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Generalized coupled thermoplasticity
Part. I. Fundamental equations and identities

Z. SLODERBACH (WARSZAWA)

IN THIS PAPER the field equations of the generalized coupled thermoplasticity theory are derived
using the postulates of classical thermodynamics of irreversible processes. The most general
form for the thermodynamic potentials (e.g. for the free energy) is assumed instead of the usually
used additive form. Due to this assumption, it is possible to describe all the effects of thermo-
mechanical couples and also the elastic-plastic coupling effects. The plastic flow constitutive
equations have the character of non-associated flow laws even when the Gyarmati postulate
is assumed.

W pracy wyprowadzono réwnania pola sprzezonej uogélnionej termoplastyczno§c| wykorzystu-
jac postulaty klasycznej termodynamiki proceséw meodwracalnych Przyjeto tuta_; najogélmejszq
posta¢ dla potencjalow termodynamicznych (np. dla energii swobodnej), nie za§ w postaci
addytywnej. Dzigki przyjeciu takiego zalozenia mozliwe stalo si¢ nie tylko wyspecyfikowanie
i opis wszystkich efektow sprzezen termo-mechanicznych, lecz réwniez efektu sprze¢zenia
sprezysto-plastycznego, a rdOwnania konstytutywne plastycznego plyniecia maja charakter
niestowarzyszonych praw nawet w przypadku przyjecia postulatu Gyarmatiego.

B paGoTe BbIBeJieHBI YPAaBHEHHA TIOJA CONPSYKEHHOH 0000IMeHHON TepMOILIACTHYHOCTH, HC-
MONB3YA IOCTYJIATEI KJIACCHYECKOH TEPMOMHMHAMHKH HeoOpaTHMbIX mpoueccoB. IIpHHAT afecsk
cambIi OOLLKMIT BHA 1A TEPMOAMHAMHYECKHX MOTEHIHANIOB (HAIpHMEp IUIsi cBobOfHOM aHep-
I'HH), HO He B aJUIUTHBHOM BHAe. Bjarofaps NpHMHATHIO TAaKOro MpPEANONIOMKEHHs CTAJIo BO3-
MOXKHBIM He TOJIBKO BbIcnenudukoBatsh # onucats Bee ahdeKTs! TepMo-MeXaHHUECKHX CONpA-
sxeHMi, Ho Takoke 3GhdeKT YNpYro-rIacTHUeCKOro CONPSXKEHHS, a ONpPEAe/IAIOIINE ypaB-
HeHMA IUTACTHYECKOro TEYCHHA BMEIOT XapaKTep HeaCCONMHPOBAHHBIX 3aKOHOB, Ja)Ke B Ciydae
MPHHATUA IIOCTyJaTa I'apmatH.

Symbols and abbreviations

A'B:}A‘B| or AuBu (i,j,k,l,m,n,...= l,...,3),

K=M

A . BE) = 2 A% By,

=M

ADBIY = Z AMDBM,

I=1

1
trA= A4,, symA =>7 A+ Aji),

AB=> AyB; or  AmnyBiy,

1
devA = A—— (AL,

A®B=> A;BJ or AuB,“,

1=96,, (Kronecker’s delta),
A,

Ai,; = ——  (x;—coordinates of a particle)

ax,
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= _E)f (t — time),
at
gradA = A4, ;,
divA=> A, or Ay,
-aidB: o4y dBun,
‘B 9Bmn

If IT and K denote “vectors of pairs” of tensors of the second and zero order, the operation IT- K gives
a scalar

N=n M=m
I-K= Y HPEP+ 3 HHE,
N=1 M=1

If Z is a “vector of pairs” of tensors of the fourth and second order

ZQ{Z.%).:; (M)}N—l n

l...m

and M is a tensor of fourth order, then MZ is the following “vector of pairs” of the sum of tensors of the
fourth and second order

N=n M=m
MZ <> | 3 MymZ8%; Y Muymn Z890).
N=1 M=1

If & is a tensor of the second order, the operation a(-)(MZ) gives a “vector of pairs” of a sum of tensors

of the second and zero orders
N=n M=m
GQ(MZ)°‘ 2 muMi,ﬁng.(nﬂ:; Z OluM:_rng,(n’:n‘)i-
N=1

If Z is, as before, a *vector of pairs” of tensors of the fourth and second orders and K is a “vector of pairs”
of tensors of the second and zero orders, the expression Z 0 K denotes the vector of the sum of tengors
of the second order

N=n M=m
= 2 ZM KW+ 3 ZO0K,
M=1
If « is, as before, a tensor of the second order, the expression a- (Z 00 K) is the following scalar
N=n M=m
@ (ZoK)= N a0, ZO0 KW+ 3wy ZPOKe,
N=1 M=1

If IT is a “vector of pairs” of tensors of the second and zero orders and € is a tensor of the second order,
the differential of the “vector of pairs” IT with respect to € is the following “vector of pairs” of a sum of
tensors of second and zero orders
M=
oIl 617 I
_®d£ <> { . 2 d€k [} "
de -

=1 =1

The differential of the “vector of pairs” I7 of tensors of the second and zero orders with respect to the
“vector of pairs” K of tensors of the second and zero orders is a “vector of pairs” of a sum of tensors
of the second and zero orders as follows

N=n r=n =m

e 35 .

dK"))
M=m r=n s=m
A oITe (r) A 3
14421 (2 F 2K K +2/ 2k K¢ ))}'\
= r=1

It is secen that summation must be carried out over all r from 1 to n and over all s from 1 to m for each N
and M, respectively.
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1. Introduction

FIELD equations of the generalized theory of thermoplasticity will be derived making
use of the notions of classical thermodynamics of irreversible processes. The concept of
macroscopic internal parameters will be used to describe the thermodynamic state of an
elastic-plastic body (cf., for instance, Refs. [I-11]). The former papers [1-6, 8, 12, 13],
concerning the same problems will be used as a model, the essential difference consisting
in the fact that the free energy is no more represented by a sum of two energies, one of
which characterizes the thermoelastic properties of the body and the other — the strain-
hardening process independent of the thermoelastic properties of the body. As a result
it is possible to describe the effects of elastic-plastic coupling observed in non-metal bodies
such as, for instance, rocks; nor the usual postulate of existence of a dissipation potential
(the GYARMATI postulate [14]) is used to derive the velocity equation. The use of that
postulate does not necessarily lead to associated laws of piastic flow. If turns out, however
(cf. Sect, 4.2), that, as a consequence of that assumption, the direction of the sum of the
plastic strain rate tensor and the irreversible plastic strain tensor is normal to the instan-
taneous surface of plasticity. This important fact does not appear to be sufficiently empha-
sized in the existing literature. In Refs. [15-16], in which it was attempted to derive non-
associated laws of plastic flow, making use of the KADASHEV.CH-NOvozH LoV theory [17],
this effect has not been observed. Making use of the postulates and assumptions of rational
thermodynamics and making use of the concept of macroscopic internal parameters, the
effect of elastic-plastic coupling was studied by DEFALIAS (Refs. [24] and [25]) assuming
a general form of the free-energy function for the yield condition formulated in deforma-
tion spaces. The limitations on the elastic-plastic coupling effect by the second law of
thermodynamics were studied, it being shown that the plastic strain-rate tensor is not
normal to the yield surface.

Section 2 is devoted to the fundamental assumptions concerning the equation of state
(the Gibbs equations) and the source of entropy.

It will be assumed throughout the entire paper that the displacement and velocity gradi-
ents are small, which means that the assumptions of the infinitesimal theory of the conti-
nuum are used. These assumptions enable more lucid analysis of the physical aspects of
the theory, the analysis of any thermodynamic couplings, in particular (cf., for instance,
Refs. [1] to [5)).

It is assumed for simplicity that all the equations and the entire description are expressed
in rectangular Cartesian coordinates.

2. Fundamental assumptions. The Gibbs equation and the source of entropy

Let us 'assume that the local thermodynamic state is described by the following par-
ameters of state [1]: € — the tensor of small elastic strain, s — specific entropy (per unit
mass), ®™ — the set of symmetric internal tensor parameters of second order (N =
1,...,m), x™ = x™T that is =" = x§), »™ — the set of internal scalar parameters
M=1,..,m. , '
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The symbol K will denote the set of internal parameters in the form of a ,,vector of
pairs”’ ]
Ko{x®™ ™y, N=1..n, M=1..m.

Let us assume that the fundamental equation of state, that is the Gibbs equation, has the
following form of a differential of the specific internal energy u

1 : 1
(2.1) du(s, €, K)= Tds+— o-de*+—IT- dK,
€o Qo
where I1 is the ,,vector of pairs” of the internal forces associated with the set of internal
parameters
He@™, ney, N=1,..,n, M=1,..,m,

where II™ = II™T that is JT{M = JTY". The local approach to the principle of conserva-
tion of energy is as follows:

; 1 P S
(2.2) u= o o€ o divq,
where q denotes the heat flux exchanged with the neighbourhood per unit time across a unit
area, T — the absolute temperature, o — the stress, g, — the mass density of the body in
the natural state, divq = dg;/dx;, and the orthogonal coordinates x; express the initial
location of the particle.

The equation of local entropy balance per unit volume of the body has the form

23) o = —div(g,)+gm,

where (q/7) is the entropy flux and o‘® is the entropy produced in a definite particle per
unit time and volume. The other (local) formulation of the second law of thermodynamics
is given by the inequality

(2.4) o® > 0.

The entropy production can be evaluated by solving a set of three equations (2.1) to (2.3)
for 4, § and o™

@.5) Tot® = D—qu-VT, VT = grad T,
(2.6) D=oc-¢"—IT-K,
@7 d= e

D expresses the dissipation of mechanical energy per unit time and volume. The set of
forces involved in (2.5) :

(2.8) X° = {c; —H;LTVT}
is referred to as a set of dissipation forces or a set of thermodynamic impulses and
@9 - 5 = (& K q)

is a set of measures of thermodynamic flow rates ([2, 10, 14, 18 and 19]).
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3. Discussion of the thermostatie properties of an elastic-plastic body

Some different thermodynamic potentials may be used for the description of the thermo-
static properties of a material. This leads, of course, to equivalent descriptions. Let us de-
note the sets of independent parameters of state as follows:

3.1 ¥=1{s,€eK}; Y{={T, e K}, and Y[°={T,0 K}
The relevant thermodynamic potentials will be denoted

u = u(Yy) internal energy,
3.2) A(YE) = [u—Ts)s=sqrpsy  free energy,

G(YE) = [A—Q_lo c- E’J Gibbs function.

s*=e*(Y}%)

Their total differentials are

dA = —sdT+L c-de‘+—1—IT-dK,

(.3) 91" el°
dG = —sdT———¢€°-do+—1IT-dK,
Qo Qo

respectively (cf. (2.1)), and the resulting thermal equations of state are given in Table 1.

Table 1
internal energy free energy Gibbs function
u = w(Y® A= AQYD) G = G(¥i")
au JA(YE SG(YE
60 Tom =250 | gy < OB |y - HETE)
s aT oT
1 1 QAYE 1 dG(YE®
3.5 —o(YE) = — o(YF) = ( "‘) L g O )
Co 2o Je o Jdo
_ 9u(xy)
J€*
1 1 QAYE®) 1 IG(YL%)
3.6) —INYY) = — I(YE®) = — INYZL%) =
3.6 o ¥Yx) o Yx) oK % (YE®) K
_ ou(rE)
T K

Differentiation with respect to the “vector of pairs” in Table 1 is thus defined as follows

a(»

) J[a¢) ) .
3.7 K #{3:(‘"” [ N=1..n, M=1..m.
Similarly we have
a(*) aCc) o)
(38) oIT @{ ™ 3T |’ N=1.. n, M=1..m.
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the symbol () denoting the function to be differentiated. The fundamental physical
quantities describing the thermostatic properties of solids are defined as follows

os(YR*) _ ou(¥g®)

- _
cvg) = 208,

G.10 Lo = 2E0D Mgy = 208,

(3.1D a(Y{°) = —aia(?;.

(.12) 2= I8 g - 22U

where C, and C, are specific heats with constant (e°, K) and (o, K), respectively, M is the
tensor of isothermal moduli of elasticity in the state YI* and L — the tensor of isothermal
elasticity in the state ¥£°. The symbol a denotes the tensor of thermal expansion of the ma-
terial.

N is the “vector of pairs” of tensors of orders 4 and 2 representing the isothermal vari-
ation the state of stress due to the internal processes accompanying plastic deformation
in the state YZ*

Z is the “vector of pairs” of tensors of orders 4 and 2 representing isothermal variation
of elastic deformation due to internal processes in the state YZ°.

The quantities (3.9) to (3.12) are not independent. They satisfy the following identities
resulting from the existence of thermodynamic potentials [2]

(313) M= (L—hl)g=¢(}’§5) or » 2[Mljanmnrs]c=a(YEE) = 6!; 6jr+air ajsv
(3.14) Oy = i, Mijmn = Mty = Mjimn = M jum,

T
(3.15) Ci= [C.+—G'Ma] :

Qo e =e4(YE%)

In what follows use will be made of the following thermodynamical identities, the proof
of which can be found in Ref. [2]

os(YF) 1 da(¥f) 1

(316) T = _Eo_‘ oT = E‘(Ma)cnu(l’}!)s
o as(YEh) _ eH(yfn o as(YE) _ el(YE)
Qo-"23k ~ o > T e T er
and
(g _ 1
oo @o ’
()1 (044 OT(YE)
3.1 o -
( 7) Qo os oK ’
oe(Yg®) _  as(¥x")

oT 9 e
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The thermodynamic potentials being not expressed in an additive form (Refs. [1] to [4]),
but in the most general form, we have the following additional identities of thermostatic
couplings, which will be used in a further part of the paper

—LN = —L(Y{)N(¥{*) = Z,

G-28 ~-MZ = —M(YF)Z(YE") = N,
(3.19) -%2‘3)—=N, -ﬂf}@=z
and

(3.20) S - 20D+ Laomz),
(3.21) YE) ol —aOMZ).

or - or

The identities expressing thermostatic couplings (3.19) have the following physical
interpretation: A variation in internal forces as a result of elastic strain results in a process
of hardening (softening) of the material and a variation in internal forces as a result of
stress is connected with a variation in the moduli of elasticity as a result of a variation in
internal parameters,

The identities (3.20) and (3.21) are complex thermostatic identities and are sometimes
referred to as identities of the second kind.

The most important thermostatic properties of elastic-plastic materials can be discussed
by assuming consecutively YX* and Y1° as a set of independent parameters of state and
evaluating the increments in the dependent parameters [1] (cf. columns 2 and 3 of Table 1
and the formulae (3.9) to (3.21)).

Thus
T T oIl
3.22) Tds(Y¥®) = C,dT+ -—— def - Ma—— —— - dK,
( (¥ 2o 0 T
heat heat of elastic heat of internal
capacity strain processes
T T oll
3.23 Tds(YE?) = C,dT+-—a-d —-—— —dKk,
(3.23) s(YZ%) = C, +Q°a o o T
thermostatic
piezo-calorific
effect
(3.24) de*(Y£°) = Ldo + adT + Zodk,
isothen;;l thermal isothermal
elastic expansion variation in
deformability - elastic strain
as a result
of internal

processes
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(3.25) da(Y}") = Mde* +MadT+ Nodk,

— “— — [ —
isothermal elastic  isothermal variation
elasticity stress in stress due to

internal processes

617

(3.26) dll(YE®) = ~— % dKk + 31"3’ dr + —gg—@de",
variation in i-nterg variation in
internal forces thermal internal forces
accompanying forces due to elastic
internal strain
processes

orr
(3.27 dIl(Yx®) = 31] a{-dK + - aT dT+ %{}@do.

variation in
internal forces
due to a change
in the state

of stress

The dimensionless coefficients yy, ¥3, Y125 Y21, ¥z, Y315 Yas» ¥33, Y13, ¥1s and y3,,
involved in the formulae (3.28) to (3.29) below and further equations, have no physical
sense. Making use of the idea of Ref. [1], we introduce them to facilitate the interpretation
of various terms and coupling effects in the equations. They are also useful for making
certain simplifications; they take the value 1 in the general case and value zero if any of
the coupling effects in the Egs. (3.22) to (3.27) is disregarded. If, for instance, we set
y12 = 0, the rejected quantity is the elastic strain heat. If y,; = 0, the rejected influence
is that of internal processes on the elastic strain, etc. The object of our interest being only
these internal processes which are due to plastic strain and which, on macroscopic grounds,
are manifested in the form of strain hardening, the effects denoted by the numbers (y,3,
v%3, ¥¥s, ¥13) may be termed “effects of elastic-plastic coupling”. Such a name has already
been used in the literature Refs. [20] to [25). The number ¢, will represent the dissipation
heat, which does not belong to thermostatic effects and is not specified in the description

of the formulae (3.22) to (3.27).

On eliminating § from the Egs. (2.3), (3.22) and (3.23) we obtain two alternative equa-
tions for'the temperature. By finding 6 from the Eq. (3.5), and € from the Eq. (3.5); and
making use of the Egs. (3.9) to (3.12), respectively, we obtain the following two alterna-
tive sets of equations composed of the equation for the temperature and the relation be-
tween the rates of elastic strain, elastic stress and temperature

[ » ol .
(3.28) 20CT = y1 D=y Ta- M +ys T —o - K+ 4o,
é. = I‘&+y21uT+y23ZD_K-
and .
00C.T = y, D=yt Ta-Mé 4y, T2 . K 4q,,

(3.29) oT
& = Mé°—y%, TMa+y%No K,
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where
go = —divq

3.30
(330) B = T

T, being the temperature of reference.
Let us observe that the elastic strain rate involved in (3.28), can be represented in the

form
(3.31) € = €' +e”,
where €’ = L6 +y» Iafi“ is what is termed the reversible part of the elastic strain rate, and
€’ = y,;Z 0K is the irreversible, coupled part of the strain rate connected with the
internal processes accompanying plastic strain. Such a separation of the tensor €® into
two parts was adopted and interpreted in Refs. [20] to [23] in the case of an isothermal
process.

By confronting (3.31) with (2.7) it is found that

(3.32) €= €+€ =& +e& +¢e.

Let us introduce another thermodynamic potential — the enthalpy [18 to 19], [26 to 28]
(3.33) 2(YE?) = y, G(YE) +ys Ts(YEY).

Then, making use of (3.28), and (3.33), the equation for the temperature can be expressed

in terms of plastic strain power and the variation in enthalpy due %o a variation in the in-
ternal parameters as follows

(Y% ¢
ok Kt

In this form the Eq. (3.34) can be useful for the analysis of the energy stored in the body
as a result of plastic deformation in a closed cycle of stress ([1, 2] and [12]. It shows that
the variation in the energy stored in the body in the course of an isothemal process will
be equal to that in enthalpy due to a variation in the internal parameters.

(3.34) 90C¢T= ?1“'ép—?1zTa'6’-Qo

4, Rate equations

4.1. General form of the rate equations

The thermal equations of state appearing in any column of Table 1, represent the first
group of the constitutive equations of thermoplasticity. The second group are the rate
equations relating thermodynamic impulses (2.8) with the thermodynamic flow rates (2.9).

The rate equations will be assumed in the following general form

4.1) q='(VT,Y3), «0,Y5)=0,
where
Y; = {Ts K},
D yT .
(42) e g DXL g e, YI) = Ads

Jo, ’

3 Arch. Mech. Stos. nr 3/83
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if f,=0and 43> 0
(4.3) & =0,

where

K=0 if fi<0 or f,=0 and A4d<0,

X? = (6,—-I1} and f, = fi(e, -II,K,T)
is the generalized function of plastic flow defined in the space of thermodynamic forces X?
and such that f; = 0 determines the yield surface in that space.
Since ¢? is independent of the dissipative forces o and —II, a condition necessary for
the inequality (2.4) to be satisfied is that the following two independent inequalities should
be satisfied

4.4) —@!(VT,¥D)-VT>0 and -2t

oo

If IT is replaced by the relevant equation of state (3.6); we shall obtain the flow function
and the relevant yield condition f in the space of stresses

(4.5) fi(e,—I1, K, T)|n = nexn = f(¥YK).

The factor A in (4.2),,, can be eliminated by making use of the “association condition”

fi=f=0iffi=f=0

e=IT-d>=0.

4.6) f,-6+frT—Ah =0 whence A= (fqv&-}-frf')%,
where
of
4.7 b= K d
is what is termed the strain hardening function and
_ _9
(4.8) L=— fr=z5

By assuming the classical condition for plastic loading (€” 5 0), if and only if f, - 6+ /7 T>0
we find, by virtue of (4.6),, that 4 > 0. The Egs. (4.2), can be expressed in the form

- [t s B, i f=0and g odsT o,
; el =

0 if f<0 or f=0andf, 6+fT<0,

where, by virtue of (4.5)

_ o ol of,
(410) fl.o‘" F = fa——ac- [m} —a-ﬁ

4.2. The particular form of rate equations resulting from the Gyarmati postulate

A more special form of rate equations can be obtained by making use of the Gyarmati
postulate ([1, 14]). Let us assume that the dissipative (thermodynamic) forces XP have
a potential y?(x2, ¥Y) ([1, 2] and [14])

op®

(4.11) XP = 555 X° = {é?, K},
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which is differentiable everywhere except at the point x? = 0.

Since the relations (4.11) are to describe a plastic material insensitive to thermodynamic
flow rate, they must be invariant under a change of time scale. It can be easily seen that
this is the case, provided that y? is a homogeneous function of the first order in x? [2].

The homogeneity of the function ¢” implies in turn the dependence of the function
X2(xP, Y% [1, 2] and [29]. This means that there exists a function f,(X?, YF) termed the
generalized flow function such that

(4.12) X2, YH =0 if P #£0.

Then, the inverse relations to (4.11) can be represented in the form
i ofy . 9

4.13) x :AEX;D— if xP#0 and f,=0.

Assuming that the states of f; > 0 cannot be attained and taking the usual loading ahd
unloading criterion (4.9), , we shall obtain generalized W. PRAGER’s non-isothermal laws
of plastic flow [8] in a form which is identical with (4.9) except, that the function & involved
in (4.2), and (4.7) has now the form

_ _oh
4.14) d= 50T
Making use of (4.14) and (4.10), (3.12) and (3.19), we find
o€’ b of
(4.15) -aK DK+E -—A-'a;—,

where A is defined by the formula (4.6),.
On substituting (3.31); into (4.15), we find

o

ko
(4.16) e = A

In the general formulation (cf. Sect. 4.1) tensor €? is normal to the surface f; = 0 but not
normal to the surface f = 0. As regards the sum of tensors €*” +€? it is normal to neither
of them. As a consequence of the Gyarmati postulate, the sum of tensors €' +¢€” (cf. Eq.
(4.16)) is normal to the yield surface f = 0. It appears that this fact has not yet been ob-
served in the literature. It is illustrated in Fig. 1, in which

I1; denotes the hyperplane tangent to the instantaneous yield surface f = 0 at the point p
determined by the unit normal vector n;, n; = £,/(f, - £)"2;

Y1, — the hyperplane tangent to the yield surface f; = 0 having the character of a plastic
potential and determined by the normal unit vector

n, = £, ,(F0 .03

o, — the angular measure of deviation due to the variation in internal forces I (cf.
Eq. (3.19)) depending on the state of stress, which is equivalent to a change in moduli
of elasticity as a result of plastic deformations (cf. Egs. (3.12) and (3.26)).

3+
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g ='“h

S

Fia. 1.

In the outline of the theory of materials intensitive to thermodynamic flow rate presented
in Sect. 4.2, all the equations take a definite form, once the thermodynamic function G
(or any other thermodynamic potential), ” and ¢ or G, f; and ¢? are known. In the most
general formulation given in Sect. 4.1 it is also necessary to know the function d = d(X”,YF)
for the equations of evolution of the internal parameters K.
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