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Generalized coupled thermoplasticity
Part. II. On the uniqueness and bifurcation criteria

Z. SLODERBACH (WARSZAWA)

IN THIS PAPER the fundamental incremental boundary-value problem of the generalized coupled
thermoplasticity is formulated. Furthermore, the local and global criteria excluding the possibility
of appearance of the bifurcation are derived. These criteria were derived by analyzing the
uniqueness of solution of the incremental boundary-value problem formulated in Sect. 3.
The nonassociated plastic flow laws are assumed, and the effects of thermomechanical and elastic-
-plastic couples are taken into account. Due to such assumptions the mathematical problem
considered is not self-adjoint. This (II) part of the paper is a direct continuation of the previous
() part [2].

W pracy sformulowano podstawowy przyrostowy problem brzegowy sprzezonej uogélnionej
termoplastycznoéci. Nastgpnie wyprowadzono lokalne i globalne kryterium wykluczajace
mozliwo$¢ wystapienia stanu bifurkacji. Kryteria te wyprowadzono, analizujac problem jedno-
znacznos$ci rozwiazania sformutowanego w punkcie 3 przyrostowego (predkosciowego) problemu
brzegowego. Oryginalnym elementem jest przyjecie niestowarzyszonych praw plastycznego
plynigcia oraz uwzglednienie wplywu odksztalcefi plastycznych na wilasnosci termosprezyste
cial. Z powodu takiego przyjecia, rozpatrywany tutaj problem matematyczny nie jest problemem
samosprzezonym. Niniejsza II cze$¢ pracy jest bezposrednim rozwinigciem czgéci 1 pracy [2].

B paGore copmMynmupoBana B MPUPOCTaX OCHOBHAA KpaeBas 3aJjauya CONpsDKEHHOH 06obmen-
HO# TEPMOIUIACTHUHOCTH. 3aTeéM BBIBECHBI JIOKAIBHEIN M II00aNbHbIN KPHTEPHA, HCKIIOYa-
IOLLIAE BO3MOXKHOCTh BBICTYIUICHHS COCTOAHWA OHQypKaumu. OTH KpPHTCDHA BbIBENCHBI,
aHAJIM3UPYA NpobNeMy eQUHCTBEHHOCTH pelleHHs, chopmy/MpoBaHHON B MyHKTe 3, KpaeBoik
3a]auA B OPHAPOCTAX (CKOPOCTHOM). OpHTHHAIBHBIM 3JIEMEHTOM SIBJIAETCA TIPHHSITHE HEacco-
[HMPOBAHHBIX 3aKOHOB IUIACTHYECKOrO TEUeHHs, a TalKe yuer BIMSHMSA IIJIACTHYECKHX Je-
copmammumit Ha Tepmoynpyrue cpoiicrBa Ten. V3-3a Taxoro NpUHATHA pPacCMaTpPHBaeMas 3MECh
MaTeMaTHJecKas mpobyiemMa He ABJISETCA caMoconpsiKeHHol mpoGiemoit. Hacrosman 11 yacte
paGoThl ABNIAECTCA HEMOCPEACTBEHHBIM pasBuTHeM I wactu pabothl [2].

1. Introduction

THE INCREMENTAL boundary-value problem of generalized coupled thermoplasticity will
be formulated. This will be followed by an interpretation of the uniqueness conditions for
the solution of that problem. The necessary uniqueness conditions will be derived as well
as the sufficient local condition and the sufficient global uniqueness criterion, and the
sufficient global uniqueness condition. A similar incremental boundary-value problem
of coupled thermoplasticity has already been studied in Refs. [1, 3, 5]. The method used
in those references will be4aken as a model, an original feature of the present paper being
that non-associated laws of plastic flow are assumed and the influence of plastic deforma-
tion on the thermoelastic properties of the body is taken into consideration. Such a re-
quirement leads to a more difficult problem than those hitherto considered. Besides, the
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sufficient local uniqueness condition of coupled thermoplasticity derived by RANIECKI
and MROz [3, 4] is not the optimum condition.
The procedure for obtaining the optimum condition from the one-parameter family
of local uniqueness conditions introduced in the present paper is explained in Appendix B.
The present Part II of the work is directly connected with Part I [2].

2. Uniqueness of solution of incremental problems for homogeneous processes

Let us assume that the thermodynamic state of the body at a certain moment ¢, of a
homogeneous process is known and such that the condition f; = f = 0 is satisfied. The
following incremental problems can be formulated for such a type of processes. Satisfying
the set of equations of Ref. [2] (Egs. (2.7), (3.24), (3.25), (3.28), (3.29), (4.2) and (4.6)),
we must find, for the time ¢,, the values

a,) €and g, assuming that &(¢f,) and T(to) are prescribed

a,) ¢ and g, . ,  &to) and T(t)) ., ”
b) e€and T . »  6(to) and go(te) "
b,) &and T . ,  €(to) and qo(te) .
where
g0 = —divq.

It is easy to see that if a solution of the problems (a,) and (a,) is to be unique, it is necessary
that the following respective conditions known from the isothermal theory of plasticity
should be satisfied

2.1) h>0 and h+g,-Mf, >0,

where
2.2) g =fi.+ysZ0d

and £ is the isothermal strain-hardening function obtained in Ref. [2]. Those conditions
are also sufficient but it turns out, however, that two solutions of the problems (b,) and
(b,) may exist, even if the inequalities (2.1) are satisfied. The uniqueness conditions for
the problem (b;) and {b,) have the following forms (cf. Appendix A):

Problem (b;)

(2.3) hy = h—m,fr > 0.
Problem (b.)
1

(2.4) H=h+g," MQ—;(%HM& ‘ML) (fr—y3.0- Mf,) > 0,
where _

__1 N i AII(Yg?) . )
(2.5) my = m[)ﬁ(ﬂ' fl.a_Iz d)—)’s T(-—-a—]";'— d "
(2.6) &= *-p e p=—g—', M2 =a Ma.
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In the case of associated laws of plastic flow (f; , = f,;) the quantity m, = m was analysed
in Refs. [1] and [3], all the elastic-plastic coupling effects being rejected (y23 = p53 = 13 =
y1s = 0). By analysing the cyclic isothermal process in the space of stresses the authors
of those works observed that for metals m, is in general positive

2.7 my > 0.

The inequalities (2.3) and (2.4) are a generalization of the uniqueness conditions derived
by MrOz and RANIECKI [1, 3, 4] and KAMIENIARZ [11]. This generalization consists in the
non-associated laws of plastic flow being taken into account as well as the influence of plas-
tic deformations on the thermoelastic properties of the body. The conditions obtained in
Refs. [1] and [3] can also be obtained from Eq. (2.3) and (2.4) by rejecting all the effects
of elastic-plastic coupling (y,3 = Y33 = y13 = ¥13 = 0) and assuming associated laws of
plastic flow (f; , = f,).

It is worthwhile to observe that in the case of metals the satisfaction of the condition
(2.3) implies, in general, that of the condition (2.4) (cf. [1] and [3]).

Let us assume that the conditions (2.3) and (2.4) are both satisfied. The solutions of the
incremental problems (b;) and (b,) can be expressed in the following forms:

Problem (b))

Making use of Egs. (4..2), (3.28) and (2.7) of Ref. [2], we obtain the following relations
between € and &, and T and &:

. . j (p) - » j
(2.8), € =L% + 'i:_K°+ hj— afr[(f1,6+y23 Zod)+ 5 mea]l — 2, qa,
‘ 1 1

@8), T= —msa-éﬂ,’f‘: [(f,—y12&fr%)  6—Ffrgl—4,

28), &= hi [0, —712&fr ) - &—Fral,

(2.8)4 € = Lo+y,, To+ hi (£, —y12fré®) - 6 —qf1](y23 Z0d),
1
where

@
K = (fi,.4y23Zod 4y, m,a)@(f,— y::8fra),
1

(29) L(F) — L—y21y12£(u®q)’ q= QOCa ddi,
._{1 it f=0 and  (E-yiéfre) é—afr >0,
T=Y0 if f<0 or f=0 and (f,—y2&fre) 6—qfr <O;
1 )
(2-10) A= _h_ [(L"‘?ugfra) : G"‘er]-
1

The symbol L denotes the tensor of adiabatic elasticity. Let us observe (cf. [1]) that the
second right-hand term of (2.8), is not equal to the plastic strain rate, but may be considered
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)
as representing the adiabatic plastic strain rate. The tensor K is asymmetric, Kjjm, #
()]
Kounij. The equations for the thermodynamic flow rates can also be expressed in terms of

¢ and gq.
They have the form

@.11) £ hi;[(fo—ylzsffa) & qfsd(X?, YE).

Taking into consideration the Gyarmati postulate and the reéulting condition (4.14)
of Ref. [2], the above relation takes the form

.12) K= L 1=rtfr0) -0y LOTH.
Problem (b,)

The alternative equations (correspondihg to Eq. (2.8)) are obtained by making use of
the relations (4.2), (3.29), (2.7) given in Ref. [2]

L))
@2.13), &= M@+ Vl—I;‘IMa—%KI ha L (310 ML —f7) (5, Ma+By),

. 1 . / .
(2.13), T= ‘1;(7’12 fa- Mé+q)+ “I{%f(ma"'?’f: &g, - Mf) [B' e+%(y§,a : Mt;"f'r)],
(2.13)5 €= %{[B €+ %(ﬁxd : Mfa—fr)]fn,a,
where
1 if f=0 and B- é+%(y§1a-Mf,—fr) >0

j1=
0 if f<O or f=0 and B-&+o (e ML—fn) <0,

* *
M@ = M+ 12721 xMa)®(Ma), By = B—N,,
(2.14) 4
(p;
B= Mfa'*'?h%(?:xa - Mf,—fr)Ma; K)1= [#:(Ma)—N,]®B+B®B.

)
The following additional quantities are involved in the tensor K!:

(2.15) P, = 7;1% +‘J’fz§fr—‘)’?z ?gs“i‘ {u : [ND(7’3d+7:1fl.H)]}
and

(2.16) N, = y33Nod+y,3Nofy z = No(3:d+y13/1.0):
where

: F

@.17) fig=-2

oll -
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The Egs. (2.15) have been derived making use of the expression (A.2), of Appeﬁdix A
and Eq. (3.18), of Ref. [2]. Symbol M(® denotes the tensor of adiabatic moduli of elasticity.
Similarly to the former case, the tensor interrelating the stress rate and the strain rate is

asymmetric because I‘a}m # (1?,},,,; ;. Let us observe that, if the conditions (2.3) and (2.4)
are both satisfied, the Eqs. (2.13) are equivalent to Eq. (2.8). They can be obtained by sol-
ving Eq:.(2.13), for 6 and substituting the result into Egs. (2.13), and (2.13),. If all the
thermodynamic coupling effects in the Eqgs. (2.8) to (2.12) and (2.13) to (2.17) are rejected
Y1 =y3 =912 = Y33 = Yis = ?’rz = 3 = 0) and if (f;, = f,), those equations will
constitute two equivalent sets of fundamental equations of the theory of thermal stresses
in an elastic-plastic body (Then ¢ = 7 or —div q = %o C,T and p = 1).

3. Formulation of the incremental boundary value problem

If the condition (2.3) is satisfied, the set of equations (2.8) to (2.12) is equivalent to the
fundamental set of equations (2.7), (3.19), (3.20), (3.24), (3.25), (3.28), (3.29), (4.2), (4.6)
and (4.7) of Ref. [2],

3.1 ' q= divq.

fo Ca
As regards the Egs. (2.13), (2.14) (together with the relevant equations for %™ and %)
there is a similar equivalence, provided that H > 0. The set of those equations, together
with the law of heat conduction (4.1) of Ref. [2], with the equation of motion and the
kinematic relations

dive+gob, = 00V,
(.2) Qo Qo

28 = Ui+,

where v is the vector of velocity of particles and b,, the body force, constitute a set of fun-
damental field equations of coupled thermoplasticity. Together with the boundary condi-
tions and the initial conditions it may be used as a basis for analysis of many -problems of
generalized thermoplasticity, both dynamic and quasi-static.

The following static incremental boundary-values problem can be formulated [1].
Let the body occupy, at a time #,, a region D in space. Let us denote by D the closure of D
and by the symbol S — the boundary of D. S is the closure of the sum of non-intersecting
regular open surfaces S, and Sy. Let the thermodynamic state of the body

(3.3) T,06,K

and the rates of body forces b, be known, at a time to and at every point x of the closure D.
It is assumed that the functions (3.3) satisfy the condition £ < 0. It is also assumed that
the values of the surface forces t© and the velocities of material points v¢>> are known at
the time 7, over the parts Sy and S, of the boundary, that is

én =t for xeS,

&) v=v®" for x€e8§,,
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where n is a unit vector normal to S, directed towards the outside of D ([1, 3, 5]). Our task
is to find the functions &, €, v defined in D and the function T defined in D, which satisfy,
in the region D, the Egs. (2.1) to (2.4), (3.1) (3.2) and (4.1) of Ref. [2] and the incremental
equations of equilibrium

(3.5 dive+gob,, = 0.

Let us observe that, knowing the functions (3.3), we can determine ¢ at every point of the
region D, directly from the Eq. (4.1) of Ref. [2], by differentiating T and q with respect
to the variables x,.

4. Discussion of uniqueness conditions

4.1. Local uniqueness condition

The following theorem is proved in Appendix B of the present paper.
THEOREM. If the inequality

(4.1) hy = h—m,fr > —;W(g- M©@g) (£, Mf,)—g- M@L] = i},

where ) '
g = (fi,o+y23Zod+y,,m,a),

f, = (f.—y128fre)

is satisfied at every point of the plastic portion of the body Dy = {x:f = 0}, there can exist
only one set of functions {6, €, T} of class C! at least, which is a solution of the incremental
boundary value problem of generalized coupled thermoplasticity, which was formulated in 3.

The inequality (4.1) is the sufficient local uniqueness condition. Each thermodynamic
state, for which the condition (4.1) is satisfied, is secure against bifurcation. Since in the
course of a deformation process of the body the value of the strain-hardening function
(the modulus) decreases, in general, therefore the value of AT may be treated as an upper
estimation of the unknown critical value 4 corresponding to the critical state.

Some particular cases of the expression (4.1) have already been mentioned in the lit-
erature. A similar condition was obtained by HUEckeL and MAIer (Refs. [6, 7]) in their
analysis of the stability of material defined as a condition of half the product of the stress
rate tensor and the strain rate tensor being positive. Their study was confined to the case
of the isothermal theory of plasticity (with no thermo-mechanical couplings), the elastic
plastic coupling effects and non-associated laws of plastic flow being preserved. An ex-
pression of this type was also obtained by MRr&z [9] who analysed the sufficient local
uniqueness condition in the case of isothermal uncoupled theory of plasticity and non-
-associated laws of plastic flow. The condition obtained in Ref. [9] was given in a “nor-
malized” form for an elastically isotropic compressible material.

4.2

4.2. The global uniqueness condition and the global uniqueness criterion

Let us assume that there exist two sets of functiops {&, €, T, i} and {6*, &%, T*, i*}
which are solutions of the incremental boundary-value problem of generalized coupled
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thermoplasticity, which was formulated in 3. Then, the following equality must be sat-
isfied

4.3) A* = [ (6-6%)- (e~&9dV = 0

due to the fact that both solutions satisfy the same boundary conditions (3.4). Let us de-
note by J the integrand in the expression (4.3), which depends on € and €*, for an elastic-
plastic body, as follows

where

Ae = e—é*, o* = (%)

and j, = j,(€)and j§ = j,(€*) are defined by the Eq. (2 14), . The quantities ¢ and € and ¢*
and €* are interrelated by the Eq. (2.13),, which can be rewritten in a more compact form
as follows

) &= M e-Md, - 91 g*[f} * (E-d)+2]
1
where
gt =M, g = ¢,(Mo)—N,+B,
(46) ?: = lea = Ba d1 = yglqai
zy = —qfr, M;=M®, H =H.

Let us introduce the following function J’, depending on € and &é*

b & : .1 Y
@7 (&, &) = & M, de— | (g +x°8) A&7,

where x2 is a scalar quantity; therefore this expression represents a one-parameter fam-
ily of expressions J’, with respect to the parameter x*. The functions J and J* depend
in addition to the variables € and €*, on the thermodynamic state of the body (cf. Sect. 3.3).
It will be shown that if the same thermodynamic state is prescribed for J and J’, then for
each pair (€ and €*) the following inequality holds

(4.8) J(E, €*,j,jH)—J'(€,€*) = 0.

Let us introduce the following notations for the function J(e, €, 7,i5):

J, =J,e%1,1) if j(&=1 and j(e¥)=1,

Jy,=J(, e 1,00 if j(&=1 and j(e*)=0,

Jy=J(€, &%,0,1) if (=0 and j(e9)=1,
J,=J(e,e*0,0) if j(e)=0 and j(€*)=0.

4.9)

Then, by evaluating the difference (4.8) for all the possible four cases (4.9), we obtain, by
virtue of (4.5), (4.4) and (4.7)

1
(J,—J)H = z‘x—z(i’,—xzvf)z =0,
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2
(J,—J)VH = —x?A,. A} + [xA:— 2—Ix (rg—xzvf)] =0,

A, >0 and A¥ <O,

because
» 1 2

(4.10) (J3=J)H = ~x2A£A;"+[xAE + 2]32 (rg—xzvf)] >0,

A, <0 and A* >0,
because

1 2
(Jo—J)H = [ 2;(n'a—x2vf)] >0,

where
(4.11), v, = g*-Ae, 1, = ¥ Ae
and
4.11), A, = (e—d)+z,, A* =1 (e"—d)+z,.

It follows that the inequality (4.8) is valid.

Let us now formulate a sufficient global uniqueness criterion (that is a criterion which
excludes bifurcation). Let H > 0 at every point x € D;. If, for every non-zero kinematically
admissible and integrable velocity field v, which vanishes over the part S, of the surface,
the inequality
(4.12) [1smav— [ 1i(wav >0

D Dy
is satisfied, there exists only one pair {g, T} constituting a solution of the incremental
boundary-value problem in coupled thermoplasticity. The integrands in Eq. (4.12) are

rx 1 3 .
Ji(€) = IH [(g*+x*f)) - €)%,
Ji@) = i <M.

This criterion can easily be demonstrated.

Since the expression (4.3) with a zero right-hand term admits the existence of two sets
of functions, which are solution of the boundary-value problem stated, therefore the condi-
tions of nonexistence of a state of bifurcation will be that the expression (4.3) should be
positive, that is A* > 0 [5], [12] to [15]. This inequality is a sufficient global uniqueness
condition,

The validity of the sufficient global uniqueness criterion (4.12) follows from the in-
equalities (4.8) and A* > 0. The integral condition (4.12) is, in this particular form, of
essential practical importance. If, for a prescribed state (3.3) it is impossible to find such
a field v that the sum of integrals at the left-hand side of the expression is zero, we are
assured that this state is secure against bifurcation.

The idea of deriving such a criterion was conceived as early as in HiLL’s works ([12-14])
for elastic-plastic bodies under considerable strain, for the isothermal incremental bound-

(4.13)
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ary-value problem. For the incremental boundary-value problem in coupled thermoplastic-
ity such a criterion has been derived by MrROZ and RaNIecK! (cf. Refs. [1] and [3] to [5])
in the case of associated laws of plastic flow. Another sufficient global uniqueness cri-
terion for incremental problems of isothermal plasticity of elastic-plastic bodies with non-
associated laws of plastic flow has been given by MAIER [16].

It will be shown in Appendix C that the sufficient local uniqueness condition following
from the requirement that the integrand J’ should be definite positive is the same as for
an elastic-plastic body Eq. (2.13), or Eq. (4.5), provided that the parameter x? takes its
optimum form

(4.14) w3 = (B Lagt)

' £ L.f )

(cf. C.10). A procedure for obtaining the optimum parameter x§ is also discussed in-
Appendix C.

For the parameter x? the sufficient local uniqueness condition becomes the optimum
(strongest) condition for the entire one-parameter family of sufficient uniqueness condi-
tions. Now, by substituting the optimum value of the parameter (x* = x3) into the expres-
sion (4.7) we shall obtain the optimum (strongest) integrand which will be denoted by the
symbol Jg.

Appendix A

The procedure used here for deriving the conditions below has been modelled after
Refs. [3] and [5].

I. To derive the condition H > 0 (problem b,) let us assume first that for prescribed
values of the strain rate € and div q the plastic loading process is active (€7 # 0), and let
us denote by A? and T® the corresponding values of A and T. Then, a set of algebraic
equations can be obtained by substituting the expressions (3.29),, (2.7) and (4.2) of Ref.
[2] into the association condition (4.6) and the Egs. (3.29),. Thus

(fr—yha  ME)T @ —(h+g,- ME)AD = —1,- Mé,

. 1 .
e — ?(m,,+yf2§u ML) A® = —y’{‘zéa J Me—%,

(A1)

where the following relations have been used for the derivation of (A.1),

‘ 1
My = Me+y3y12 73380 (Nod), q = 20C

0 ~a

divq,
(A.2)

_ 1 . 7. 8II(Y,{")'
ma—m[’}ﬁ(o f,.—11-d) ?3T_‘8—T‘“ dl.

The set of algebraic equations (A.l1) has a unique solution in the form
HA® = £, Mé=—(fr—yha- ML) fa- Méc+a),

A3
) h+g, - Mf,
p

- 1 .
HT = —(my+yla o ME)(T, - M&) - (vt - Mf+q)
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provided that the condition H # 0 is satisfied. Now it will be assumed that unloading
takes place for the prescribed values of € and div q (€” = 0). Let us denote by T and 6
the relevant values for that process. From the conditions (3.29), of Ref. [2], we ob-
tain

e - %(y;“z fa- Mé+q),
(A.4)
6© = Mé+ 2L ”“ (v%, Ea - Mé+q)(Ma).

Making use of the Egs. (A.3), we can estabhsh the following relation between L(®) =
£, 62 4+f,T and AP,

(A.5) HA®x = L,

In agreement with the unloading criterion assumed, which is that of the expression of L

being negative, we have the relation sign A = sign L®, which ensures the existence and
uniqueness of &. Then, from (A.5) we find that

(A.6) H>0.

II. The procedure of deriving the condition 4, > 0 (problem b,) is analogous to that
for the first problem, except that, in the present case, it is more convenient to use the Egs.
(3.28) of Ref. [2]. We are interested only in those points of the body where f = 0. The
quantities AP, T® and T are now functions of 6. Let us assume that for given values
of 6 and div q the loading process occurs (€ # 0). From Egs. (2.7), (3.28),, (3.28), and
(4.2) of Ref. [2], we find

frT@—h AP = —f, &,
T® —m AP = —y e 6—q.
This alternative set of algebraic equations has a unique solution in the form
hy AP = £-&—y,,fréa-6—qfr,
hy T® = m,f, 6~y héa-6—hq

(A7)

(A.8)

provided that
hl = h—meT ‘_,é 0.

Let us assume, for prescribed ¢ and div q, that the process of unloading takes place
= 0). Then from (3.28), — Ref. [2], we obtain immediately

T = —y,ta-6-q,
(A9) &9 = Lo—y,,(y12 60" 6—g)a,
€= €9,
By evaluating L® = f,- &+/; T it is easily observed that
(A.10) hy AP = [
Hence, the condition sought for is

(A.11) hy > 0.
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Appendix B

The derivation of the sufficient local uniqueness condition for the solution of an incre-
mental boundary problem has been modelled after the method described in Refs. [3, 4]
and [20]. Let us assume that there are two sets of functions {6, €, 4, T}and {*, &*, 0*, T*},
which are solutions of the incremental (rate type) boundary vaIue problem. Our task is
to find the condition for & = &* and the functions & = €*, T = T* are obtained in a unique
manner from Eqs. (2.8), and (2.8),. The satisfaction of this condition implies that #, > 0.
By applying the Gauss-Ostrogradsky theorem we have

(B.1) [ (6—&%) - (e— &%)V = 0.
D

According to Eq. (2.8),, € and &* are functions of ¢ and &*, respectively, Let us denote
the integrand Eq. (B.1) as follows
(B.2) ] 1(6,6*,j,j* = A6 - A€,
where
46 = 6—6*%, Jdeé = €—¢*
and
Jj=J@) and j*=j(c*)
are determined by Eq. (2.9). Bearing this in mind we must find a condition for 7 to be a

definite positive function (that is 7 > 0 for & # o* and I = 0 for 6 = a*). Let us observe
that the Eq. (2.8) can-be written in the form

(B.3) &€= L1§+ %g(?.,~c‘r+zl)+dn
wherF
g = (fi,o+y:3Z0d+y,, ma),
(B.4) L= (L—y:8fra), d = —yi4qa,
‘ Z, = —qfr, L= Lf:n)’ M, = M@,
a) Let j = j* = 1. On substituting Eq. (B.3) into Eq. (B.2); we find

(B.5) I6,6%1,)=1I = A&-L,Aé+hi[(g-4&)(‘r,,-aa)].

Let us now resolve the vector A6 into components, the directions of which are those of
M, g, M, f, and the direction 7 normal to the other two in a 9-dimensional space with
a metric L, . By evaluating the product (4e¢: L, As) we find that the expression for L,
takes the form

Wl—,)[A(g 45 +28(3,- 4)(g- 48)+ Clg- 4677,

(B.6) I, = if mZ <1,

t' th'l'

t-Lit+——— M’h (f,-48)> if mi =1,

4 Arch. Mech. Stos. nr 3/83
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where

2 1 l = .
t=A°_1Tn7,i;[-M_}(f“ AC)— M

A A&)] M. f, - Tf—z[#(g - 46)

mv!

(f, Ao)]Mlg if m<l,

t=dé— M}
and -
M} = LML, M;-g-Mg m, = ng;f".
4 =%,
(5.1 B= (1 m,,)—MM By, C=L1'2-,

AQ = h1 +Mf +m,fM,M,,;

Since h; > 0, therefore I, (Eq. (B.6)) is a symmetric quadratic form, which is definite
positive, if

(B.8) AC—B? > 0.
On substituting Eq. (B.7) into Eq. (B.8) we find, in a similar manner,

ah?+bih+ec, >0,

where
a, = 1,
(B.9) bl = mﬂfoMF.’
2 2
e, = —(1-mip MM

On solving the above inequality we find the condition

1
(B.10) hy > 5 MyMy(1=m,y).

On substituting Eq. (B.7) in the above expression we obtain easily the condition (4.1).
Let us add that in the case of y;; = ¥3; = ¥53 = y;3 = 0 the condition (B.10) or (4.1)
takes the form

(B.11) hy > 0.
b) Let j =1, j* = 0. Then,

L @ 29T, 642

(B.12) I(¢,6%,1,0) = I, = A6 - L, d6 + — "
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The study of the expressiog (B.12) for positive definiteness will be as follows. Let us re.
solve g in the directions f, and @ in the following manner

(B.13) g = c+B,

where ¢ is a parameter to be used for optimizing the uniqueness condition in the case of
simultaneous loading and unloading (b) and (c). Then, from Eq. (B.4),,, and Eq. (B.13)
“we find

(B.14) B= fr(l'C)+(?21mu+07’125fr)“+zu(?13f1.n+723d)-

(B.12) must be expressed as a quadratic form. Let us estimate therefore I, as follows

(B.15) L>T =461, Ac’x+hl1 [c A2+ A, - 48)],
where .

(B.16) - Ig—hili,,?:

and

A, =1,°6+2z, 20, A*=1,-6*+z <O.
Let us resolve, as before, the vector A& in the directions M, B and the direction t, normal
to M, P in a 9-dimensional space with a metric L,. On substituting the result thus
obtained into (B.15) we find

(B.17) B =t Lty - [4,(B - 46)*+2B, A,(B - 48)+C, 43,
1
where
z - do

t, = 46— BM’% M@,
(B.18) M =8-M,B,

_ h _ 1 _

I=F}a 31_2, C1=C.
The expression (B.17) is a definite positive quadratic form, if
(B.19) 4,C,~B} > 0.
On substituting Eq. (B.18) into Eq. (B.19) we find

M2

(B.20) h, > 4—:.

The form of Eq. (B.20) shows that we have a one-parameter family of uniqueness condi-
tions, the parameter being c. We want to determine the condition of minimum with respect
to c, in order that the bifurcation states should be estimated as closely as possible.

On substituting Eq. (B.13) in Eg. (B.20), we obtain

(B.21) h, > % [(g—cf,) - M, (g—cf,)] = 4Lc [M2—2cM, +c*M7],

4*
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where

M, =g-Mdf, =1, -Mg.
The right-hand side of Eq. (B.21) must, therefore, become minimum in the scalar para-
meter ¢. Let ‘

(B.22) F(e) = (~——2Mg:+ch)
Then
oF(c)
(B.23) = 0.
From the condition (B.23) we find that
(B.24) =M gy, c>o0.
M,

On substituting Eq. (B.24), into the inequality (B.21) we obtain, after some manipula-
tion,

(B.25) hy > %(M,M,—M,,).
By introducing the notations (B.7) we obtain easily the Eq. (4.1) sought-for, It can be shown
that the right-hand member is zero, if
(B.26) - A, (B 46) = —B, 4,
Hence I, = I, if A, = 0. Then, it follows from Eq. (B.16) to (B.26) that
I, >0, -
(c) Let j = 0, j* = 1. The procedure of demonstrating that I(a, g*, 0, 1) = 13 >0

is analogous to that in the case (b). We have, therefore,.

=1 +—-A A,’,",
(B.27) R

A, =T,-6+2, <0, AF=1,6*+z,>0.
Hence

(B28) B> L =t Lyt o (A,(B- 467 ~2B, A,(B - 46) +, (437,
1

where t,, 4;, B, and C, are defined by Eq. (B.18). Similarly to the case (b) it follows that
I; > 0.
d) Let j = j* = 0. Then, the mtegrand

(B.29) 1(6,6%,0,0) = I, = A&~L1A6

is posntlve definite because L1 = L@ is definite positive. Then from (B.1) it foIlows directly
that @ = a*,
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Appendix C

It will now be shown that J’ is definite positive if Eq. (4.1) is satisfied. This will show
that the sufficient local uniqueness condition for the integrand J’ is the same as in the case
of an elastic-plastic body J. It constitutes also a criterion enabling us to confirm the reason
for introducing the expression J'. Let us denote

(C.1) (g*+x*f) = M,W.
From Eq. (4.6) and Eq. (C.1) it follows that

(C2) M, W = @,(Ma)—N, +B(1+x?)
and '

W = §,L;(Ma)—L; N, +L; B(1 +x?).
On substituting Eq. (C.1) info Eq. (4.7), we obtain

C e e e o
(C3) J' = de MIAG Ez—m[(MIW) AG] .

On resolving A€ onto the directions W and t* normal to W in a 9-dimensional space with -
a metric M,, we obtain the expressions

o = ge— A MW o

(C4) W
where
Mg =W: M_IW.
Then
1 .
(C.5) J =t M, t*+ m@x’Hl—M?y)(Ae - M, W)2.
1

From Eq. (C.5) it follows that J’ is positive definite, if

(C.6) H,

1 P(x?)
> z‘; (W bt MIW) = 4 .

The eondition (C.6) must now be optimized by finding the minimum in the parameter x2.
Condition (C.6) yields a one-parameter family of uniqueness conditions for a compara-

tive body.
Let
y=x* hence y>0,
1
cn 2(y) = 7(W ‘M, W).

On substituting Eq. (C.7), in the expression (C.2) and calculating the derivative, we find

22
oy

I
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therefore

' 2P (y) 1 2
(C.8) T= —?(W'MIW)+7(W‘MIL1B)=0.
Hence

2y(W-B) = (W-M,W).
The expression (C.8); results from the condition of the function 2(y) taking an extremum
value in‘the scalar parameter y. The expression (C.8); must be transformed to obtain the
desired result, the expressions for W (cf. Eq. (C.2),) being taken into account. Let us
rewrite the expression (C.2), in the form
(C.9) W =W, +x*L,B,
where

wl = (;J,LI(MQ)—LI N2 +L] B.
On substituting Eq. (C.9) into Eq. (C.8), we find, after rearrangement
W2 g*-Lg*

(C.10) Yo = Xo = ]/m,

~ where g* and £* are defined by the relations (4.6), and (4.6),, respectively.
It can easily be shown that, by substituting Eq. (C.10) into Eq. (C.6) and taking into
consideration (4.6),,, and (C.9), we shall obtain, after rearrangement,

(C.11) H > %[;/(wl “M,W,)(B-L,B)+W, - B].

It can also be shown, that

(C.12) W,=g, B=Mf,.

Then, from Egs. (2.3), (2.4), (4.2) and Eq. (C.12) it follows that
(C.13) H=h+g -Mf,.

On substituting Eq. (C.12) and Eq. (C.13) into Eq. (C.11) we find easily, after rearrange-
ment, the condition (4.1), our proof thus being accomplished.

References

1. B. RANIECKI, Problems in applied thermoplasticity, IFTR-Reports, 29, 1977 [in Polish].

2. Z. SLODERBACH, Generalized coupled !hermopla.sricny, Part 1. Fundamental equatlons and identities,
Arch. Mech., 35, 3, [Submitted],

3. Z. Mr6z, B. RANIECKI, On the uniqueness problem in coupled thermoplasticity, Int. J. Eng. Sci., 14,
211-221, 1976.

4. Z. MROz, B. RANIECK], A derivation of the uniqueness conditions in coupled thermoplasticity, Int. J. Engn
Sci., 14, 395-401, 1976.

5. B. Ranteck1, Uniqueness problems and variational principles in thermoplasticity, in: ’I’hermoplastlcxty,
Ossolineum, 175-222, Wroclaw 1973 [in Polish].



GENERALIZED COUPLED THERMOPLASTICITY. PART II 367

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17.

18.
19.

20.

21.

T. HueckeL and G. MAIER, Incremental boundary value problems in the presence of coupling of elastic,
and plastic deformations. A rock mechanics oriented theory, Int. J. Solids Structures, 13, 1-15, 1977.
T. HueckeL and G. MAIER, Nonassociated and coupled flow rules of elastoplasticity for geotechnical
media, Presented on the Proc. 9-th JCSMFE, Tokyo 1977.

Z. MRr6z, Non-associated flow laws in plasticity, J. de Mecanique, II, 1, Mars 1963.

Z. MRrOz, On forms of constitutive laws for elastic-plastic solids, Arch. Mech., 18, 1, 1966.

W. OLszAK, P. PERZYNA, A. SAWCZUK et al., Theory of plasticity, PWN, Warszawa 1965.

JA. A. KAMIENIARZ, Some properties of model equations in coupled thermoplasticity, PMM, 36, 6,
1100-1108, 1972 [in Russ.].

R. HiLL, A general theory of unigueness and stability in elastic-plastic solids, J. Mech. Phys. Solids,
6, 236-249, 1958. ’

R. HiLL, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids,
7, 209-225, 1959,

R. HiLL, Uniqueness in general boundary-value problems for elastic or inelastic solids, J. Mech. Phys.
Solids, 9, 114-130, 1961.

R. HiLL, Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics,
J. Mech. Phys. Solids, 10, 185-194, 1962.

G. MAIER, A minimum principle for incremental elastoplasticity, with non-associated flow laws, J. Mech,
Phys. Solids, 18, 319-330, 1970.

Z. SLODERBACH, Criteria of bifurcation of equilibrium states in the generalized theory of plasticity, Doctor’s
Thesis, IFTR-Reports, 37, 1980 [in Polish].

T. HueckeL, Coupling of elastic and plastic deformations of bulk solids, Meccanica, 11 227-235, 1976.
T. HueckEL, J. A, KONIG, Some problems in elastoplasticity, Academia Polacca Delle Scienze, Con-
ferenze 74, Ossolineum 1979.

B. RANIECKI, Uniqueness criteria in solids with non-associated plastic flow laws at finite deformations,
Bull. Acad. Polon. Sci., Série Sci. Techn., 27, 8-9, 391-399, 1979.

B. Ranieckr, and O. T. BRUHNS, Bounds to bifurcations stresses in solids with non-associated flow law
at finite strain, J. Mech. Phys. Solids, 29, 2, 153-172, 1981.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received February 24, 1982.





