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Generalized coupled thermoplasticity 
Part. IT. On the uniqueness and bifurcation criteria 

Z. SLODERBACH (WARSZAWA) 

IN nns PAPER the fundamental incremental boundary-value problem of the generalized coupled 
thermoplasticity is formulated. Furthermore, the local and global criteria excluding the possibility 
of appearance of the bifurcation are derived. These criteria were derived by analyzing the 
uniqueness of solution of the incremental boundary-value problem formulated in Sect. 3. 
The nonassociated plastic flow laws are assumed, and the effects of thermomechanical and elastic­
-plastic couples are taken into account. Due to such assumptions the mathematical problem 
considered is not self-adjoint. This (II) part of the paper is a direct continuation of the previous 
(I) part [2]. 

W pracy sformulowano podstawowy przyrostowy problem brzegowy spr~onej uog6lnionej 
termoplastyczno§ci. Nastctpnie wyprowadzono lokalne i globalne kryterium wykluczajllce 
moZliwosc wystllpienia stanu bifurkacji. Kryteria te wyprowadzono, analizujllc problem jedno­
znaczno§ci rozwi~ia sformulowanego w punkcie 3 przyrostowego (prctdko§ciowego) problemu 
brzegowego. Oryginalnym elementem jest przyjcteie niestowarzyszonych praw plastycznego 
plyniC(cia oraz uwzglctdnienie wplywu odksztalcen plastycznych na wlasno§ci termospi"ctZyste 
cial. Z powodu takiego przyje(Cia, rozpatrywany tutaj problem matematyczny niejest ·problemem 
samosprzctZ<>nym. Niniejsza II ezctSt pracy jest bezposrednim rozwiniC(ciem ~ I pracy [2]. 

B pa6oTe C<iK>PMYJIHPOBaHa B npHpOCTaX OCHOBHIUI KpaeBIUI ~qa conpiDKeHiloii o6o6meH­
HOH TepMOWI3CTHQHOCTH. 3aTeM BbiBe~eHbi JIOKaJILHbiH H rJI06am.HbrH !<pHTepHH, HCKJIIOll&­
lOmHe B03MO>KHOCT& BbiCTyWieHHH COCTOHHHR 6Hcl>ypK~. 3TH !<pHTepHH BLme~eHbi, 
3HaJIH3HpyH npo6neMy e~CTBeHHOCTH pemeHHH, c<IK>pMyJIHpoBaHHOH B nymcre 3, ~q>aeao:ii 
~atm B npHpOCTaX (CKOpOCTHOH). 0pHI'HH3JihHbiM 3JieMeHTOM HBJIHeTCH npHHHTHe He&Cco­
lUIHPOBaHHLIX 331<0HOB UJiaCTHlleCKOrO reqeHHH, a TaiOKe }"leT .BJIHHHH11 WI3CTHlleci<HX ~e­
cl>opM3UHH H3 TepMoynpyrHe CBOHCTBa TeJI. 113-33 Tal<Oro npHHHTHH paCCM3TpHB3eMIUI 3~ee& 
MaTeMa~eCKIUI npo6neMa He HBJIHeTCH caMoconp.ameHHoii npo6neMoii. HaCTOHmru~ II tmCT& 
pa6oTbi HBJIHeTCH uenocpe~CTBeHHbiM paaBHTHeM I tmCTH pa6oTbi [2]. 

1. Introduction 

THE IN'CREMEN'TAL boundary-value problem of generalized coupled thermoplasti_city will 
be formulated. This will be followed by an interpretation of the uniqueness conditions for 
the solution of that problem. The necessary uniqueness conditions will be derived as well 
as the sufficient local condition and the sufficient global uniqueness criterion, and the 
sufficient global uniqueness condition. A similar incremental boundary-value problem 
of coupled thermoplasticity has already been studied in Refs. [I, 3'- 5]. The method used 
in those references will be-taken ~s a model, an original feature of the present paper being 
that non-assQCiat~d laws of plastic flow are assumed and the influence of plastic deforma­
tion on the thermoelastic properties of the body is taken into ·consideration. Such a re­
quirement leads to a more difficult problem than those hitherto considered. Besides, the 
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sufficient local uniqueness condition of coupled thermoplasticity derived by RANIECKI 

and MR6z [3, 4] is not the optimum condition. 
The procedure for obtaining the optimum condition from the one-parameter family 

of local uniqueness condi~ions introduced in the present paper is explained in Appendix B. 
The present Part II of the work is directly connected with Part I [2]. 

2. Uniqueness of solution of incremental problems for homogeneous processes 

Let us assume that the thermodynamic state of the body at a certain moment t0 of ~ 
homogeneous process is known and such that the condition ft = f = 0 is satisfied. The 
following incremental problems can be formulated for such a type of processes. Satisfying 
the set of equations of Ref. [2] (Eqs. (2.7), (3.24), (3.25), (3.28), (3.29), (4.2) and (4.6)), 
we must find, for the time t 0 , the values 

at) £ and q0 assuming that a(t0 ) arid T(t0 ) are prescribed 

a2) a and qo , , £(to) and i(to) , 
bt) £ and t , , . a(to) and qo(to) , 

b2) a and t 
where 

, , , 

q0 = -divq. 

·" 
, 
, 

It is easy to see that if a solution of the problems (at) and (a2) is to be unique, it is necessary 
that the following respective conditions known from the isothermal theory of plasticity 
should be satisfied 

(2.1) 

where 

(2.2) 

h > 0 and h + g4 • Mt > 0, 

and h is the isothermal strain-hardening function obtained in Ref. [2]. Those conditions 
are also sufficient but it turns out~ however, that two solutions of the problems (bt) and 
(b2) may exist, even if the inequalities (2.1) are satisfied. The uniqueness conditions for 
the problem (bt) and fbi) have the following forms (cf. Appendix A): 

Problem (b1) 

(2.3) 

Problem {b2) 

(2.4) 

where 

(2.5) 

(2.6) 
1·-p T 

E= M2 =-c, 
ex eo a 

c. 
p=-, 

Ca 
M~ = cx·Mcx. 
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In the case of associated laws of plastic flow (f1 ,a = fa) the quantity ma = m was analysed 
in Refs. [1] and [3], all the elastic-plastic coupling effects being rejected (y23 = y;3 = y13 = 

y! 3 = 0). By analysing the cyclic isothermal process in the space of stresses the authors 
of those works observed that for metals ma is in general positive 

(2.7) 

The inequalities (2.3) and (2.4) are a generalization of the uniqueness conditions derived 
by MR6Z and RAN'IECKl [1, 3, 4] and KA.MIENIARZ [11]. This generalization consists in the 
non-associated laws of plastic flow being taken into account as well as the influence of plas­
tic deformations on the thermoelastic properties of the body. The conditions obtained in 
Refs. [1] and [3] can also be obtained from Eq. (2.3) and (2.4) by rejecting all the effects 
of elastic-plastic coupling (y23 = yi3 = y13 = y!3 = 0) and assuming associated laws of 
plastic flow (f1 ,a = fa). 

It is worthwhile to observe that in the case of metals the satisfaction of the condition 
(2.3) implies, in general, that of the condition (2.4) (cf. [1] and [3]). 

Let us assume that the conditions (2.3) and (2.4) are both satisfied. The solutions of the 
incremental problems (b1) and (b2) can be expressed in the following forms: 

Problem (b1) 

Making use of Eqs. ( 4.2), (3.28) and (2. 7) of Ref. [2], we obtain the following relations 
between £ and a, and t and a: , 

. ( . 
(2.8)1 e = L<~>a+ £

1 
Kci+ t

1 
qfT[(I1,a+/'23Zod)+y21maCl]-y21qCl, 

(2.8h T = -y12eCI· a+j~a [(fa-Y12efTC1). a-fTq)-q, 

(2.8)3 £P = ~ [(fa-:-Y12eJTC1)·a-fTq], 

(2.8)4 ie = Lci+y21 Ta+ 1
1 
[(1a_:Yt2!Tee~) • ci-qfT](y23Zod), 

where 
(P) 

K = (11,a+Y23Zod+y21maCl)®(la-l'12efTC1), 

(2.9) L<~> = L-y2tY12e(e~®e~), q = (!o
1
Ca divq, 

if f = 0 and ((,-y12~fTCIJ. a-qfT ~ 0, 

if I< 0 or f = 0 and (1a-Y12~fTC1). a-qfT < 0; i= {~ 
(2.10) A 1 . • f 

= h;[(t-y12~~TC1) • a-q Tl· 

The symbol L<a> denotes the tensor of adiabatic elasticity. Let us observe (cf. [1]) that th~ 
second right-hand term of (2.8)1 is not equal to the plastic strain rate, but may be considered 
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. . (JI) (I') 

as representing the adiabatic plastic strain rate. The tensor K is asymmetric, K 11mn :/:= 
(JI) 

KmniJ. The equations for the thermodynamic flow rates can also be expressed in terms of 
a and q. 

They have the form 

(2.11) 

Taking into consideration the Gyarmati postulate and the resulting condition ( 4.14) 
of Ref. [2], the above relation takes the form 

· j · oft (XD, Yk) 
(2.12) -K= ~[(fa-Yt2~fTa)·a-qfT] oil · 

Problem (bz) 

The alternative equations (corresponding to Eq. (2.8)) are obtained by making use of 
the relations ( 4.2), (3.29), (2. 7) given in Ref. [2] 

(2.13)1 
• a • Y21 q it (1')1 • j;q * "" a= M< >e+ - p-Ma-

9 K E- pH(Y2ta·Mt-fT)((/'.Ma+BN), 

T = _!_(Yp~a · Mi+q)+ JH.
1 (ma+Yi:~g4 · Mfa) [B · £+ !l_(Y~Ja · Mt-fT)], p p . p 

(2.13)3 t:• ~ ~ [ B · E+ ! <r~ ... · Mf.-JT) ]r .... 
where 

if f=O and B· e+!l_(y~1 a· Mfa-fT) ~ 0, 
p 

if f<O or f=O and B · e+ i_(Y~t a· Mfa-fT) < 0, 
p 

- (I') 

The following additional quantities are involved in the tenser K1
: 

(2 15) - * rna * ~ f * * ~ { [N ( ,. d . * f )]} · ll'• = Y21- +y12- T-Y12Y23- a· o Y3 +Y21 1,n p p p 

and 

(2.16) 

where 

(2.17) 
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The Eqs. (2.15) have been derived making use of the expression (A.2h of Appendix A 
and Eq. (3.18h of Ref. [2]. SymbolM<a> denotes the tensor of adiabatic moduli ofelasticity. 
Similarly to the former case, the tensor interrelating the stress rate and the strain rate is 

00 (J') .· . 

asymmetric be_cause K1}mn 'I= K~niJ. Let us observe that, if the conditions (2.3) and (2.4) 
are both satisfied, the Eqs. (2.13) are equivalent to Eq. (2.8). They can be obtained by sol­
ving Eq:'-{2.13)1 for a and substituting the result into Eqs. (2.13h and (2.13)3 • If all the 
thermodynamic coupling effects in the Eqs. (2.8) to (2.12) and (2.13) to (2.17) are rejected 
(Yt = i'3 = i'12 = i'~3 = i't3 = ri2 = Y23 = 0) and if (f1,a =fa), those equations will 
constitute two equivalent sets of fundanwntal equations of the theory of thermal stresses 
in an elastic-plastic body (Then q = T or - div q = eo CaT and p = 1 ). 

3. Formulation of th~ incremental boundary value problem 

If the condition (2.3) is satisfied, the set of equations (2.8) to (2.12) is equivalent to the 
fundamental set of equations (2.7), (3.19), (3.20), (3.24), (3.25), (3.28), (3.29), (4.2), (4.6) 
and ( 4. 7) of Ref. [2], 

(3.1) 1 d' q=-C IVQ. 
(!o a 

As regards the Eqs. (2.13), (2.14) (together with the relevant equations for X,<N> and x<M>) 
there· is a similar equivalence, provided that H > 0. The set ofthose equations, together 
with the law of heat conduction (4.1) of Ref. [2], with the equation of motion and the 
kinematic relations 

(3.2) 
diva+ (!o bm = eo v' 

2e,1 = v,,1+v1,, 

where v is the vector of velocity of particles and bm the body force, constitute a set of fun­
damental field equations of coupled thermoplasticity. Together with the boundary condi­
tions and the initial conditions it may be used as a basis for analysis of many ·problems of 
generalized thermoplasticity, both dynamic and quasi-static. 

The following static incremental boundary-values problem can be formulated [1]. 
Let the body occupy, at a time t0 , a region Din space. Let us denote by D the closure of D 
and by the symbol S- the b;undary of D. S is the closure of the sum of non-intersecting 
regular open surfaces Sv and ST. Let the thermodynamic state of the body 

(3.3) T,a,K 

and the rates of body forces bm be known, at a time t0 and at every point x of the closure D. 
It is assumed that the functions (3.3) satisfy the condition f ~ 0. It is also assumed that 
the values of the surface forces t< 0 > and the velocities of material points v< 0 > are known at 
the time t0 over the parts ST and Sv of the boundary, that is 

an = i<O> for X EST, . 
v = v< 0> for x E Sv, 

(3.4) 
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where n is a unit vector normal to S, directed towards the outside of D ([1, 3, 5]). Our task 
is to find the functions a,£, v defined in f5 and the function T defined in D, which satisfy, 
in the region D, the Eqs. (2.1) to (2.4), (3.1) (3.2) and (4.1) of Ref. [2] and the incremental 
equations of equilibrium 

(3.5) diva+eoh, = o. 
Let us observe that, knowing the functions (3.3), we can determine q at every point of the 
region D, directly from · the Eq. ( 4. I) of Ref. [2], by differentiating T and q with respect 
to the variables x. 

4. Discussion of uniqueness conditions 

4.1. Local uniqueness condition 

The following theorem is proved in Appendix B of the present paper. 
THEOREM. If the inequality 

(4.1) 

where 

(4.2) 

1 [ . 
h1 = h-mufr > 2 J! (g · M<a>g)((, · M<a>fa)-g · M<a>(,] = h!, 

g = (ft.a+Y23Zod+y21m~a), 
fa = (fa-Y12 ;Jra) 

is satisfied at every point of the plastic portion of the body D1 ~ {x :f = 0 }, there can exist 
only one set of functions {a, £, T} of class C1 at least, which is a solution of the incremental 
boundary value problem of geperalized coupled thermoplasticity, which was formulated in 3. 

The inequality ( 4.1) is the sufficient local uniqueness condition. Each thermodynamic 
state, for which the condition (4.1) is satisfied, is secure against bifurcation. Since in the 
course of a deformation process of the body the value of the strain-hardening function 
(the modulus) decreases, in general, therefore the value of h! may be treated as an upper 
estimation of the unknown critical value h corresponding to the critical state. 

Some particular cases of the expression ( 4.1) have already been mentioned in the lit­
erature. A similar condition was obtained by HuECKEL and MAIER (Refs. [6, 7]) in their 
analysis of the stability of material defined as a condition of half the product of the stress 
rate tensor and the strain rate tensor being positive. Their itudy was confined to the c.ase 
of the isothermal theory of plasticity (with no thermo-mechanical couplings), the elastic 
plastic coupling effects and non-associated laws of plastic flow being preserved. An ex­
pression of this type was also obtained by MR6z [9] who analysed the sufficient local 
uniqueness condition in the case of isothermal uncoupled theory of plasticity and non­
-associated laws of plastic flow. The condition obtained in Ref. [9] was given in a "nor­
m~llized" form for an elastically isotropic compressible mat~rial. 

4.2. The global uniqueness condition and the global uniqueness criterion 

Let us assume that there exist two sets of functiops {a, E, T, u} and {ir*, E*, T*, u*} 
which ~re solutions of the incremental bound~ry-value problem of generalized coupled 
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thermoplasticity, which was formulated in 3. Then, the following equality must be sat­

isfied 

(4.3) A*= J (a-a*)· (£-£*)dV = o 
D 

due to the fact that both solutions satisfy the same boundary conditions (3.4). Let us de­
note by J the integrand in the expression (4.3), ~hich depends on£ and e*, for an elastic­
plastic body, as follows 

(4.4) J(£, e*,jl ,ji) = [a(£)-a(£*)1 · LJ£, 

where 

L1£ = £~£*, a* = a(£*) 

andj1 = h (e) andji = j 1 (e*) are defined by the Eq. (2 14)1. The quantities a and£ and a* 
and f:* are interrelated by the Eq. (2.13) 1 , which can be rewritten in a more compact form 

as follows 

(4.5) 

where 
g* = Mtg = q'Ja(MtX)-N2+B, 

(4.6) c: = M1t = B, d1 = Y~tqtX, 
Z1 = -qJT, M1 = M<a>, Hl =H. 

Let us introduce the following function J', depending on e and e* 

(4.7) 

where x2 is a scalar quantity; therefore this expression represents a one-parameter fam­
ily of expressions J', with respect to the par~meter x 2

• The functions J and J' depend 
in addition to the variables£ and e*, on the-thermodynamic state oft~e body (cf. Sect. 3.3). 
It will be shown that if the same thermodynamic state is prescribed for J and J', then for 
each pair ( £ and f:*) the following inequality holds 

(4.8) J(£, e*,jl ,ji)-J'(£; £*) ~ o. 
Let US introduce the following notations fo~ the function J(E, E*,jl ,ji): 

(4.9) . 

Jl = J(£, £*, 1' 1) if jl(£) = 1 and jl(e*) = 1' 

J 2 =J(£,£*,1,0) if j 1 {E)=1 and j 1(f:*)=0, 

J3 = J(£, £*, o, 1) if j1(i) = o and jl(i*) = 1, 

J4 = J(£, £*, o, 0) if j 1(e) = 0 and j 1(e*) = 0. 

Then, by evaluating the difference ( 4.8) for all the possible four cases ( 4.9), we obtain, by 

virtue of (4.5), (4.4) and (4.7) 
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- --- - ------- - - -··· --------- ·--- --- -- ----- --- - - - · 

because 

(4.10) 

because 

where 

(4.11)1 

and 

(4.11h 

(J, -J')H = -x' A, A:+ [.<A:.- fx<v,-x'vflf;:;, o, 

Ae ~ 0 and A: < 0, 

(J3-J')H= -x'A,A:+[xA,+ 2~<··,-x'•fl]';:;, o. 
Ae < 0 and A: ~ 0, 

l'g = g*. Ll£, 1' - f-*. LIE' f- a 

It follows that the inequality (4.8) is valid. 
Let us now formulate a sufficient global uniqueness criterion (that is a criterion which 

excludes bifurcation). Let H > 0 at every point x E D1 . If, for every non-zero kinematically 
admissible and integrable velocity field v, which vanishes over the part Sv of the surface, 
the inequality 

(4.12) J J;(v)dV- J J; (v)dV > 0 
n n1 

is satisfied, there exi~ts only one pair {a, T} constituting a solution of the incremental 
boundary-value problem in coupled thermoplasticity. The integrands in Eq. (4.12) are 

(4.13) 
J' ( . ) - 1 [ ( * i[*) . . ] 2 

1 E - 4x2H g +x o E ' 

J~(i:) = £ ·l\11 £. 

This criterion can easily be demonstrated. 
Since the expression (4.3) with a zero right-:umd term admits the existence of two sets 

of functions, which are solution of the boundary-value problem stated, therefore the condi­
tions of nonexistence of a state of bifurcation will be that the expression (4.3) should be 
positive, that is A* > 0 [5], [12] to [15]. This inequality is a sufficient global uniqueness 
condition. 

The validity of the sufficient global uniqueness criterion (4.12) follows from the in­
equalities (4.8) and A* > 0. The integral condition (4.12) is, in this particular form, of 
essential practical importance. If, for a prescribed state (3.3) it is impossible fo find such 
a field v that the sum of integrals at the left-hand side of the expression is zero, we are 
assured that this state is secure against bifurcation. 

The idea of deriving such a criterion was conceived as early as in HILL's works ([12-14]) 
for elastic-plastic bodies under considerable strain, for the isothermal incremental bound-
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ary-value problem. For the incremental boundary-value problem in coupled thermoplastic­

ity such a criterion has been derived by MR6Z and RA.NIECKI (cf. Refs. [I] and [3] to [5]) 

in the case of associated laws of plastic flow. Another sufficient global uniqueness cri­

terion for incremental problems of isothermal plasticity of elastic-plastic bodies with non­

associated laws of plastic flow has been given by MAIER [I6]. 
It will be shown in Appendix C that the sufficient local uniqueness condition following 

from the requirement that the integrand J' should be definite positive is the same as for 

an elastic-plastic body Eq. (2.13) 1 or Eq. (4.5), provided that the parameter x 2 takes its 

optimum form 

(4.I4) x2 = (-g*. L1 g* \)t/2 
0 

f* · L f* (1 1 (1 

(cf. C.IO). A procedure for obtaining the optimum parameter x~ is also discussed in­

Appendix C. 
For the parameter x 2 the sufficient local uniqueness condition becomes the optimum 

(strongest) condition for the entire one-parameter family of sufficient uniqueness condi­

tions. Now, by substituting the optimum value of the parameter (x2 = x~) into the expres­

sion (4.7) we shall obtain the optimum (strongest) integrand which will be denoted by the 

symbol J~. 

Appendix A 

, The procedure used here for deriving the conditions below has been modelled after 

Refs. [3] and [5]. 
I. To derive the condition H > 0 (problem b2) let us assume first that for prescribed 

values of the strain rate e and div q the plastic loading process is active (f:P # 0), and let 

us denote by A~? and t<P> the corresponding values of A and T. Then, a set of algebraic 

equations can be obtained by substituting the expressions (3.29h, (2. 7) and ( 4.2) of Ref. 

[2] into the association condition (4.6) and the Eqs. (3.29)1 • Thus 

(A. I) 
(JT-Y~1a· Mfa)f<P>-(h+g4 · Mfa)A<P> = -fa· Me, 

. I * *; . q T<P>_ -(m +y ~a· Mf)A<P> = -y -a· Me--, p a 12 a 12 p p 

where the following relations have been used for the derivation of (A.I h 
I , . 

rna~ m,+y3 yf2Y!3~a· (Nod), q = ~C d1vq, 
eo a 

(A.2) 
1 [ aii(Yi") ] 

m,= eoCa Y1(a·f1,a-II·d)-y3 T oT ·d. 

The set of algebraic equations (A.l) has a unique solution in the form 

HA<P> = fa· Me- _!_(JT-Y!1 a· Mfa)(Yf2 ~a· M£+q), 
(A.3) P 

HT = _!_(ma+Yf2~a· Mfa)(fa ·Me)- h+g4 . Mfa (yf2 ~a· Mf+q) 
p p 
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provided that the condition H -=I 0 is satisfied. Now it will be assumed that unloading 
takes place for the prescribed values of E and div q (£P = 0). Let us denote by. r<e> and a<e> 
the relevant values for that process. From the conditions (3.29), of Ref. [2], we ob­

tain 

(A.4) 

. 1 . 
r<e> = -(y!2 ~(l· Me+q), 

p 

* a<e> =Me+ " 21 (y!2~(l·Me+q)(M(l). 
p 

Making use of the Eqs. (A.3), we can establish the following relation between L<e> = 

fa· a<e>+frT and A<P>. 

(A.5) 

In agreement with the unloading criterion assumed, which is that of the expression of L<e> 
being negative, we have the relation sign A<P> = sign L<e>, which ensures the existence and 

uniqueness of a. Then, from (A.5) we find that 

(A.6) H > 0. 

II. The procedure of deriving the condition h1 > 0 (problem b 1 ) is analogous to that 
for the first problem, except that, in the present case, it is more convenient to use the Eqs. 
(3.28) of Ref. [2]. We are interested'nnly in those points of the body where f = 0. Tne 
quantities A<P>, T<P> and f<e> are now functions of a. Let us assume that for given values 
of a and div q the loading process occurs (£P -=I 0). From Eqs. (2.7), (3.28)1, (3.28h and 
( 4.2) of Ref. [2], we find 

(A.7) 
fTT<P>-h 1 A<P> = -fa· a, 

y<P> -maA<P> = -1'12 ~(l. a-q. 

This alternative set of algebraic equations has a unique solution in the form · 

h1.;1(P) = f· a-y12fT~(l· a-qfT, 
(A.8) 

h y<P> - m f 'a-v hE(l• a-hq 1 - a a { 12 ~ 

provided that 

h1 = h-mafT -=I 0. 

Let us assume, for prescribed a and div q, that the process of unloading takes place 
(eP = 0). Then from (3.28)1 - Ref. [2], we obtain immediately 

r<e> = -y12~(l· a-q, 

(A.9) £<e> = La-y21 (y12 ~(l· a-q)(l, 
• • (e) 
E = E • 

By evaluating L <e> = fa· a+ fr r<e> it is easily observed that 

(A.IO) 

Hence, the condition sought for is 

(A.ll) 
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The derivation of the sufficient local uniqueness condition for the solution of an incre­
mental boundary problem has been modelled after the method described in Refs. [3, 4] 
and [20]. Let us assume that there are two sets of functions {a, £, 1i, T} and {a*, i*, u*, T* }, 
which are solutions of the incremental (rate type) boundary value problem. Our task is 
to find the condition for a = a* and the functions i = £•, 'i' = i• are obtained in a unique 
manner from Eqs. (2.8)t and (2.8)2 • The satisfaction of this condition implies that h1 > 0 . 

. By applying t4e Gauss-Ostrogradsky theorem we have 

(B. I) f (a-a*)· (£-£*)dV = o. 
D 

According to Eq. (2.8) 1 , £ arid i* are functions of a and a*, respectively. Let us denote 
the integrand Eq. (B.1) as follows 

(B.2) I( a, a*,i ,j*) = Lla ·A£, 

where 

Aa =a-a*, Lie= £-£* 
and 

j = j(a) and j* = j(a*) 

are determined by Eq. (2.9). Bearing t.his in mind we must find a condition for I to be a 
definite positive function (that is I > 0 for a -:1: o* and I = 0 for a = a*). Let us observe · 
that the Eq. (2.8) caB- be written in the form 

(B.3) E = Lta+ 1 g(fa· a+Zt)+dH 
• t 

where 
g = (ft,a+Y23 Zod +Y21 ma(l), 

(B.4) fa = (t.::_Yt2 ~~T(l), d1 = -Y21 q(l, 
' / -

Zt = -qfT, L1, = L<a>, Mt = M<a>. 

a) Let j = j* = 1. On substituting Eq. (B.3) into Eq. (B.2)1 we find 

(B.5) 

Let us now resolve the vector Lla into components, the directions of which are those of 
Mt g, Mt fa and the direction t normal to the other two in a 9-dimensional space with 
a metric Lt. By evaluating the product (Lia · LtLio) we find that · the expressiop for Lt 
takes the form 

t · Ltt+ h
1
(l ~m:,) [A((,· Aa)2 +2B(la · Llo)(g · Llo)+~(g. Llci)2

], 

(B.6) It= if m:1 < 1, 

t · Ltt+ ~~t (fa· Lla)2 if m:1 = 1, 

· 4 Arch. Mech. Stos. nr 3/83 
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where 

t = · Aci- l l 2 [M
1

2 (fa· Aci)- :~ (g · Aa)]M~t-
-m,l 1 · f ' 

and 

(B.7) 

hl . 
A=-2, 

Mr 

1 ( 2) mgf h 
B = 2 1-m,l- JArMg 1' 

A 0 = h1 +M}+mg1 M1 M, :· 

hl 
C=-. -2, 

M, 

z. SLODBRBACH 

Since h1 > 0, therefore / 1 (Eq. (B.6)) is a symmetric quadratic form, which is definite 
positive, if 

(B.8) 

On substituting Eq. (B.7) into Eq. (B.8) we find, in .a similar manner, 

where 

a1 = 1, 

(B.9) 
b1 = mg1M1Mg~ 

(1 1 )M}Mi 
Ct = - -mdf 4 . 

On solving the above inequality we find the condition 

(B.10) 
1 

h1 > 2 M,M1 (1-mg1). 

On substituting Eq. (B.7) in the above expression we obtain easily the condition (4.1). 
Let us add that in the case of y12 = y 21 ~ y23 = y 13 = 0 the condition (B.lO) or (4.1) 
takes the form 

(B.ll) 

b) Let j = 1, j* = 0. Then, 

(B.12) 
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The study ·of the expression (B.l2) for positive definiteness will be as follows. Let us re. 
solve g in the directions fa and ~ in the following manner 

(B.l3) g = ct+~, 

where c is a· parameter to be used for optimizing the uniqueness condition in the case of 
simultaneous loading and unloading (b) and (c). Then, from Eq. (B.4)1 , 2 and Eq. (B.l3) 

·we find 

(B.l4) 

(B.l2) must be expressed as a quadratic form. Let us estimate therefore / 2 as follows 

(B.I5) 12 ~ I~ = L1ir · L1 L1ir+ + [cA: + Aa((~ ·Air)], 
. 1 

where 

(B.16) 

and 

Aa = t · ir+z1 ~ 0, .A:=· t · ir*+z1 < 0. 

Let us resolve, as before, the vector L1c:i in the directions M 1 ~and the direction t 1 normal 
to M 1 ~ in a 9-dimensional space with a metric L 1 • On substituting the result thus 
obtained into (B.l5) we find 

1 - -- --
(B.17) I~ = t 1 • L1 t 1 + Ji; [At(~ · L1ir)2 + 2B1 A a((~ · Air)+ C1 A:], 

where 

(B.l8) 

. ~·L1a 
t 1 = L1a- -M2 Mt(~, 

fJ ' 

MJ = ~-M~~' 

The expression (B.l7) is a definite positive quadratic form, if 

(B.I9) 

On substituting Eq. (B.l8) into Eq. (B.19) we find 

(B.20) 

The form of Eq. (B.20) shows that we h"'ve a one-parameter family of uniqueness condi­
tions, the parameter being c. We want to determine the condition of minimum with respect 
to c, in order that the bifurcation states should be estimated as closely as possible. 

On substituting Eq. (B.l3) in Es:J.. (B.~O), we obtain 

(B.21) 
1 - - 1 

h1 > 4c [(g-cfa) · Mt(g-cf'a)] = Tc [M;-2cM111 +c2M}], 

4* 
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where 

Mgf = g· M1fa =fa· M1g. 

The right-hand side of Eq. (B.21) must, therefore, become minimum in the scalar para-
meter c. Let -

(B.22) 

Then 

(B.23) 

F(c) = ! ( ~: -2M,;+cMJ). 

oF(c) = O. 
oc 

From the condition (B.23) we find that 

(B.24) 

On substituting Eq. (B.24)1 into the inequality (B.21) we obtain, after some manipula­
tion, 

(B.25) 

By introducing the notations (B.7) we obtain easily the Eq. (4.1) sought-for. It can be shown 
that the right-hand member is zero, if 

(B.26) A1(~ · Lla) = -.B11C1. 

Hence / 2 = I;, if Aa = 0. Then, it follows from Eq. (B.16) to (B.26) that 

12 > 0. 

(c) Let j = 0, j* = 1. The procedure of demonstrating that I( a, a*, 0, 1) = I 3 > 0 
is analogous to that in the case (b). We have, therefore,. 

(B.27) 
I C - -* 

/3 = /3 + h";AaAa, 

Aa = rC1 · a+ z 1 < o, .A: = t · a*+ z 1 ~ o. 
Hence 

(B.28) 

where t1' A1' B1 and c1 are defined by Eq. (B.l8). Similarly to the case (b) it follows that 
/3 > 0. . . 

d) Let j = j* = 0. Then, the integrand 

. (B.29) I( a, a*, o, o) = 14 = Lla · L1L1a 

is positive definite because L 1 = L<o> is definite positive. Then from (B.l) it follows directly 
that a =a*. --
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Appendix C 

It will now be shown that J' is definite positive if Eq. (4.1) is satisfied. This will show 
that the sufficient local uniqueness condition for the integrand J' is the same. as in the case 
of an elastic-plastic body J. It constitutes also a criterion enabling us to confirm \he reason 
for introducing the expression J'. Let us denote 

(C.l) (g*+x2 f:) = M 1W. 

From Eq. (4.6) and Eq. (C.l) it follows that 

(C.2) 

and 

W = cpaL1 (Mcx)-L1 N2+;l..1 B(1_:+-x2
). 

On substituting Eq. (C.1) into Eq. (4.7), we obtain 

(C.3) J' = Lf£ • Mu1£- 4x;H
1 

[(M1 W) · Lf£]2. 

On resolving Lie onto the directions Wand t* normal toW in a 9-dimensional space with 
a metric M 1 , we obtain the expressions 

(C.4) t * - A • - L1 £ . (Ml W) w 
- LJ£ 2 ' Mw 

where 

Then 

(C.5) J' = t~ · M1 t*+ (4x2~1)Mi- (4x2H1 -M~)(.d£ · M 1W)2
• 

From Eq. (C.5) it follows that J' is positive definite, if 

(C.6) 

The tonditio~ (C.6) must now be optimized by finding the minimum in the parameter x2 • 

Condition (C.6) yields . a one-parameter family of uniqueness conditions for a compara­
tive body. 

Let 

(C.7) 

y = x2 hence y > 0, 

1 
&'(y) = -(W· M1W). 

y 

On ·substituting Eq. (C.7)1 in the expression (C.2) and calculating the derivative, we find 
.(. 

a&~(y) = o, 
oy 
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therefore 

(C.8) 

Hence 

2y(W ·B)= (W · M 1W). 

The expression (C.8)3 results from the condition of the function 9(y) taking an extremum 
value in -the scalar parameter y. The expression (C.8h must be transformed to obtain the 
desired result, the expressions for W (cf. Eq. (C.2)1) being taken into account. Let 11s 
rewrite the expression (C.2h in the form 

(C.9) W = W1 +x2L1 B, 

where 

W1 = ti'aL1 (Mcx)-L1N2+L1 B. 

On substituting Eq. (C.9) into Eq. (C.8), we find, after rearrangement 

(C.lO) 2 Vg*. Llg* 
Yo= Xo = ' r: · L1C: 

where g* and r: are defined by the relations (4.6)1 and (4.6h' respectively. 
It can easily be shown that, by substituting Eq. (C.lO) into Eq. (C.6) and taking into 

consideration (4.6)1 , 2 and (C.9), we shall obtain, after rearrangement, 

(C.ll) 

It can also be shown, that 

(C.l2) 

Then, from Eqs. (2.3), (2.4), (4.2) and Eq. (C.l2) it follows that 

(C.l3) 

On substituting Eq. (C.l2) and Eq. (C.13) into Eq. (C.ll) we find easily, after rearrange­
ment, the condition (4.1), our proof thus being accomplished. -
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