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Application of the asymptotic expansion method for singularly
perturbed equations of the resonance type in the kinetic theory

J. MIKA (SWIERK) and A. PALCZEWSKI (WARSZAWA)

THE SINGULARLY perturbed systems of ordinary differential equations are treated by the asymptotic
expansion method in two forms: standard and newly developed by the authors. Both procedures
are applied to the Carleman model of the Boltzmann equation and are shown to be related to the
Hilbert and Chapman-Enskog expansions.

Osobliwie perturbowane uklady zwyczajnych rownai rézniczkowych potraktowano za pomoca
metody rozwinig¢ asymptotycznych w dwoch postaciach: metody standardowej i metody od
nowa opracowanej przez autoréw. Obydwie procedury zastosowano do modelu Carlemana
rownania Boltzmanna oraz wykazano, ze odpowiadaja one rozwinigciom Hilberta i Chapmana—-
Enskoga.

OcobeHHO TNepTYpOHPOBaHHBLIE CHCTEMbl OOBIKHOBEHHBIX AHbGdepeHUHaIbHbIX YPaBHEHHH
TPaKTYHOTCA INPH IIOMOLIH ACHMIITOTHYECKHX paBJIO)KCHHfl B OBYX BHJAxX: CTaHOAPTHOI'O Me-
TOAA M MeToJila BHOBb paspa6oranHoro aBTopamu. OGe mpouemypbl IpHMeHEHbI K MOJETH
Kapnemana ypaBHenus BonblMaHa, a TaKkyKe IIOKa3aHO, UTO OTBEUAIOT OHH Pa3VIOYKEHMAM
I'unsGepra 1 Yenmena-OHcKora.

1. Introduction

IN THE PREVIOUS paper [1] we developed a new algorithm of the asymptotic expansion
method for singularly perturbed systems of ordinary differential equations:

e 5 = fx,
(1.1)
d
S = gx, ).

As it was indicated in that paper, the analysis can be extended to situations when fand g
depend in a smooth way on e.

The motivation for the new algorithm came from considering singularly perturbed
equations of the resonance type

dz

(12) A e )

in which the function j(z) is singular. Such equations are closely related to discrete models
of the Boltzmann equation.
In this paper we formulate the properties of the functions appearing in Eq. (1.2) which

6*
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enable us to translate it to the form (1.1) and then apply the standard [2, 3] or new [1]

algorithms of the asymptotic expansion.

The results of the analysis will be used for the Carleman model of the Boltzmann equa-
tion (see [4]) to shed some light on the relationship between the asymptotic expansion
method for ordinary differential equations and the Hilbert and Chapman-Enskog
asymptotic procedures (see, e.g. [5] or [6]).

2. Singularly perturbed equations of the resonance type

In this section we shall consider singularly perturbed differential equations of the re-
sonance type (1.2) and formulate the conditions under which such equations may be re-
duced to systems of the form (1.1) and then treated by the asymptotic expansion method.

To that purpose introduce the following notation:

teT=[0,t], to>0;

ecEy=(0,8), & >0, E,= [0, &];

2.1 QcR™” m>1, £ openandconnected;
z2:T - Q;
h:Q - Q;
Jj:2 - Q;
y:Ey — Q.

By || - || we denote any of the (equivalent) norms in R™ or in any of its subspaces and by

(*,*) the scalar product.
Consider the initial value problem for Eq. (1.2)

2.2) dz = h(z)+-—J(z) z(0) = y(¢), teT.

The above equation will be said to be of the resonance type if the next assumption is
valid:
A.1. There exists a set of vectors y; c R"; i=1,...,p; 1 < p < m such that

WLy =0, 1<i,k<p
and for all ze 2

(i,j(2)=0, i=1,..,p.

With A.1. we can write Eq. (2.2) as a system of equations. To do this we introduce the
projectors

P
Py = 2(’#’:,14)#’1:
i=1

Qu=u—Pu, ucR™.

(23)
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Operating on both sides of Eq. (2.2) with P and Q we get

W92 _ on(pz+ 02+ 1Pz +02),
(2.4) d(dI:Z) = Ph(Pz+Qz),
(Q2)(0) = Qy, (P2)(0) =
Denoting
Qz=x, Pz=y,
2.5) Qy=mu, Py=n,

J(Pz+Q2)+eQh(Pz+Q2) = f(x, ¥, ¢),
Ph(Pz+Qz) = g(x, ),
we-get from Eq. (2.4) the initial value problem

e—— = fx,y,8, x(0)= p(e),
(2.6) p
L= gx,),  y(O = n(s).

This is the system identical with that considered in [1] except for the fact that f depends
explicitly on . However, it follows from Eq. (2.5) that t}:is dependence is smooth so that
the analysis in [1] can be straitghforwardly adapted to include Eq. (2.6).

We shall now make assumptions concerning the functions {appearing in Eq. 2. 2)
such that the requirements concerning Eq. (2.6) and set up in [1] are satisfied.

A.2. The functions # and j belong to C2"+2(Q) and y e C**1(E,) for some E,. The
latter means that we admit the expansion

k
.7 y(e) = Ze*y,‘w(e"“).
n=1

A.3._ There exists an open, boun_ded, and connected set § = PQ and a continuous func-
tion :6 — £ such that for all ye6, j(e(y)) = 0. The root g(y) is isolated in the sense that
there exists 6 > 0 such that for all y €6 and z € 02 such that 0 < ||z|| < § we have

J(z+e) # 0.

A.4. For every y €0 the kernel of the matrix operator B, j(e(y)) coincides with PR™
and the nonzero eigenvalues 4;(y) of D,j(o(y)) satisfy the inequality

(2.8) Re ,(y) < —a < 0.

A.5. The initial value problem

29) Do _ Phiete))s 30 = 70 €0

has a unique, bounded solution yo: T — 0. The initial value 17'0 is defined from Eq. (2.7)
as Py,.
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Consider the equation

(2.10) d—u=j(9(y)+u), 20, yef,

dr
for u € QR™. It follows from (A.4) that # = 0 is an asymptotically stable fixed point of
Eq. (2.10) (see Propos_ition 3 of [1]). 7
A.6. For each y €0 the point Q(y,—o(y)) belongs to the region of attraction of the
fixed point ¥ = 0 of Eq. (2.10). Additionally,

o()+Muel,

where u is the solution of Eq. (2.10) and M is any diagonal matrix such that 0 < M;; < 1,
i=1,..,m—p.

It can now be checked that if all the assumptions (A.2-A.6) are satisfied, then the hy-
potheses (H1-5) of [1] are valid for the system (2.6). Observing that the assumptions of [2]
are included in those of [1], we conclude that the system (2.6), and hence Eq. (2.2), can
be treated by both standard and new asymptotic expansion procedures.‘

In the next section we take the Carleman model of the Boltzmann equation which is
of the form (2.2) and apply both procedures to show their relationship to the Hilbert and
Chapman-Enskog approaches.

3. Carleman model

Consider the Carleman equations with periodic boundary conditions [4]:

. R

I e

x, X, 1., _,

& e - de i Xa)
3.0 X0,1) = X(a, 1),

Q)
Xl(r’0)=Xi(r’_E); i= 1,2,
teT=1[0,28)], 0<r<a, a>0.

To reduce Eq. (3.1) to the system of ordinary differential equations we discretize the
space variable r such that

O=ro<r <..<r;=a;

and replace the functions X; and X, by the vector functions w, and w,, respectively. Thus
we take

wi(t) = {wi(t), ..., wi(t)};
W,(f):X‘(rk,f), i= 1,2, k= | R

3.2)

The value of X; at r = 0 is eliminated on account of the periodic boundary conditions in
Eq. (3.1).
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The differentiation with respect to r is replaced by the finite differencing. Thus, instead
o a—X'— , we take
or |r=r,
Wf +1_ w};- 1
Ter1=Tr-1
Taking into account the boundary conditions we may replace the derivative with respect
to r by the matrix operator

0 b 0 0 0 -b
""'b2 0 bz v 0 O 0
(3.3) G = — e e ) — —_— 5
0 0 0 ... =bs_y O bs_;
b, 0 0 .. 0 =—b 0
where -
b (rk+1-rk—1)—l, k=1,..,5—1;
%= (rs_rs—i +rl_r0)_l’ k=s.

In this paper we shall treat the vectors as functions of a discrete variable and perform
with the vectors operations similarly as with functions. Thus, for example ab stands for
the vector with the components (ab)' = a'b’, a* = aa, and (expa)’ = expd'.

With Eqgs. (3.2) and (3.3) we may replace Eq. (3.1) by the following system of ordinary
differential equations: '

dw 1
d—tl +Gw, = E(Wg—wf),
dw; 1

(3.4) T —Gwy= - (wi—wd),

wi(0) =¥e), i=1,2, teT.

Finally we introduce the vector function z(¢z) whose components are consecutively the
components of the vectors w,(¢f) and w,(t) and define the block matrix

2 G 0
“lo -6
With this notation we can write Eq. (3.4) in the form
dz 1
— +Gz = — j(2),
(3.5) ar - /@
z(0) = y(e),
where
J(Z) = {jly --'ajzl}:
(36) %[(zl+k)2_(zk)2]’ k = 1, vy S,

=
F[E =@, k=s+1,..,2s
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and
('))x (V) (o)l

p(e) = {wi, .., wi, wi, ...,(1?1}'}}.
Now, if —Gz is identified with h(z), Eq. (3.5) takes exactly the form (2.2).

The finite discrete version of the Carleman model (3.5) is an approximation to the orig-
inal system (3.1) in which the basic features of the model are preserved. This is due to the
choice of the periodic boundary conditions. For other boundary conditions we would
have to cope with the boundary layer for which the proposed discretization would be
inadequate.

Take the following system of orthonormal vectors in R2*:

Y = {'4’11,---,11112'}, i= 15-"93)
61 R
Yi = 1/2
0 , otherwise.
It is seen that

(vi,j(2) =0, zeR¥* i=1,..,s,
and (A.1) is fulfilled.

Performing the projections defined by Eq. (2.3) and introducing the notation given
by Eq. (2.5), we get .

dx  ~ 1
dy =~
(38) —E+Gx =0,

x(0) = u(e), y(0) = (o).

We shall now check the remaining assumptions listed in the previous section.

First we observe that both 4(z) and j(z) are infinitely many times differentiable in the
whole R?*. Hence (A.2) is fulfilled whenever we take y(¢) sufficiently smooth.

As the set 0 we take

(3.9) 0={yePR¥*: y*>a>0; k=1,...,2s}

and p(y) = y for all y €. With this (A.3) is fulfilled. From the relations (3.6) it is easy
to verify that

(-z* 0 0 0 0 2zt 0 0 0

0 —220 .. 0 0 0 z+2 0 0

_ 11o o o 0 —z* 0 0 0 =z
PNE@ =351zt 0 0 .. 0 0 -+ 0 0o o0
0 0 0 .27t 0 0 0 ..—z210

0 0 0 0 22 0 0 0 -z
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By direct calculations we check that
D)) v =0,
D))= =y, i=1,...,5, yeb,
where y; are defined in the relations (3.7) and
w= @ .9 i=1,..,s,

3.11) - L_ o

V2’ ’
Vi = ——1—:, k= s+i,

v

0 , otherwise.

(3.10)

From Eqgs. (3.10) and (3.9) it follows that (A.4) is satisfied with « defined in the relations
(3.9).
The initial value problem (2.9) reduces to

d
(3.12) 7}}‘3 =0, yo(0) = 7o,

since for all yef
Ph(o(y)) = —PGe(y) = —PGy =0

and (A.5) is trivially fulfilled.
Equation (2.10) has in the present case the form

(3.13) ‘ %= —yu, T3>0, yeb, ucQR?
which shows that the region of attraction of the fixed point ¥ = 0 is all QR and (A.6)
is valid for any y,.
We see that all the assumptions (A.1-A.6) are satisfied and we may apply both stan-
dard and new algorithms of the asymptotic expansion.
From the definition of the projectors P and Q we see that
xkb = —xtk
yr=yptk Tk=1,..,s.
Obviously it is true also for u(g) and 7(¢). At the same time it i3 seen that Egs. (3.8) for
the first s components of x and y are identical to those for the second s components. This
shows that x and y are fully described by vectors from R* which again will be denoted by
x and y. Now Eqgs. (3.8) may be replaced by the system of equations in R*xR*:

dx 1
ar Tt =0,
dy

x(0) = u(e), y(0) = n(e),
which formally differs from Egs. (3.8) only by G substituted for G.
In the next sections we shall analyze directly the system (3.14).
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4. Asymptotic expansion for the Carleman model

In accordance with the general procedure we introduce the stretched (local) variable
7 = t/e and represent the functions x and y in the system (3.14) as sums of functions of ¢
and 7, separately. Thus, writing

x(t) = x(1)+x(v),
y(t) = y(1)+¥(7),
we get from the system (3.14) by separating the dependence on ¢ and *

“.n E%+£G§+}ﬁ =0,
; dy | -
“.1) ?T+Gx =0,

and
dx . =
-a;‘}‘ EGy+] = 0,
4.2) 5
Y LG = 0,
T
where

J = (F(E)+X3@) (3(E0) + 5(2) = X(e0)y (en).

In the standard approach we replace all the functions in Eqgs. (4.1) and (4.2) by power
expansions in &. Thus we write for a particular »

(4.3) %= Mex, 7=
k=0 k=0

4.3 = 3%, §= 3.
k=0 k=0

From this, by expansing the functions of et into Taylor series, we get
4.4 xy = Xoyot+e(xoy,+Xx;Y0)+ ...,
J = Fo(1)5o(2) +%o(0)o(7) + %o ()70(0)

+ 8[(?0(0)+5’o(r)))?1(r)+ (*o(0)+%o(2))7:(7)

+5co(r)(zf_;i‘l(0)+;1(0))+(z%(0)+z,(0)) j':o(r)] o= fotefito

Taking in Egs. (4.3) n = 1, we obtain from all the above equations

}0?0 = Oa

4.
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4.5 | c
{(cont,% %xl-?-'f'j =0,
dyo
il
and
dx, o Lo
7+GJ’0+)’0J‘1+X0J71 =0,
dy, =
L +G%, = 0,
(4.6) P
X ~ =i
d'rl +GYyo+j = 0,
dy -
dy_; +G)C0 = 0.

From Egs. (2.7) and (2.5) it follows that

@.7) u(e) = po+epy +0('5‘:),
n(e) = no+ en, +0(¢%).
Denoting
xx(0) = M -’}k(O) = [‘k’
Ye0) = % F(0) = i
we get the relationships
4.8) Izk+[zk = P
Nkt Nk = M-

These conditions do not suffice to solve uniquely Eqs. (4.5) and (4.6), so additionally

we require that
4.9 lim y(z) = 0

T

since y are local functions and should vanish for large =.

We shall now solve Eqgs. (4.5) and (4.6) with the conditions (4.8) and (4.9). First we see

that Eq. (4.5) reduces to

(4.10) X(1) =0, Jo(r) =0,
, dy _
4.10) 70 =0, Fol0) = 70,
rr d-):’o ~ ~
(4.107) W""’?oxo =0, Xxo(0) = po.
From the last two equations we get
(4.10) : Yolt) =m0,  Xo(7) = €™ po.

The system (4.6) is simplified to give
x,(t) = —n5'Gno,
4.11) ©
Fi(2) = [ dsGo(s) = Gliyg e~ o)
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and
’ dyl 5 2 -1 = 58 1 -1
(4.119) i = —Gx; = G(ng'Gno), 1,1(0) = n, =%, = ' —=G(ng'uo), .
i, . .
(4.11") d; +770%; = e oG5 po(1 =€) =m1),  %,(0) = 75 Gno+ -

Solving the last equations we get
(1) = 1 =G5 po) +1G(5 ' Gno); ,

@117) %y(2) = e (05 Gro+ p + 7o G5 o — 1) — 110 G (03 o (1 —€™"07)))..

Defining the functions
XO(1) = Xo(t/e) + e (X, (1) + X, (t/¢)),
yO@) = Yo(t)+ (3, (1) +7,(t/8)),
we get from the theorem in [2] that the functions (4.12) represent an asymptotic solution
of the first order to the system (3.14) uniformly valid on T. The zeroth order is given by
first terms in the RHS of the functions (4.12).

If, by coincidence,
(4.13) po =0, = —n5'Gno,
then

(4.12)

Xo(7) = X,(7) = 3, (v) =0,
and the uniformly valid solution is given in terms of the bulk approximation
xO(t) = —eng'Gno,
yO(t) = no+&(n, +1G(95 1 Gno)).-

The standard algorithm described above is such that the approximate equations at each
step k are independent of the final order of approximation. This is not so in case of the new
algorithm described in [1].

For n = 0 the new algorithm leads to the same equations (4.10) as in the standard case.
For n = 1 both approaches are different. .

Applying the new algorithm we leave the local expansions in the (4.3') unchanged but
replace the relations (4.3) with

(4.14)

@.15) = Nepm, - w,

k=0
which means that y remains unexpanded and x depends on time only through w. Accord-
ingly,
n n n n

@16 = N enp 2 - N oppce= Y #Dupc D dpw.

k=0 k=0 k=0 i=0

Now, inserting Eqgs. (4.15) and (4.16) into Eq. (4.1) we get up to terms of order &2
W@y = 09
D,poGpo+Gw+e,w = 0,
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which gives
w) =0,
(4.17) ol
(W) = —wlGw.
This substituted into Eq. (4.1), yields

(4.18) ‘Z—‘t" — ¢G(w'Gw).

Making use of the relations (4.3") we get from Egs. (4.5) and (4.6) as previously

dio = _ djo
gz Ho=0, 7 =0
(4.19) 5 5
L+ GPo+f =0, Tt

dt dr fl-Gxo =0

The functions fo and j; are given by the expressions
Jo = %o(2/o+ @o(0)F0(?) +%o()o(2),
Jjt = [@o+5e(0) %, (D) + (20(0) +Xo(2)) 71 ()
+ﬁlfco<r)+( = 4% 0)+g, (0)) Fo(o),

where we introduced the notation

?’k(W(O)) =y, xx(0) = M,
w0 =71 =70+ + ..., J(0)= 1.

Now we make use of Egs. (4.8) and (4.9) to obtain the initial conditons for Eqgs. (4.18) and
(4.19).
First we observe that on account of the relations (4.19) we get

Yo(7r) =0, ’770 =0, 7o=1o.

The equation for X(7) is

dx & -
d_o_ +790xo = 0, x,(0) = o = to—Po(n0) = o,

T
which is identical with Eqs. (4.10""). In a similar way we get for »,(7) the same function
as previously (see Eqs. (4.11)), which yields %, and 7, = n,—%;.
The function x,(7) is defined as the solution to the equation

dx o P e oo - -
d‘: +90X, = —N Xo—XoV1, X1(0) = i1, = p—@;(no) = l‘+n516ﬂo:

which again is identical with Eqgs. (4.11"").
Finally we solve Eq. (4.18) with the initial condition

w(0) =79 = 770"‘*-‘"71 = 770+3(771—G(7731F0))-
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The first order approximate solution uniformly valid on T is given by
xW(t) = Xo(t/e)+ e (p, (W) +X,(t/€)),
yO() = w(t)+ ey (t/e).

If the conditions (4.13) are satisfied, we obtain as previously the uniformly valid
approximation in a simple form:

(4.20)

Y XD = —ew~1Gw,
(4.21) 35 m

5. Relation to the kinetic theory

Any of the discrete models of the Boltzmann equation is of the form (1.2) where A(z)
describes streaming and j(z) represents the collision operator.

From the general properties of the collision operator it follows that there exists a p-di-
mensional subspace of R™ spanned by collision invariants y; as it was assumed in (A.l).
It is called the hydrodynamical subspace and the y components of the whole vector z consti-
tute the hydrodynamical moments.

The function g in the assumption (A.3) represents the Maxwellian in the sense that
if the vector z, is the solution to j(z) = 0, then it is uniquely determined by its hydrody-
namical moments

zo = 0(¥o);

provided y, belongs to the properly defined p-dimensional subset of the hydrodynamical
subspace,

The linearized collision operator represented here by the matrix D, j(¢(y)) has a kernel
of the same dimension as the hydrodynamical subspace. For most of the practically rel-
evant models the rest of the spectrum satisfies the inequality (2.8). In general the kernel
of the linearized collision operator is not identical with the hydrodynamical subspace con-
trary to (A.4). However, the latter is valid for the Carleman model.

In view of the above explanations it is now not difficult to see that the bulk approxima-
tion obtained with the standard approach is identical with that given by the Hilbert asymp-
totic expansion procedure. In particular, Eqs. (4.10) represent the Euler equation and
(4.11") the nonhomogeneous Euler equation. The solutions to the Euler equations give
a uniformly valid approximation if Eq. (4.13) is fulfilled or, in other words, if the solu-
tion belongs to the Hilbert class.

When applied to the Carleman model, the new algorithm corresponds to the Chapman-—
Enskog expansion and Eq. (4.18) represents the Navier-Stokes equation of hydrodynamics.
As in the previous case the solution to this equation is uniformly approximating the exact
solution if Eq. (4.13) is satisfied.

It is seen that the application of the asymptotic expansion method enables us to obtain
uniformly valid approximations for arbitrary initial conditions since the local functions
contribute to the proper description of the solution in the initial layer and allow to define
the appropriate initial conditions for hydrodynamical equations.
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It is also suggested that the new algorithm developed by the authors [1] is superior to
the standard one similarly as the Navier-Stokes equation is a better description of hydro-
dynamics than the Euler equations.

Finally, take the general case when, contrary to (A.4), the kernel of the linearized colli-
sion operator is not identical with the hydrodynamical subspace. First we observe that anv
y €@ can be uniquely represented in terms of collision invariants

y= ﬁﬂ:'#t.
i=1

where f; are scalar coefficients.
Differentiating the identity

(el 30w) =0

with respect to §;, we get

sz(e(éﬁ:%))l)ye(gﬂm)w; =0, I=Lsud

Since the dimensions of the kernel of the linearized collision operator and the hydrody-
namical subspace are the same, the last equality shows that for any y € 6 the kernel of the
linearized collision operator D.j(e(y)) is spanned by the vectors D,p(y)y; provided the
matrix D,o(y) is nonsingular.

From above it is seen that (A.4) is satisfied only when the Maxwellian ¢(y) is a linear
function of y which happens to be true for the Carleman model. In the general case the
mapping D, p(y) of the hydrodynamical subspace into the kernel of the linearized collision
operator depends explicitly on the solution and this has to be accounted for in the asympto-
tic analysis.
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