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Modified theory of viscoplasticity
Physical foundations and identification of material functions

for advanced strains
P. PERZYNA and R. B. PECHERSKI (WARSZAWA)

THE MAIN objective of the present paper is to study the physical foundations of the modified
theory of viscoplasticity and identification of the material functions and constants in the case
of advanced strains. The modified theory of viscoplasticity satisfies the requirement that during
the deformation process the response of a material modelled becomes elastic-plastic for the
assumed, non-zero, quasi-static value of the effective strain rate. Particular attention is devo-
ted to the physical interpretation of the transition from the strain rate dependent plastic flow
to the elastic-plastic response and a scalar control function which plays essential role in the
description of such a transition. The least square technique was used in order to determine
material constants of one-dimensional constitutive equation of viscoplasticity for AISI 316L
stainless steel on the basis of available experimental results of tension test at room tempe-
rature and at different strain rates.

Gtownym celem pracy jest zbadanie fizycznych podstaw zmodyfikowanej teorii lepkoplastycz-
nosci oraz identyfikacja funkcji i stalych materialowych w przypadku zaawansowanych od-
ksztalcen plastycznych. Zmodyfikowana teoria lepkoplastyczno$ci spelnia warunek, ze podczas
procesu deformacji reakcja modelowego materialu staje si¢ spr¢zysto-plastyczna dla przyjgtej,
niezerowej, quasi-statycznej wartosci efektywnej predkosci odksztalcenia. Szczegolna uwage
zwrdcono na fizyczng interpretacje przejscia, zaleznego od predkosci odksztalcenia plynigcia
plastycznego do reakcji sprezysto-plastycznej oraz na skalarna funkcj¢ kontrolna, ktéra odgry-
wa istotna role w opisie tego przejécia. Zastosowano metod¢ najmniejszych kwadratéw aby
okresli¢ stale materialowe jednowymiarowego rownania lepkoplastycznosci dla stali nierdzewnej
AISI 316L na podstawie dostgpnych danych doswiadczalnych proby rozciagania w temperaturze
pokojowej przy roznych predkosciach odksztalcenia.

OcHoBHO# 1eNTbI0 paGoThI ABJIAETCA UCCIIEOBaHHE (DU3HYECKHUX OCHOB MOAUGHLMPOBaHHOM
TEOPUM BASKOIUIACTHUHOCTH M HACHTHGMKALUA MaTepUalbHbIX (PYHKUMH M KOHCTaHT A
Cilyyasi pasBHUTBIX IUIAaCTHUecKHX Hedopmaumil. MomuduunpoBaHHas TEOPHS IUIACTHYHOCTH
YAOJIBETBOPaeT CJEAYIOIIEMY YCIOBHMIO: B TeUYEHHe Mpolecca edopMaluu OTBET MOAETHPO-
BAaHHOI'O MaTepHAaja CTAHOBMUTCSA YIPYro-IUIACTHYECKHM JIA HEKOTOPOro IPHMHATOrO, OTJIMY-
HOTO OT HYJiSI KBa3sHCTAaTHUYECKO 3HaueHMA 3deKTHBHOM ckopocTH medopmaumu. Ocboe BHH-
MaHme YOensAeTcsA (hUSMUECKOMY HCTOJIKOBAHMIO Iepexoja IUIAaCTHTHYECKOro TeueHHMs, (3a-
BHCHMOTO OT CKOPOCTH Ae(hOpMAaIlH) K YIIPYro-TUIACTHYECKOMY PEKHMY, @ TaKXKe CKaJIAPHO-
KOHTPOJIbHOIH (DYHKLIMH, HIpaiollieil CyLIeCTBEHHYIO POJIb NPH OIHCAHWH 3TOrO Ilepexoia.
C HCTIONIB30BaHMEM METO/2 HAHMEHBIIMX KBaJApPaTOB ONpENessiINCh MaTepHaNbHEbIE KOHCTAHTHI
OJHOMEDHOIO YPAaBHEHHUsI BASKOIUIACTHUHOCTH ISt Hepokapetomieit cranu AISI 316L Ha ocroBe
[OCTYIHBIX OKCIIEpHMEHTANBHLIX PEe3yNbTATOB HCIBITAHWH HA PAacTAMKEHHE IIPH € KOMHAT-
HOl TeMITEpaType ¥ MPH Pa3IMUHbIX CKOPOCTAX Aedopmanum.

1. Introduction

THE NEW THEORY of viscoplasticity which can be applicable in a study of the influence
of strain rate effects on the instability of plastic flow was formulated recently by PERZYNA
[12]. The theory contains two essential modifications in comparison with the former one
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(cf. PerzyNA [11, 13]). Firstly, the effect of defects, inclusions and imperfections is taken
into account. Secondly, the modified theory satisfies also the requirement that during the
deformation process the response of a material thereby modelled becomes elastic-plastic
for the assumed, non-zero, quasi-static value of the effective strain rate. The material func-
tions and constants were determined on the basis of available experimental dgta obtained
under the condition of dynamic loading for rate sensitive, plastic materials. These results
were pertinent to the yield point and small plastic strains, only.

The aim of the present paper is to study the physical foundations of the mentioned
modified theory of viscoplasticity and identification of material functions and constants
in the case of advanced strains. Particular attention is devoted to the physical interpre-
tation of the transition from the strain rate dependent plastic flow to the elastic—piastic
response and a scalar control function which plays essential role in the description of such
a transition.

2. Material structure with internal state variables

In what follows we shall consider only isothermal processes. Let us assume that the
intrinsic state o of a particle X consists of its local configuration (E(¢), J(¢)) and its method
of preparation w(#), i.e. (cf. PERzYNA [13])

@1 o= (E@®),8(1), w®),

where E(t) denotes the strain tensor, #(z) temperature and «(z) is the internal state
vector. It is postulated that the internal state vector @(f) can be assumed in the form ()

(22) w(t) = (E, @), (1)),
where E,(t) denotes the inelastic strain tensor and x(t) is an isotropic work-hardening
parameter, )

The constitutive equation for the Piola-Kirchhoff stress tensor T(z) is assumed in the
form as follows:

(2.3) T(t) = T(0).
The tensorial material function T is assumed to be differentiable with respect to all

components of the intrinsic state o.
The evolution equation for the internal state vector (¢) is postulated in the form

(2.4) B(t) = Q(E@), #(1), E(), (1), ¢),  te0,d]
with the initial value as follows
2.5) w(0) = w, = (EJ, ),

where dp denotes the duration of the process considered.

() In the paper [12] an additional internal state variable &(r) was considered. T he parameter £(¢
was interpreted as a scalar measure of the concentration of defects, inclusions and imperfections. The
extension of present theory for this parameter and pertinent evolution equation of diffusion type is straight-
forward,
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The vectorial function € depends on the strain tensor E(f), the strain rate tensor l'E(t),
the internal state vector w(f) and the scalar control function ¢ € U, where
26) U= {p:maxlg| <M, limp=0, @0 =0, ¢(-)=0, for I,<I3},

l;—)I;
. 1 it
2.7 I, = ()2, I = (TE)2.

The second invariant I3 is called the static value of strain rate measure. We define I3 as
such value for which, in a test under combined stress conditions with I, < I3, there is no
rate sensitivity effect observed.

The reason why we introduce the scalar control function ¢ in the evolution equation
(2.4) is that it helps to describe the properties of a material in a range of strain rates near
the static value (say I, = I3).

3. Physical foundations(?)

It is assumed that viscoplastic strain is produced by the expansion of dislocation loops
over the glide planes of active slip systems, This means that our considerations are limited
to the region of moderate temperature in which the mechanisms of twinning, dislocation
climb or diffusion are negligible. The mean value of the viscoplastic shear strain produced
by the expansion of dislocation loops in a single slip system can be expressed as follows
(cf. GiLMAN [6], KrRONER and Teoposiu [8] and Kocks et al, [7]):

@1 vy = 250

where b denotes the length of Burgers vector and S(¢) is the area swept out by all disloca-
tion loops of the considered slip system, in the time interval [¢,, t], which can be deter-
mined in the following way

i)
(3.2) S@t) = [ u(A,1)da,
lo
where I, = I(t,), I(¢) is the total length of the mobile dislocation lines at time ¢ and u(4, t)
is the displacement of the dislocation line at the point parametrized by 4, 4 € [lo, I()).
The product bS(¢) is averaged over certain volume of crystalline material AV. The
dimension of this volume should be larger in comparison with the mean separation dis-
tance between crystal defects.
Differentiating (3.1) with respect to ¢, for the fixed crystalline volume AV we obtain
the relation for the shear strain rate

3.3) 5y =258,

(*) This point is discussed more thoroughly elswhere (cf. PgcHERSKI [17]).

8 Arch. Mech. Stos. nr 3/83
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Application to the integral with parameter (3.2) of the Leibniz rule of differentiation

yields

in
3.4) S(t) = f a(k, DdA+ull(t), (11(1).

lo [
The first part of (3.4) corresponds to the rate of change of the glide area swept out by all’
dislocation loops moving at the instant ¢. The symbol #(4, t) denotes the expansion vel-
ocity of the dislocation line at the point parametrized by 4. The mean expansion velocity
can be expressed as follows

I

(3.5) o(t) = Tlt) f u(l, t)da.
lo

The second part of (3.4) pertains to the rate of change of the glide area produced by the
change of the total length of the mobile dislocation lines at time ¢, In the case of the net
increase of the total length I(¢) this means that in the time increment At the newly-genera-
ted dislocation segment of the lenéth I(1)At moves at the distance u[/(), t]and sweeps out
the new glide area

(3.6) AS(t) = uli(r), t]i(t) At.

Taking into account the fact that the new dislocation loops generated by the dislocation
source expand very fast comparing with the waiting time ¢,, at short range obstacles and the
transition time along the mean free path L we can assume that the newly-generated dislo-
cations appear immediately at the nearest short range obstacle. Then, the displacement
u[l(t), t] corresponds in such a case to the mean separation distance of short range ob-
stacles d.

From (3.4) and (3.5) we have

(3.7 S(t) = (o) +dI(t)

and due to (3.3)

(3.9 P(t) = boy(t)o(t)+bdon(t),
where

3.9 o = 20 and gyl = P10

correspond to the mobile dislocation density and the rate of change of mobile dislocation
density, respectively.
For gy(2) = const (3.8) transforms into the well known Orowan’s relation

(3.10) »(1) = beyo(1).

The rate of change of the mobile dislocation density g,(t) is the result of the pro-
duction rate of dislocation sources gf;(¢) and the rate of dislocation immobilization after
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the flight with the mean expansion velocity ©(¢) over the mean free path L (cf. e.g. Kocks
et al. [7] and KRONER and Teoposiu [8)]):

@10 ontt) = 8t4(1)— 2O,
If om(f) = const
(3.12) oh(DL = oyo(t)

and (3.10) yields the following equivalent Orowan’s relation expressed in terms of the pro-
duction rate of dislocation sources

(3.13) P(t) = box(r) L.
From (3.8) and (3.11) we have
(3.19) (1) = bdpii(t) +bea(t)o(t),
where
(3.15) om(t) = (l—i) om(t).
L

Usually d < L but in the case when d ~ L the relation (3.14) transforms into the Orowan’s
relation (3.13).

Due to (3.14) the viscoplastic shear strain rate p(¢) is determined by the production rate
of new mobile dislocations and the motion of dislocation lines opposed by short range ob-
stacles over the mean free path L.

The analysis of the known mechanisms of dislocation generation leads to the conclu-
sion that they are governed by the shear stress equal to the critical athermal strength. On
the other hand, the dislocation mobility is controlled by the mechanisms of thermally acti-
vated surmounting of short range obstacles. In this mechanism the effective stress,
™ = 7—1, plays the decisive role.

Taking into account (3.14) and specifying the relation for the velocity v(¢) on the basis
of the theory of thermally activated mobility of diclocations with the reverse jumps at very
low effective stress (cf. Kocks et al. [7]) we have the following relation

ez

(3.16) (1) = bdp(t)+bom(t)veexp D

_(_""Q_l) v, A,b
-\ T
X | 1 —exp 0 ;

where the function AG(-) denotes the free activation enthalpy, 7(¢) is the applied shear
stress and 7, is the athermal shear strength. The symbol A4, corresponds to the activation
area swept out after a succesful reverse jump of a dislocation segment, k is the Boltzmann
constant, # denotes temperature whereas v, and A* are the material parameters which
can be specified for the particular mechanism of thermally activated dislocation mobility
(cf. Kocks et al. [7]).

8*
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4. Phenomenological model for a single slip system

The discussed physical relations make a basis for the formulation of the phenomeno-
logical model suitable for the application in the constitutive modelling of crystalline ma-
terial behaviour. Thus, equation (3.16) leads to the following phenomenological generaliz-
ation (cf. PEcHERSKI [16]):

(4.1) 7(t) = ;;,“+7,<q>*[A*(19, 7)) (T—Z—l) )%
where
42) For = DLEx -

is the quasi-static strain rate pertinent to the athermal strength 7, and
4.3) 7 = boavo

is the viscosity parameter whereas the excess stress function ®*(+) and the material func-
tion A*(+) correspond to the phenomenological generalization of the second term in

microscopic relation (3.16)
— A [A*(f—— 1)] —(f— = 1) 7, Ab
T, T

x| g% T 1= _ N\ .
44 o [A (@, 7,) ( =) 1)] = exp B 1—exp o

The idea of the phenomenological excess stress function ®*(+) is known from the theory
of viscoplasticity (PERZYNA [11]).

The symbol @*(.) is defined as follows
O¥(-), > 71,

*( . —
4.5) (@*()y = {0, -y
where the property ®*(0) = 0 results directly from (4.4).

The evolution equation (4.1) for the strain rate (7) can be rewritten into the following
equivalent form (PBCHERSKI [16])

4.6 (1) = —L (I)*[A* 9, (i—l)\—’-.
46) 70 = (o4 ) (-1
(1)
To describe phenomenologically internal structural changes on the level of a single slip
system additional structural variable should be specified. This is the athermal strength 7,
which is responsible for strain-hardening. The analysis of the physical theories of strain-

hardening (cf. e.g. KUHLMANN-WILSDORF [9] and MEKING and Kocks [10]) leads to the
-phenomenological evolution equation

(47) i'u(t) = H('a: ?": Tu)?.'(t)s Tu(to) = tnO’

where the symbol H(.) denotes the material function which should be determined expe-
rimentally.
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Let us observe that according to the general material structure considered on the level
of a single slip system the internal state vector w(?) can be identified as follows

(4.8) o(t) = (y(1), (1))
and the evolution equation for the internal state vector w(¢) is represented by the equations
(4.6) and (4.7). The scalar control function ¢ considered in (2.4) and (2.6) is represented by

Vas

)=1-+
4.9) o(-) Ok
Let us consider the limit case when 7 — 7. In such a situation (cf. PRCHERSKI [16])
(4.10) _ % e and O [A*cia, £ (j_'_l)] )
=222 T
7(1)

and according to (4.5) the strain rate p(¢) becomes undetermined. This corresponds to the
rate independent plastic glide which occurs if the applied shear stress satisfies the condi-
tion

(4.11) (1) = 7(1) and (1) = 7,(0).

In such a case the strain rate §(¢) is determined from (4.7) and (4.11)

4.12) p(t) = W) {z(0)}, ¥(to) = Yo,

where

. fr@), ()= r7,(t) and T(1)=0,
Chld)  {ell)}= {0, (1) = 7,(t) and () <0 or z(t) < 7, ().

The phenomenological model of plastic glide in a single slip system derived from the
physical considerations gives the uniform description of plastic deformation in an extensive
range of strain rates and encompasses rate-sensitive as well as rate-independent behaviour
of material. As it was underlined previously (PERZYNA [13]), such a uniform description
appears very useful in the analysis of deformation instability phenomena in rate sensi-
tive materials.

5. Formulation of constitutive equations of modified theory of viscoplasticity

The equations of phenomenological model for a single slip system motivate the formu-
lation of the following constitutive equations of modified theory of viscoplasticity (cf.
PerzyNA and WoiNo [14] and PerzynNA [12])

0 = 200 E0) (o 1) Dz
5.1) B0=""00y N\ A("(’)”‘(‘))(x(t) Y aray
ED('O)=E1}0’

) (1) = tr[K (DE,(1)],  #(to) = o,
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where 7(9(t), E(¢)) and A(d(t), %(¢)) are material functions,
(5.3) ‘ ) = f(T@1), E,(1), 3(1))
denotes the quasi-static yield function (loading function) and the symbol {®(-)> is under-
stood according to the definition
0 it f() < =(t),
5.4 Q) =4 :
4 CEVX =0y it 1) > 0.

The scalar control function ¢(-) can be assumed, due to (4.6), as follows

I3
5.5 )= -2
(5.5 e(*) L0
or as it was postulated previously (PERzyNA [12])
I,(t
(5.6) 9(+) = q»(—}—(,z-)——l)

It is noteworthy that for ()
(5.7) E,(1)—Ell = 0=>1,(1) = I§

the evolution equations (5.1) and (5.2) as well as the constitutive equation (2.3) lead to the
following results describing the elastic-plastic work-hardening materials

(5.8) E,(t) = Ad1f(-),  f(-) = (1), tr(orfD)+8fé > 0,
(5.9) (1) = tr[K() E,(1)),

where

(5.10) A = {tr[(K—2g,f)ocf1} [tr(3efT) + 20 /0.

Since the tensorial material functions T and K are the same for the elastic-viscoplastic
response of a material as well as for the elastic-plastic range, we can assume these functions
based on the results for the theory of plasticity.

6. Discussion of experimental results

The discussion of experimental results obtained for different materials in the extensive
range of strain rates and determination of the material functions of modified viscoplastic-
ity theory are given in [12]. These results are pertinent to the yield point and small plastic
strains, only.

Recently, the new vast experimental data have been published by ALBERTINI et al. [4],
ALBERTINI and MONTAGNANI [3] and ALBERTINI et al.[5] for advanced strains up to fracture
in the form of the uniaxial flow curves of the stee}s AISI 304 L, AISI 316 L and AISI 321
virgin, welded and irradiated at strain rates ranging between 10~2 and 10* s~* and at the
test temperature 20°C, 400°C, 550°C, 750°C and 950°C. In order to relate the flow stress
to the applied strain and strain rate, the following two devices to perform uniaxial tension
tests at constant strain rate were used (cf. ALBERTINI et al. [4]):

(®) The norm || - || is understood as the natural norm in the space of strain rate tensor K.
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1. A hydropneumatic machine where the displacement velocity of a gas-driven light
weight piston is controlled by the flow of water through a calibrated orifice. This machine
gives strain rates ranging between 107! and 102 s~!, _

2. A modified Hopkinson bar with a prestressed bar loading device. A tension wave
with a rise time shorter than 25 10~6 s is transmitted along the bar by the rupture of
a brittle bridge and acts on the specimen, bringing it to rupture. This machine allows- te-
sting at strain rates ranging between 10?2 and 103 s™*.

STRESS-—STRAIN CURVES FOR AIS| 316L S.STEEL VIRGIN

ENGINEER.
TRESSZI
G/MM

N

621

42

s TEST TEMPERATURE 20°C
CURVE STRAIN— RATE
SECT!
1 04x10
3 02
[ — 1) _
2% 15 37 %5 82 75 ENGINEER. STRAIN /)

Fi1G 1. Stress-strain curves for AISI 316L stainless steel (ALBERTINI and MONTAGNANI [3]).

These techniques are discussed more thoroughly by ALBERTINI and MONTAGNANI
[1,2, 3]

As an example of the mentioned results Fig. 1 shows the stress-strain curves of virgin
AISI 316L at various strain rates and at the test temperature 20°C.

7. Identification procedure of the material functions

The results shown in Fig. 1 are applied for the demonstration of an example of identi-
fication procedure of the material functions occurring in the one-dimensional form of the
constitutive equation of modified theory of viscoplasticity (5.1) at room tempera-
ture

. n(Ey) T _\h
(7.1) k= TC% («D[A(Ys)(f 1)]/,
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where T and E, correspond to tensile engineering stress and engineering strain, respectiv-
ely, whereas Y denotes the quasi-static tensile flow strength.

To fit the experimental results under consideration the evolution equation for work-
hardening (5.2) is substituted for simplicity by the quasistatic flow strength-plastic strain
function

(7.2) Y, = Y(E,).
Two cases of the identification procedure of the material functions of the evolution

equation (7.1) are considered. In the first one the power-like excess stress function @(+)
and linear form of the scalar control function ¢(+) as in (5.5)_are assumed

. E T %
(7.3) B e ) (( - —1) %
B (B
E,
where n = 5, A(Y,) = 1 and the material functions have the form
(7.4) n(E,) = no+aE? and Y.(E,) = Y,o+KE?.
The equation (7.3) gives the relation for the dynamic yield strength
1
A 1 N
(7.5) Y= Ys(Ep){l .2 [m (E,,—E,,)] }

which is compared in Fig. 2 with the experimental stress-strain curves obtained at four

STRESS-STRAIN CURVES FOR AISI 316l S STEEL

22f TEST TEMPERATURE 20°C
. CURVE STRAIN-RATE

SEC™!
0.4x1072
5

|

PN -

1
L4

420

7. I T S S G U T T SR T A T S W S |

2 15 30 45 60 75  ENGINEER.STRAIN[®/% ]

Fi1G. 2. Comparison of the theoretical prediction due to Eq. (7.5) —+ — with experimental curves.
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different strain rates. The material constants Y,,, K and b were determined from the
quasistatic curve by the power curve fitting method with use of the least square method:

Yo = 25[—1‘(}2], K= 50[ szl, b= 0.38.
mm mm

Similarily, the linear regression was used in fitting the function (7.5), for the strain
rates: E = 41073, 15, 44 and 420 s~! under constant plastic strain and for the given
power n = 5, to the given experimental results shown in Fig. 1:

(7.6) Y = A+ BX,
where
(1.7 X = (E,—E)°>*

is a variable and

Y (E,)
17 0.2 (Ep)

are the linear regression coefficients. Repeating this procedure for the sequence of the
values of E,, the function 5(E,) is obtained and constants 7, and a are determined:

o = 2556.7355 (s™1), @ = 380000 (s~!).

(7.8) 4=1Y(E), B=

STRESS -STRAIN CURVES FOR AISI 316L S.STEEL
ENGINEER.*

TRES
KG /MM
82

TEST TEMPERATURE 20°C

= CURVE STRAIN-RATE
sec
1 04x 1072
2 79
3 44
i 420
2 R e e . a
2 15 32 45 62 75 ENGINEER.STRAIN [/2)

Fia. 3. Comparison of the theoretical prediction due to Eq. (7.11) —+ — with experimental curves.
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In the second case of identification procedure the powerlike excess-stress function
®(-) and linear form of the scalar control function ¢(-) as in (5.6) are assumed

: n(E,) T #
7.9 I . = | N | Y
5y E \(YS(E,,) )/
- B

where n = 7, A(Y;) = 1 and the quasi-static stress-strain curve is given as in (7.4),. Fol-
lowing the procedure mentioned the material function 7(E,) is determined in the form

(7.10) N(E,) = 1.5-10°+9.8- 10" EZ5,

The comparison of the relation for the dynamic yield strength obtained from (7.9

o 1 [E? :
7.11) ; S Y,(E,,){l+[——~n(Ep) (E—l)] =

with the experimental stress-strain curves is shown in Fig. 3.

The plots in Figs. 4 and 5 show the dependence of the yield strength on strain rate cal-
culated from (7.5) and (7.11) for different plastic strains. The pertinent experimental points
taken from Fig. 1 are given for comparison.

£NGINEER
STRES
(KoM

30

200 o , , s
103 102 07 100 107 107 100 10° 105 Elsec)

FiG. 4. Comparison of the dependence of the flow strength on strain rate corresponding to Eq. (7.5) with
experimental data.
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ENGINEER

301

20/ 5 o 709 o 107 107 10° 105 Eleed)

FiG. 5. Comparison of the dependence of the flow strength on strain rate corresponding to Eq. (7.11) with
experimental data.

8. Concluding remarks

The theoretical predictions shown in Figs. 2-5 confirm rather good with experiment.
However, higher number of tests as far as strain rate is considered would improve the the-
oretical description of experimental curves. Furthermore, it can be concluded that the first
case of identification procedure, given by (7.3), gives more reasonable, from physical point
of view, value of viscosity parameter 7.

The proposed identification procedure can be applied for the theoretical approximation
of the experimental results with an account of temperature and irradiation effects. In such
a case the material function A(#, Y,) will play an important role (cf. PBCHERSKI [15]).

The determination of material constants and.functions discussed in the paper is based
on simple regression methods applicable for calculations with hand-held programmable
calculator and should be considered as an example of identification procedure which shows
that the constitutive equations of modified theory of viscoplasticity give reasonable pre-
diction of experiment. In the case when higher number of experimental data is considered
and the additional effects of temperature, irradiation and imperfections introduced e.g.
by welding are included, the more developed computer routines of curve fitting should be
implemented.
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