from the existence of thermodynamic potentials [2] 

(3.13) 

(3.14) 

(3.15) 

M = (L- 1
) 11 ... cr(YJ;t> or ~ 2[MlJm,.Lm,.rs1a=a<Yit> = ~1s~1r+ ~~r~J.o 

(1.1) = (1.)1' Ml)mll = Mmlll) = M)lmll = Ml)llm' 

. [ T ] Ca = C.+- Cl • MCI · . eo c"=c"<Yl0
) 

In what follows use will be made of the following thermodynamical .identities, the proof 
of which can be found in Ref. [2] 

os(Y_l•) 
(3.16) = 

aee eo 
os(Jrla) oJ1(YJ0

) 

-eo-·-~= oT 

and 
os(Yla) 1 

Oa 
=-CI, 

eo 
(3.17) 

olT(Y~a) oT(Y:) 
= ax eo OS 

O£e(y_la) 
= eo 

os(Yla) 
ar Oa 

. 
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The thermodynamic potentials being not expressed in an additive form (Refs. fl] to [4]), 
but in the most general form, we have the following additional identities of thermostatic 
couplings, which will be used in a furtlier part of the paper 

(3.18) 
-LN = -L(Yfa)N(YI') = Z, 

-MZ = -M(YI')Z(Yfa) ~ N, 

(3.19) 
aii(Yf'> 

= N, 
oll(Yfa) 

=Z 
OEe aa 

and 

(3.20) 
os(Yfa) 

= os(Yf') _1_. G(MZ) 
ax ax +eo ex '· 

(3.21) 
oll(Yfa) aii(Yl') 

cx0(MZ). = aT aT 

The identities expressing thermostatic couplings (3.19) have the following physical 
interpretation: A variation in internal forces as a result of elastic strain results in a process 
of hardening (softening) t>f the material and a variation in internal forces as a result of 
stress is connected with a variation in the moduli of elasticity as a result of a variation in 
internal parameters. 

The identities (3.20) and (3.21) are complex thermostatic identities and are sometimes 
referred to as identities of the second kind. 

The most important thermostatic properties of elastic-plastic materials can be discussed 
by assuming consecutively Yl' and Yia as a set of independent parameters ~f state and 
evaluating the increments in the dependent parameters [I] (cf. columns 2 and 3 of Table 1 
and the formulae (3.9) to (3.21)). 

Thus -

(3.22) 

(3.23) 

(3.24) 

--heat heat of elastic heat of internal 
capacity strain processes 

_ _!_ all . ax 
eo oT ' 

thermostatic 
piezo-calorific 
effect 

Lda + cxdT + Z o dX, · 

_isothermal 
elastic 
deformability 

thermal 
expansion 

isothermal 
variation in 
elastic strain 
as a result 
of internal 
processes 
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(3.25) 

(3.26) 

(3.27) 

NodK, __.. 
isothermal 
elasticity 

--­elastic 
stress" 

isothermal variation 
in stress due to 
internal processes 

d'TT: T•) all d an d (}[} .J e 
u(YK = . aK * 'K + ar T + . aEe 0uE ' 

-variation iii internal 
internal forces thermal 
accompanying forces 
internal 
processes 

variation in 
internal forces 
due to elastic 
strain 

variation in 
internal forces 
due to a change 
in the state 
of stress 

z. SLODBRBACH 

The dimensionless coefficients /'1, y3, Yu, /'21, Yf2, yfb /'aJ, yfJ, /'13, yf3 and /'3h 
involved in the formulae (3.28) to (3.29) below and further equations, have no . physical 
sense. Making use of the idea of Ref. [1], we introduce them to facilitate the interpretation 
of various terms and couplin~ effects in the equations. They are also useful for making 
certain simplifications; they take the value 1 in the general case and value zero if any of 
the coupling effects in the Eqs. (3.22) to (3.27) is disregarded. If, for instance, we set 
yi2 = 0, the rejected quantity is . the elastic strain heat. If y23 = 0, the rejected influence 
is that of internal processes on the elastic strain, etc. The object of our interest being only 
these internal processes which are due to plastic strain and which, on macroscopic grounds, 
are manifested in the form of strain hardening, the effects · denoted by the numbers (y23 , 
yJ3, yf3, y 13} may be termed "effects of elastic-plastic coupling". Such a name has already 
been used in the literature Refs. [20] to [25]. The number y 1 will represent the dissipation 
heat, which does not belong to thermostatic effects and is not specified in the description 
of the formulae (3.22) to (3.27). 

On eliminating s from the Eqs. (2.3), (3.22) and (3.23) we obtain two alternative equa­
tions for ' the temperature. By finding a from the Eq. (3.5h and ·£~ from the Eq. (3.5}3 and 
making use of the Eqs. (3.9) to (3.12), respectively, we obtain the following two alterna­
tive sets of equations composed of the equation for the temperature and the relation be­
tween the rates of elastic strain, elastic stress and temperature 

(3.28) 

and 

(3.29) 

· . . . an . 
eo CaT= y1D-y12 Ta. · MEe+/'3 T aT · K+qo, 

eoC.T= Y1D-yT2Ta.·M£e+y3T _ ~~ ·K+qo, 

a= M£e-yJ1TMa.+yJ3NoK, 
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where 

(3.30) 
q 0 = -divq 

() = T-T0 , 

T0 being the temperature of reference. 

345 

Let us observe that the elastic strain rate involved in (3.28)2 can be represented in the 
form 

(3.31) 

where £e' = IA+y21«Tis what is termed the reversible part of the elastic strain rate, and 
£e" = y23 Z o k is the irreversible, coupled part of the strain rate connected with the 
internal processes accompanying plastic strain. Such a separation of the tensor £e into 
two parts was adopted and interpreted in Refs. [20] to [23] in the case of an isothermal 
process. 

By confronting (3.31) with (2.7) it is found that 

(3.32) 

Let us introduce another thermodynamic potential- the enthalpy [18 to 19], [26 to 28] 

(3.33) x(Yia) = 1'1 G(Yka)+y3 Ts(Yka). 

Then, making use of (3.28h and (3.33), the equation for the temperature can be expressed 
in terms of plastic strain power and the variation in enthalpy due '\o a variation in the in­
ternal parameters as follows 

( ) C · . P ~ • ox(Yia) • 
3.34 (!o aT= yla· E -y12 Cl'G-_(!o . oK ·K+qo. 

In this form the Eq. (3.34) can be useful for the analysis of the_ energy stored in the body 
as a result of plastic deformation in a closed cycle of stress ([1, 2] and [12]. It shows that 
the variation in the energy stored in the body in the course of an isothemal process will 
be equal to that in enthalpy due . to a variation in the internal parameters. 

4. Rate equations 

4.1. General form of tbe rate equations 

The thermal equations of state appearing in any column of Table t', represent the first 
group of the constitutive equations of thermoplasticity. The second group are the rate 
equations relating thermodynamic impulses (2~8) with the thermodynamic flow rates (2.9). 

The rate equa~ions will be assumed in the following general form 

(4.1) q = <pq(VT, Y_i), <pq(O, Y_i) = 0, 

where 

(4.2) 

Yi = {T, K}, 

£P =A ofl(xD, Yi) i = Ad(XD, Yi) =Ad; 
Oa, 

3 Arch. Mech. Stos. nr 3/83 
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346 z. SLODERBACH 

if / 1 = 0 and A ~ 0 

(4.3) £P = 0, K = 0 if f 1 < 0 or f 1 = 0 and A < 0, 

where 
XD = (a, -II} and f 1 = f 1 (a, -II, K, T) 

is the generalized function of plastic flow defined in the space of thermodypamic forces XD 
and such th:at / 1 = 0 determines the yield surface in that space. 

Since ~q is independent of the dissipative forces a and -II, a condition necessary for 
the inequality (2.4) to be satisfied is that the following two independent inequalities should 
be satisfied 

(4.4) 

If II is replaced by the relevant equation of state (3.6h we shall obtain the flow function 
and the relevant yield condition f in the space of stresses 

(4.5) f1(a,-II, K, T)ln= ma,K,T) = f(Y'f~). 

The factor A in ( 4.2) 1 , 2 can be eliminated by making use of the "association condition" 
j1 = j = 0, if /1 = f = 0 

(4.6) 

where 

(4. 7) of h = --·d aK 
is what is termed the strain hardening function and 

of of 
(4.8) t = oa, ft = oT · 

By assuming the classical condition for plastic loading (£P =I= 0), if and only if fa· a+ fT i ~ 0 
we find, by virtue of (4.6h, that h ~ 0. The Eqs. (4.2)1 can be expressed in the form 

. {_!_h ft,aCfa·a+fTt), if f= 0 and fa·a+fTT~ 0, 
(4.9) £p = 

0 if f < 0 or f = 0 and fa· a+fTT < 0, 

where, by virtue of ( 4.5) 

(4.10) r _ oft _ , _ oii 
0 

oft 
t ,a - oa - &a oa all . 

4.2. The particular form of rate equations r_esultbig from the GyarmatJ postulate 

A more special form of rate equations can be obtained by making use of the Gyarmati 
postulate ([1, 14]). Let us assume that the dissipative (thermodynamic) forces XD have 
a potential ,0(¥, Y1) ([1, 2] and [14]) 

(4.11) 
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which is differentiable everywhere except at the point .XD = 0. 
Since the relations (4.11) are to describe a plastic material insensitive to thermodynamic 

flow rate, they must be invariant under a change of time scale. It can be easily seen that 
this is the case, provided that tpD is a homogeneous function of the first order in .XD [2]. 

The homogeneity of the function tpD implies in turn the dependence of the function 
XD(.XD, Y_I) (1, 2] and [29]. This means that there exists a function 11 (XD, Yi) termed the 
generalized flow function such that 

(4.12) 

Then, the inverse relations to (4.11) can be represented in the form 

(4.13) if .XD :1: 0 and ft = 0. 

Assuming that the states of 11 > 0 cannot be attained and taking the usual loading and 
unloading criterion (4.9) 1 , 2 we shall obtain generalized W. PRAGER's non-isothermal laws 
of plastic flow (8] in a form which is identical with ( 4.9) except, that the function d involved 
in ( 4.2h and ( 4. 7) has now the form 

(4.14) 
of1 

d = - oii · 

Making use of (4.14) and (4.10), (3.12) and (3.19), we find 

(4.15) 
OEe . • • p of 

- -oK+e =A ---oK oa' 
where A is defined by the formula (4.6h. 

On substituting (3.31h into (4.15), we find 

(4.16) • ~, • p A of 
E +E = oa . 

In the general formulation ( cf. Sect. 4.1) tensor £P is normal to the surface 11 = 0 but not 
normal to the surface f = 0. As regards the sum of tensors ee" + £P it is normal to neither 
of them. As a consequence of the Gyarmati postulate, the sum of tensors ee" + £P ( cf. Eq. 
(4.16)) is normal to the yield surface I= 0. It appears that this fact has not yet been ob­
served in the literature. It is illustrated in Fig. 1, in which 

II1 denotes the hyperplane tangent to the instantaneous yield surface/= 0 at the point p 
determined by the unit normal vector n1 , n1 = fa/(fa • fa) 1

'
2

; 

"1:19 - the hyperplane tangent to the yield surfacel1 = 0 having the character of a plastic 
potential and determined by the normal unit vector 

· oc0 - the angular measure of deviation due to the variation in internal forces II (cf. 
Eq. (3.19)) depending on the state of stress, which is equivalent to a change in moduli 
of elasticity as a result of plastic deformations (cf. Eqs. (3.12) and (3.26)). 

3* 
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FIG. 1. 

In the outline of the theory of materials intensitive to thermodynamic flow rate presented 
in Sect. 4.2, all the equations take a definite form, once the thermodynamic fvnction G 
(or any other thermodynamic potential), 1pD and <pq or G, / 1 and <pq are known. In the most 
general formulation given iil Sect. 4.1 it is also necessary to know the function d = d(XD, Y1) 
for the equations of evolution of the internal parameters K. 
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