364.

ON A THEOREM RELATING TO FIVE POINTS IN A PLANE.

[From the Philosophical Magazine, vol. xxix. (1865), pp. 460-464.]

Two triangles, $A B C, A^{\prime} B^{\prime} C^{\prime \prime}$ which are such that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ meet in a point, are said to be in perspective; and a triangle $A^{\prime} B^{\prime} C^{\prime}$, the angles $A^{\prime}, B^{\prime}, C^{\prime \prime}$ of which lie in the sides $B C, C A, A B$ respectively, is said to be inscribed in the triangle $A B C$; hence, if $A^{\prime}, B^{\prime}, C^{\prime}$ are the intersections of the sides by the lines $A O, B O, C O$ respectively (where O is any point whatever), the triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ is said to be perspectively inscribed in the triangle $A B C$, viz. it is so inscribed by means of the point O.

We have the following theorem, relating to any triangle $A B C$, and two points O, O^{\prime}. If in the triangle $A B C$, by means of the point O, we inscribe a triangle $A^{\prime} B^{\prime} C^{\prime \prime}$, and in the triangle $A^{\prime} B^{\prime} C^{\prime}$, by means of the point O^{\prime}, we inscribe a triangle $\alpha \beta \gamma$, then the triangles $A B C, \alpha \beta \gamma$ are in perspective, viz. the lines $A \alpha, B \beta, C \gamma$ will meet in a point.

This is very easily proved analytically; in fact, taking $x=0, y=0, z=0$ for the equations of the lines $B^{\prime} C^{\prime}, C^{\prime \prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively, and (X, Y, Z) for the coordinates of the point O, then the coordinates of (A, B, C) are found to be $(-X, Y, Z),(X,-Y, Z)$, $(X, Y,-Z)$ respectively. Moreover, if $\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)$ are the coordinates of the point O^{\prime}, then the coordinates of (α, β, γ) are found to be

$$
\left(0, Y^{\prime}, Z^{\prime}\right),\left(X^{\prime}, \cup, Y\right),\left(X^{\prime}, Y^{\prime}, 0\right)
$$

respectively. Hence the equations of the lines $A \alpha, B \beta, C_{\gamma}$ are respectively

$$
\left|\begin{array}{rrr}
x, & y, & z \\
-X, & Y, & Z \\
0, & Y^{\prime}, & Z^{\prime}
\end{array}\right|=0,\left|\begin{array}{rrr}
x, & y, & z \\
X, & -Y, & Z \\
X^{\prime}, & 0, & Z^{\prime}
\end{array}\right|=0,\left|\begin{array}{llr}
x, & y, & z \\
X, & Y, & -Z \\
X^{\prime}, & Y^{\prime}, & 0
\end{array}\right|=0
$$

that is

$$
\begin{aligned}
& x\left(Y Z^{\prime}-Y^{\prime} Z\right)+y\left(r Z^{\prime} X\right)+z\left(-X Y^{\prime} \quad\right)=0, \\
& x\left(-Y Z^{\prime}\right)+y\left(Z X^{\prime}-Z^{\prime} X\right)+z(X \\
& x\left(\quad+Y^{\prime} Z\right)+y\left(-Z X^{\prime}\right)+z\left(X Y^{\prime}-X^{\prime} Y\right)=0,
\end{aligned}
$$

which are obviously the equations of three lines which meet in a point.
But the theorem may be exhibited as a theorem relating to a quadrangle 1234 and a point O^{\prime}; for writing $1,2,3,4$ in place of A, B, C, O, the triangle $A^{\prime} B^{\prime} C^{\prime}$ is in fact the triangle formed by the three centres $41.23,42.31,43.12$ of the quadrangle 1234, hence the triangle in question must be similarly related to each of the four triangles 423, 431, 412, 123; or, forming the diagram

	P	Q	R	S
41.23	4	3	2	1
42.31	3	4	1	2
43.12	2	1	4	3,

we have the following form of the theorem: viz. the lines

$$
\begin{array}{lccc}
\alpha 4, \beta 3, \gamma 2 & \text { meet in } & \text { a point } P \text {, } \\
\alpha 3, \beta 4, \gamma 1 & " & " & Q \\
\alpha 2, \beta 1, \gamma^{4} & " & \# & R, \\
\alpha 1, \beta 2, \gamma 3 & " & " & S,
\end{array}
$$

or, what is the same thing, we have with the points $1,2,3,4$ and the point O^{\prime} constructed the four points P, Q, R, S such that

$$
\begin{array}{llll}
1 S, 2 R, 3 Q, 4 P & \text { meet in a point } & \alpha \\
2 S, 1 R, 4 Q, 3 \beta & " & " & \beta, \\
3 S, 4 R, 1 Q, 2 P & " & " & \gamma
\end{array}
$$

The eight points $1,2,3,4, P, Q, R, S$ form a figure such as the perspective representation of a parallelopiped, or, if we please, a cube; and not only so, but the

plane figure is really a certain perspective representation of the cube; this identification depends on the following two theorems:
c. v .

1. Considering the four summits $1,2,3,4$, which are such that no two of them belong to the same edge, then, if through any point O we draw

the line $O A^{\prime}$	meeting the lines 41,23,		
$" O B^{\prime}$	$"$	$"$	42,31,
$" O C^{\prime}$	$"$	$"$	43,12,

and the lines $O \alpha, O \beta, O \gamma$ parallel to the three edges of the cube respectively, the three planes $\left(O A^{\prime}, O \alpha\right),\left(O B^{\prime}, O \beta\right),\left(O C^{\prime}, O \gamma\right)$ will meet in a line.
2. For a properly selected position of the point O,

$$
\begin{array}{cccccc}
\text { the lines } O B^{\prime}, & O C^{\prime}, & O \alpha \text { will lie in a plane, } \\
" \quad O C^{\prime}, & O A^{\prime}, & O \beta & " & " \\
" & O A^{\prime}, & O B^{\prime}, & O \gamma & " & "
\end{array}
$$

In fact for such a position of O, projecting the whole figure on any plane whatever, the lines $01, O 2, O 3, O 4, O P, O Q, O R, O S, O \alpha, O \beta, O \gamma, O A^{\prime}, O B^{\prime}, O C^{\prime}$ meet the plane of projection in the points $1,2,3,4, P, Q, R, S, \alpha, \beta, \gamma, A^{\prime}, B^{\prime}, C^{\prime \prime}$ related to each other as in the last-mentioned form of the plane theorem. To prove the two solid theorems, take O for the origin, $O \alpha, O \beta, O \gamma$ for the axes, (α, β, γ) for the coordinates of the summit S, and 1 for the edge of the cube,
the coordinates of 1 are $\alpha+1, \beta, \quad \gamma$,

$$
\begin{array}{ll}
" & 2 \Rightarrow \alpha, \quad \beta+1, \gamma \\
" & 3, \alpha, \quad \beta, \quad \gamma+1 \\
" & 4 \Rightarrow \alpha+1, \beta+1, \gamma+1
\end{array}
$$

The equations of the line $O A^{\prime}$, or say of the line $O(41,23)$, are those of the planes 041,023 , viz. these are

$$
\left|\begin{array}{llll}
x & y & z \\
\alpha+1, & \beta & , & \gamma \\
\alpha+1, & \beta+1, & \gamma+1
\end{array}\right|=0,\left|\begin{array}{lll}
\bar{x}, y & z \\
\alpha, \beta+1, & \gamma \\
\alpha, \beta & , & \gamma+1
\end{array}\right|=0
$$

that is

$$
\begin{array}{ll}
x(\beta-\gamma) & -(\alpha+1)(y-z)=0 \\
x(\beta+\gamma+1)-\alpha & (y+z)=0
\end{array}
$$

Writing for shortness

$$
M=\alpha+\beta+\gamma+1,
$$

these equations give

$$
x: y: z=\frac{2 \alpha(\alpha+1)}{(M+2 \gamma \alpha)(M+2 \alpha \beta)}: \frac{1}{M+2 \gamma \alpha}: \frac{1}{M+2 \alpha \beta}
$$

or, completing the system,
for line $O A^{\prime}$ we have

$$
x: y: z=\frac{2 \alpha(\alpha+1)}{(M+2 \gamma \alpha)(M+2 \alpha \beta)}: \frac{1}{M+2 \gamma \alpha}: \frac{1}{M+2 \alpha \beta}
$$

for line $O B^{\prime}$ we have

$$
x: y: z=\frac{1}{M+2 \beta \gamma}: \frac{2 \beta(\beta+1)}{(M+2 \alpha \beta)(M+2 \beta \gamma)}: \frac{1}{M+2 \alpha \beta}
$$

for line $O C^{\prime \prime}$ we have

$$
x: y: z=\frac{1}{M+2 \beta \gamma}: \frac{1}{M+2 \gamma \alpha}: \frac{2 \gamma(\gamma+1)}{(M+2 \beta \gamma)(M+2 \gamma \alpha)} .
$$

The equations of the lines $O \alpha, O \beta, O \gamma$ are of course $(y=0, z=0),(z=0, x=0)$, $(x=0, y=0)$ respectively; and we therefore see at once that the planes $\left(O A^{\prime}, O \alpha\right)$, $\left(O B^{\prime}, O \beta\right),\left(O C^{\prime \prime}, O \gamma\right)$ meet in a line, viz. in the line which has for its equations

$$
x: y: z=\frac{1}{M+2 \beta \gamma}: \frac{1}{M+2 \gamma \alpha}: \frac{1}{M+2 \alpha \beta}
$$

The lines $O B^{\prime}, O C^{\prime \prime}, O \boldsymbol{\alpha}$ will lie in a plane, if only

$$
1=\frac{4 \beta \gamma(\beta+1)(\gamma+1)}{(M+2 \beta \gamma)^{2}}
$$

that is

$$
(M+2 \beta \gamma)^{2}=4 \beta \gamma(\beta+1)(\gamma+1)
$$

or, as this may be written,

$$
M^{2}+4 \beta \gamma(\alpha+\beta+\gamma+1+\beta \gamma)=4 \beta \gamma(\beta \gamma+\beta+\gamma+1)
$$

that is

$$
M^{2}+4 \alpha \beta \gamma=0
$$

or, what is the same thing,

$$
(\alpha+\beta+\gamma+1)^{2}+4 \alpha \beta \gamma=0
$$

and from the symmetry of this equation we see that, when it is satisfied,

$$
\begin{aligned}
& \text { the lines } O B^{\prime}, O C^{\prime}, O \alpha \text { will lie in a plane, } \\
& " O O C^{\prime}, O A^{\prime}, O \beta \\
& " O A^{\prime}, O B^{\prime}, O \gamma \quad "
\end{aligned}
$$

viz. this will be the case when the point O is situate in the cubic surface represented by the last-mentioned equation; this completes the demonstration of the solid theorems.

It is clear that considering five points $1,2,3,4,5$ in a plane, then, since any one of these may be taken for the point O^{\prime} of the foregoing theorem, the theorem exhibited in the first instance as a theorem relating to a triangle and two points, and afterwards as a theorem relating to a quadrangle and a point, is really a theorem relating to five points in a plane. There are, of course, five different systems of points (P, Q, R, S), corresponding to the different combinations of four out of the five points.

Cambridge, March 6, 1865.

