365.

ON THE INTERSECTIONS OF A PENCIL OF FOUR LINES BY A PENCIL OF TWO LINES.

[From the Philosophical Magazine, vol. xxix. (1865), pp. 501-503.]

Plücker has considered ("Analytisch-geometrische Aphorismen," Crelle, vol. xi. (1834) pp. 26-32) the theory of the eight points which are the intersections of a pencil of four lines by any two lines, or say the intersections of a pencil of four lines by a pencil of two lines: viz., the eight points may be connected two together by twelve new lines; the twelve lines meet two together in forty-two new points; and of these, six lie on a line through the centre of the two-line pencil, twelve lie four together on three lines through the centre of the four-line pencil, and twenty-four lie two together on twelve lines, also through the centre of the four-line pencil.

The first and third of these theorems, viz. (1) that the six points lie on a line through the centre of the two-line pencil, and (3) that the twenty-four points lie two together on twelve lines through the centre of the four-line pencil, belong to the more simple theory of the intersections of a pencil of three lines by a pencil of two lines; the second theorem, viz. (2) the twelve points lie four together on three lines through the centre of the four-line pencil, is the only one which properly belongs to the theory of the intersections of a pencil of four lines by a pencil of two lines. The theorem in question (proved analytically by Plücker) may be proved geometrically by means of two fundamental theorems of the geometry of position: these are the theorem of two triangles in perspective, and Pascal's theorem for a line-pair. I proceed to show how this is.

Consider a pencil of two lines meeting a pencil of four lines in the eight points $(a, b, c, d),\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$; so that the two lines are $a b c d, a^{\prime} b^{\prime} c^{\prime} d^{\prime}$, meeting suppose in
Q; and the four lines are $u a^{\prime}, b b^{\prime}, c c^{\prime}, d d^{\prime}$, meeting suppose in P; then the twelve points are

$$
\begin{array}{lllll}
a^{\prime} d \cdot c^{\prime} b, & a d^{\prime} \cdot c b^{\prime}, & a^{\prime} c \cdot d^{\prime} b, & a c^{\prime} \cdot d b^{\prime} \text { lying in a line through } P, \\
a^{\prime} b \cdot d^{\prime} c, & a b^{\prime} \cdot d c^{\prime}, & a^{\prime} d \cdot b^{\prime} c, & a d^{\prime} \cdot b c^{\prime} & " \\
a^{\prime} c \cdot b^{\prime} d, & a c^{\prime} \cdot b d^{\prime}, & a^{\prime} b \cdot c^{\prime} d, & a b^{\prime} \cdot c d^{\prime} & "
\end{array}
$$

where the combinations are most easily formed as follows; viz., for the first four points starting from the arrangement $\begin{array}{ll}a & c \\ d & b\end{array}$ (or any other arrangement having the diagonals $a b . c d$), and thence writing down the four expressions

$$
\begin{array}{llll}
a^{\prime} c^{\prime}, & a c, & a^{\prime} c, & a c^{\prime} \\
d b, & d^{\prime} b^{\prime}, & d^{\prime} b, & d b^{\prime},
\end{array}
$$

we read off from these the symbols of the four points; and the like for the other two sets of four points.

Now, considering the points (a, b, c) and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, the points $a b^{\prime} \cdot a^{\prime} b, a c^{\prime} \cdot a^{\prime} c, b c^{\prime} \cdot b^{\prime} c$ lie in a line through Q; and similarly the points $a b^{\prime} . a^{\prime} b, a d^{\prime} . a^{\prime} d, b d^{\prime} . b^{\prime} d$ lie in a line through Q; which lines, inasmuch as they each contain the points Q and $a b^{\prime} \cdot a^{\prime} b$, must be one and the same line; considering the combinations (b, c,d), ($b^{\prime}, c^{\prime}, d^{\prime}$), the line in question also passes through $c d^{\prime} \cdot c^{\prime} d$; that is, the six points $a b^{\prime} \cdot a^{\prime} b$, $a c^{\prime} . a^{\prime} c, a d^{\prime} . a^{\prime} d, b c^{\prime} . b^{\prime} c, b d^{\prime} . b^{\prime} d, c d^{\prime} . c^{\prime} d$ lie in a line through Q, which is in fact the before-mentioned first theorem. Hence the points $a b^{\prime} . a^{\prime} b$ and $c d^{\prime} . c^{\prime} d$ lie in a line through Q; or, calling these points M and N respectively, the triangles $M a a^{\prime}, M b b^{\prime}$, $N c c^{\prime}, N d d^{\prime}$ are in perspective. Hence, considering the two triangles $M a a^{\prime}, N d d^{\prime}$ (or, if we please, the complementary set $M b b^{\prime}, N c c^{\prime}$), the corresponding sides are

$$
\begin{aligned}
& M a, N d \text { meeting in } a b^{\prime} \cdot d c^{\prime}, \\
& M a^{\prime}, N d^{\prime} \quad " \\
& a a^{\prime}, d d^{\prime} \quad \text { " } b \cdot d^{\prime} c,
\end{aligned}
$$

that is, the points $a b^{\prime} \cdot d c^{\prime}, a^{\prime} b \cdot d^{\prime} c$ lie in a line through P.
Similarly $a d^{\prime} . a^{\prime} d$ and $b c^{\prime} . b^{\prime} c$ lie in a line through Q; or, calling these points H, I respectively, the triangles $H a a^{\prime}, H d d^{\prime}, I b b^{\prime}, I c c^{\prime}$ are in perspective; and considering the combination $H d d^{\prime}, I b b^{\prime}$ (or, if we please, the complementary set $H a a^{\prime}, I c c^{\prime}$), the corresponding sides are

$$
\begin{aligned}
& H a, I b \text { meeting in } a d^{\prime} \cdot b c^{\prime}, \\
& H a^{\prime}, l b^{\prime} \quad " \quad a^{\prime} d \cdot c b^{\prime} \\
& a a^{\prime}, b b^{\prime} \quad "
\end{aligned}
$$

that is, the points $a^{\prime} d . c^{\prime} b, a d^{\prime} . c b^{\prime}$ lie in a line through P.

It remains to be shown that the two lines through P, viz. the line containing $a b^{\prime} . d c^{\prime}$ and $a^{\prime} b . d^{\prime} c$, and the line containing $a d^{\prime} . b c^{\prime}$ and $a^{\prime} d . c b^{\prime}$, are one and the same line. This will be the case if, for instance, $a b^{\prime} . d c^{\prime}$ and $a d^{\prime} . b c^{\prime}$ also lie in a line through P.

We have the points (a, b, d) in a line, and the points $\left(b^{\prime}, c^{\prime}, d^{\prime}\right)$ in a line; the points $a, d, b^{\prime}, c^{\prime}$ are also called $A, B^{\prime}, B, A^{\prime}$ respectively; $a d^{\prime}, b b^{\prime}$ meet in C, and $b c^{\prime}, d d^{\prime}$ meet in $C^{\prime \prime}$; hence, considering the hexagon $a d^{\prime} d b^{\prime} b c^{\prime}$, the lines

$$
\begin{aligned}
& a d^{\prime}, b^{\prime} b \text { meet in } \\
& d^{\prime} d, b c^{\prime} \\
& d b^{\prime}, c a^{\prime} \\
& \\
& \\
&
\end{aligned} C^{\prime}
$$

and hence these three points lie in a line; or, what is the same thing, the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ meet in a point; that is, the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective: the corresponding sides are

$$
\begin{aligned}
& A B, A^{\prime} B^{\prime} \text {, that is, } a b^{\prime}, c^{\prime} d \text {, meeting in } a b^{\prime} \cdot c^{\prime} d \text {, } \\
& B C, B^{\prime} C^{\prime} \quad " \quad b^{\prime} b, d^{\prime} d, \quad " \quad P \\
& C A, C^{\prime} A^{\prime} \quad " \\
& a d^{\prime}, b c^{\prime},
\end{aligned}, \quad a d^{\prime} \cdot b c^{\prime} \text {; }
$$

and these three points lie in a line; that is, the points $a b^{\prime} . d c^{\prime}$ and $a d^{\prime} . b c^{\prime}$ lie in a line through P. Hence the line through $a b^{\prime} . d c^{\prime}$ and $a^{\prime} b . d^{\prime} c$ and the line through $a d^{\prime} . b c^{\prime}$ and $a^{\prime} d . c b^{\prime}$ are one and the same line; that is,

$$
\text { the points } a b^{\prime} . d c^{\prime}, a^{\prime} b . d^{\prime} c, a d^{\prime} . b c^{\prime}, a^{\prime} d . b^{\prime} c \text { lie in a line through } P .
$$

This proves the existence of one of the lines through P; and that of the other two lines follows from the symmetry of the figure; it thus appears that the twelve points lie four together on three lines through P.

Cambridge, April 11, 1865.

