370.

ON THE SIGNIFICATION OF AN ELEMENTARY FORMULA OF SOLID GEOMETRY.

[From the Philosophical Magazine, vol. xxx. (1865), pp. 413, 414.]

The expression for the perpendicular distance of a point (x, y, z) from a line through the origin inclined at the angles (α, β, γ) to the three axes respectively, is

$$
\begin{aligned}
p^{2} & =x^{2}+y^{2}+z^{n}-(x \cos \alpha+y \cos \beta+z \cos \gamma)^{2} \\
= & (y \cos \gamma-z \cos \beta)^{2} \\
& +(z \cos \alpha-x \cos \gamma)^{2} \\
& +(x \cos \beta-y \cos \alpha)^{2}
\end{aligned}
$$

and the remark in reference to it is that, if at the given point P we draw, perpendicular to the plane through P and the given line, a distance $P K$ equal to the distance of P from the given line, then the expressions

$$
y \cos \gamma-z \cos \beta, \quad z \cos \alpha-x \cos \gamma, \quad x \cos \beta-y \cos \alpha
$$

which enter into the preceding formula, denote respectively the coordinates of the point K referred to P as origin.

If the given line instead of passing through the origin pass through the point x_{0}, y_{0}, z_{0}, then the corresponding expressions are of course

$$
\left(y-y_{0}\right) \cos \gamma-\left(z-z_{0}\right) \cos \beta, \quad\left(z-z_{0}\right) \cos \alpha-\left(x-x_{0}\right) \cos \gamma, \quad\left(x-x_{0}\right) \cos \beta-\left(y-y_{0}\right) \cos \gamma
$$ and if we denote the "six coordinates" of the given line, viz.

$$
\cos \alpha, \quad \cos \beta, \quad \cos \gamma, \quad y_{0} \cos \gamma-z_{0} \cos \beta, \quad z_{0} \cos \alpha-x_{0} \cos \gamma, \quad x_{0} \cos \beta-y_{0} \cos \gamma
$$ by

```
a,b, c, f , g , h
```

respectively (so that $a f+b g+c h=0$), then the three expressions become

$$
c y-b z-f, \quad a z-c x-g, \quad b x-a y-h
$$

respectively.
It is moreover clear that if the point P be moved to P^{\prime} by an infinitesimal rotation ω about the given line, then P^{\prime} lies on the line $P K$ at a distance $P P^{\prime},=\omega P K$, from the point P, and the displacements of P in the directions of the axes are consequently equal to

$$
\omega(c y-b z-f), \quad \omega(a z-c x-g), \quad \omega(b x-a y-h)
$$

respectively, which is a fundamental formula in the theory of the infinitesimal rotations of a solid body.

Cambridge, October 26, 1865.
$63-2$

