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Read January 23, 1832, and October 22, 1832.

[Zransactions of the Royal Irish Academy, vol. 17, part 1 (1837), pp. 1-144.]

INTRODUCTION

The present Supplement contains a system of general methods for the solution of Optical
Problems, together with some general results, deduced from the fundamental formula and view
of Optics, which have been proposed in my former memoirs. The copious analytical headings,
prefixed to the several numbers, and collected in the Table of Contents, will sufficiently explain
the plan of the present communication; and it is only necessary to say a few words here,
respecting some of the principal results.

Of these the theory of external and internal conical refractlon, deduced by my general
methods from the principles of Fresnel will probably be thought the least undeserving of
attention. It is right, therefore, to state that this theory had been deduced, and was communi-
cated to a general meeting of the Royal Irish Academy, not at the earlier, but at the later of
the two dates prefixed to the present Supplement. After making this communication to the
Academy, in October, 1832, I requested Professor Lloyd to examine the question experimentally,
and to try whether he could perceive any such phenomena in biaxal crystals, as my theory of
conical refraction had led me to expect. The experiments of Professor Lloyd, confirming my
theoretical expectations, have been published by him in the numbers of the London and Edin-
burgh Philosophical Magazine, for the months of February and March, 1833 ; and they will be
found with fuller details in the present Volume of the Irish Transactions.®

I am informed that James MacCullagh, Esq., F.T.C.D., who published in the last preceding
Volume of these Transactions a series of elegant Geometrical Illustrations of Fresnel’s theory,
has, since he heard of the experiments of Professor Lloyd, employed his own geometrical
methods to confirm my results respecting the existence of those conoidal cusps and circles of
contact on Fresnel’s wave, from which I had been led to the expectation of conical refraction.
And on my lately mentioning to him that I had connected these cusps and circles on Fresnel’s
wave, with circles and cusps of the same kind on a certain other surface discovered by
M. Cauchy,t by a general theory of reciprocal surfaces, which I stated last year at a general
meeting of the Royal Irish Academy, Mr. MacCullagh said that he had arrived independently
at similar results, and put into my hands a paper on the subject, which I have not yet been able
to examine, but which will (I hope) be soon presented to the Academy, and published in their
Transactions. {

I ought also to mention, that on my writing in last November to Professor Airy, and com-
municating to him my results respecting the cusps and circles on Fresnel's wave, and my
expectation of conical refraction which had not then been verified, Professor Airy replied that

* [Vol. 17, part 1 (1837), pp. 145-157.]

t [@uvres, 2nd Ser., t. 12, pp. 113 et seq.]
I [Vol. 17, part 1 (1837), pp. 241-263: Collected Works of James MacCullagh, pp. 20-54 ; see also pp. 17-19.]
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he had long been aware of the existence of the conoidal cusps, which indeed it is surprising thab
Fresnel did not perceive. Professor Airy, however, had not perceived the existence of the circles
of contact, nor had he drawn from either cusps or circles any theory of conical refraction.

This latter theory was deduced, by my general methods, from the hypothesis of transversal
vibrations in a luminous ether, which hypothesis seems to have been first proposed by Dr. Young,
but to have been independently framed and far more perfectly developed by Fresnel; and from
Fresnel’s other principle, of the existence of three rectangular axes of elasticity within a biaxal
crystallised medium. The verification, therefore, of this theory of conical refraction, by the
experiments of Professor Lloyd, must be considered as affording a new and important probability
in favour of Fresnel's views: that is, a new encouragement to reason from those views, in
combining and predicting appearances.

The length to which the present Supplement has already extended, obliges me to reserve,
for a future communication, many other results deduced by my general methods from the
principle of the characteristic function : and especially a general theory of the focal lengths and
aberrations of optical instruments of revolution.*

Observatory,
June, 1833.

WILLIAM R. HAMILTON.
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THIRD SUPPLEMENT

Fundamental Formula of Mathematical Optics. Design of the present Supplement.

1. When light is considered as propagated, according to that known general law which is
called the law of least action, or of swiftest propagation, along any curved or polygon ray, ordinary
or extraordinary, describing each element of that ray ds = v/(da® + dy® + dz*) with a molecular
velocity or undulatory slowness v, which is supposed to depend, in the most general case, on the
nature of the medium, the position and direction of the element, and the colour of the light,
having only a finite number of values when these are given, and being therefore a function of the
three rectangular coordinates, or marks of position, @, y, 2, the three differential ratios or cosines

of direction,
dw dz

ey 4 B—ds 17 da?

and a chromatic index or measure of colour, , the form of which function v depends on and
characterises the medium; then if we denote as follows the variation of this function,

dv dv dv dv S
8v—8—8w+~—8y+8 82:+8 8o + B8/3+3 Sy +8 8,
and if, by the help of the relation 2 + 3% + o2 = 1, we determine
Booh b
de’ 8B’ &y’
so as to satisfy the condition
8 Sv

v
+BSB+78_'—’U:

namely, by making » homogeneous of the first dimension with respect to @, 8, ; it has been
shown, in my First Supplement,* that the variation of the definite integral V = [ vds, considered
as a function, which I have called the Characteristic Function of the final and initial coordinates,
that is, the variation of the action, or the time, expended by light of any one colour, in going from
one variable povnt to another, is

8V=(sfvds=)%aw & b +§2 83,3 +8;’s g”,sz. A)
the accented being the initial quantities. This general equation, (A), which I have called the
Equation of the Characteristic Function, involves very various and extensive consequences, and
appears to me to include the whole of mathematical optics. I propose, in the present Supplement,
to offer some additional remarks and methods, connected with the characteristic function V, and
the fundamental formula (A); and in particular to point out a new view of the auxiliary function
W, introduced in my former memoirs, and a new auxiliary function 7, which may be employed
with advantage in many optical researches: I shall also give some other general transformations
and applications of the fundamental formula, and shall speak of the connection of my view of
optics with the undulatory theory of light.

* [See p. 110.]
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Fundamental Problem of Mathematical Optics, and Solution by the Fundamental
Formula. Partial Differential Equations, respecting the Characteristic Function
V, and common to all optical combinations. Deduction of the Medium-Functions
Q, v, from this Characteristic Function V. Remarks on the new symbols o, 7, v.

2. It may be considered as a fundamental problem in Mathematical Optics, to which all others
are reducible, to determine, for any proposed combination of media, the law of dependence of the
two extreme directions of a curved or polygon ray, ordinary or extraordinary, on the positions of
the two extreme points which are visually connected by that ray, and on the colour of the light: that
is, in our present notation, to determine the law of dependence of the extreme direction-cosines
a B, v, &, B, v, on the extreme coordinates #, ¥, 2, &, %', 2, and on the chromatic index . This
fundamental problem is resolved by our fundamental formula (A); or by the six following equa-
tions into which (A) resolves itself, and which express the law of dependence required:

SV_8  _&. SV _B&
Sz Sa’ 8y 8B’ 8z &y’ B)

SV s SV &y _sV_& )
W= TSR TN

These equations appear to require, for their application to any proposed combination, not only the
knowledge of the form of the Characteristic Function V, that is, the law of dependence of the
action or time on the extreme positions and on the colour, but also the knowledge of the forms
of the functions v, ¢/, that is, the optical properties of the final and initial media; but these final
and initial medium-functions v,v', may themselves be deduced from the one characteristic function
V, by reasonings of the following kind.

Whatever be the nature of the final medium, that is, whatever be the law of dependence of v
on the position, direction, and colour, we have supposed, in deducing the general formula (A),
that the expression of this dependence has been so prepared as to make the medium-function v
homogeneous of the first dimension relatively to the direction-cosines a, B, v; the partial differ-

ential coefficients
S v o

8'; ) 8_3 ] 8;7 )
of this homogeneous function, are therefore themselves homogeneous, but of the dimension zero;
that is, they are functions of the two ratios

RIK
<

involving also, in general, the coordinates #, y, z, and the chromatic index x: if then we conceive
the two ratios

g8
, . AW
to be eliminated between the three first of the equations (B), and if, in like manner, we conceive
o B
7
to be eliminated between the three last equations (B), we see that such eliminations would give

HMP 22
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two partial differential equations of the first order, between the characteristic function V and the
coordinates and colour, of the form

SV oV 8V
0= Q(Sw By 5 3 @, 8,2, x)
i [T AT R ¥ ©)

which both conduct to the following general equation, of the second order and third degree,
common to all optical combinations,*
' SV BV BV T LY g V-V 2K
dwda’ Sydy’ 6287 ¢ S8y’ 8y8z 8284 ' dwdz Syda’ 628y’
B A sl A e g L, s o o A (D)
8282 8ydy’ duds ¥ 828y’ 8ydz' dwda’ ' 8287 Syda’ Sady’”

If now we put, for abridgment,

by b Ak
F ] upk 8y i Se (E)
W o5 TR AV -,

& Amad _8_3/'=T’ B

and if between the three first of these equations (E) we eliminate two of the three initial co-
ordinates «’, y’, 2/, it is easy to perceive, by (C) or (D), that in every optical combination the third
coordinate will disappear ; and similarly that between the three last equations (E) we can elimi-
nate all the three final coordinates, by eliminating any two of them; and that these elimin-
ations will conduct to the relations (C) under the form

0=Q(c, v 2y 2x), s
O QI ’ ’ ’ ’ ’ 4 } kF)
=0/ (o, 7V, Y, 2, x),
which can thus be obtained, by differentiation and elimination, from the characteristic function
V alone: and which, as we are about to see, determine the forms of v, ¢’, that is, the properties
of the extreme media. Comparing the differentials of the relations (F), with the following,
that is, with the conditions of homogeneity of v, v', prepared by the definitions (E) and by the

relations (B),

v=a ;8—’0 + A 8—v+ry§=om'+,8“r+'yv,
o= S’U +,8 +oy 8’0 Bl +19"T'+ ol
Yol I SBI 8 ] 'Y ’
and with their differentials, that is with
a80~+/8_8-r+78u—§ 8w+§—"8y+§—”8 +88” 8y,
(H)

&' o’ o' o'
o/ 8o + 87 + o/ 80 = 55 8 oy % 508 +8§¢8x

* [(D) expresses that the Jacobian 8(%:;, %—;, %V) / 0, y,7), or 8(2: g; 3 7 / 0(#, ¥, 2), vanishes

on account of (C).]
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we find*
e & B _80 v _8Q
PRI 7L LR TR, @
al 8 ’ BI 3 80/ 'y' pra SQI
Yoo = K fuy = U 7
and also
18 8Q 18v_ 30 18w _380 18 _3Q
. 7 ad i | T bar et 1 TR T TRt i Ay
1& 80 1&" 80 18 30" 1&'_3
“PRTW TUN by WM v oy’
if we so prepare the expressions of the relations (F) as to have
a'%(—)+1'8—(-)+08—0=1,
T or ov (L)
A S
L S S S e ¢ 767=1;
which can be done by putting those relations under the form
0=+ +)o-1=0, } o
0=(c2+7+ v o' -1=0/;

in which o, ', that is, (¢®+ 72+ v®)"}, and (o2 + 724+ v'2)"} are to be expressed as functions
respectively of o (a®+ 2+ v¥)F, v (2 + 2+ ) E, v(2+2+ )} 4y 5 x and of
o (247240 () V(o2 o, o, ),y After this preparation
the partial differential coefficients

50 80 80
da’ ot v’
are homogeneous of dimension zero relatively to o, 7, v; and in like manner
80 80" 8

are homogeneous of dimension zero relatively to ¢’, 7/, v'; if, therefore, between the three first
equations (I), we eliminate any two of the three final quantities o, 7, v, the third will disappear ;
and similarly all the three initial quantities o’, 7/, v/, can be eliminated together, between the
three last of the equations (I): and by these eliminations we shall be conducted to two relations
of the form

(i3

0=" (a,g,g,z,y, Z)X)) (N)
v (4,87 4y,0,%)

0 ‘I”(v,, oy DY EX)
which determine the forms of the final and initial medium-functions v, v’ ; so that these forms
can be deduced from the form of the characteristic function V. We can therefore reduce to the

* [When we make use of (0), the first lines of (I) and (K) may be written in the form (cf. (T?))
de 3 .  do__ 3 ..
avV=3:%% av= "’ "™
These equations, which are in the canonical form of dynamics, express the propagation of an element of the
surface V=const. as s contact transformation along the ray.]

22-2
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study of this one function V, that general problem of mathematical optics which has been
already mentioned.*

The partial differential coefficients of the characteristic function V, taken with respect to the
coordinates , y, z, are of continual occurrence in the optical methods of my present and former
memoirs; I have therefore thought it useful to denote them in this Supplement by separate
symbols, o, 7, v, and I shall show in a future number their meanings in the undulatory theory :
namely, that they denote, in it, the components of normal slowness of propagation of a wave.

Connection of the Characteristic Function V, with the Formation and Integration
of the General Equations of a Curved Ray, Ordinary or Extraordinary.

3. It may be considered as a particular case of the foregoing general problem, to determine
general forms for the differential equations of a curved ray, ordinary or extraordinary; that is,
to connect the general changes of direction with those of position, in the passage of light through
a variable medium. The following forms,

Sv v S Sv 811 81; :
(which are of the second order, because @, 8, v, &/, ,8 , o, are deﬁned by the equations
dz _dy _dz
e (E ’ B o3 8:5_’ bty % ) P
otk 5 e ®)

ds’? B = dsl L =$/ )
the symbol d referring, throughout the present Supplement, to motion along a ray, while 8 refers
to arbitrary infinitesimal changes of position, direction, and colour, and ds’ being the initial
element of the ray,) were deduced, in the First Supplement,t by the Calculus of Variations,
from the law of least action. The same forms (O), which are equivalent to but two distinct
equations, may be deduced from the fundamental formula (A), by the properties of the charac-
teristic function V. For, if we differentiate the first equation (C), (which involves the coefficients
of this function ¥V, and was deduced from the formula (A),) with reference to each of the three
coordinates, #, y, z, considered as three independent variables, and with reference to the index
of colour y, we find, by the foregoing number,

82V 82V &Y. . .. )

gt el 7 R e et

BV (LR PP
* Szdy 8y? '78y8z byl

eV g2 82V 82V v
* Sz T dydz Y 5A T8

82V+B Ay eV S
Bxb‘x oydy rYSzSX SXJ

* [For a fuller development of the foregoing argument, see Appendix, Note 13, p. 482. The dynamical inter-
pretation of Hamilton’s optical method is discussed in the Appendix, Note 14, p. 484, and the connection of this
method with the modern Wave Mechanics is developed in the Appendix, Note 20, p. 500.]

t [See p. 110.]

* Q)




3] IV. THIRD SUPPLEMENT 173

and the three first of these equations (Q), by the help of the general relations (B), which were
themselves deduced from (A), and by the meanings (P) of @, B, v, may easily be transformed to
(O). The differential equations (O) may also be regarded as the limits of the following,

o‘—o"=(%l—;), 'r—'r'=(%;/—’), v—v'—(ssIz,) (R)

8V 8V 3V
(@) (&) ()
are obtained by diﬂ'eremiating V considered as a function of the seven variables @, y, 2, A, Ay,

Az, x, if Ao=a—a’, Ay=y—y', Az=2—2"; the variation of V, when so considered, being by
(A), and by the definitions (E),

in which

BV als L N+ (= r)8y+(u—u)82+(88AV)8Az+(SV)SA +(§L)8Az+§;’sx
(S)

(525) =" (s%)‘* (5az) = (T)

If we differentiate the first equation (C) relatively to &', ¥/, 2/, we find, by the foregoing
number,

in which

RV 8V 8V
580 PP aysa + Y a2

By 2y
°'“8way'+'8§y‘sy Y 525y ?
BV BV BV

a7 TR YY)

of which, in virtue of (D), any two include the third, and which may be put by (P) under the
form

O=a

(U)

O=a

v sV sV
8[’ 0 ds I) 0 dszl’ (V)

and these differential equations (V) of the first order, in which the initial coordinates and the
colour are constant, belong to the ray, and may be regarded as integrals of (O). They have,
themselves, for integrals,

0=ds

g?- const., gg = const., g = const., (W)

the constants being, by (B), the values of the initial quantities

AN A
842” _'831) --87'.

In like manner, by differentiating the last equation (C), we find the following equations,
which are analogecus to (Q) and (U),
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BT L BVl AT gt

¢ 5 hi oz’ 8y’ LY T AR

igitgagt o Lofgayes, LAt AT i

8z’ 8y’ dy'2 - 3y'8s &y’ (X)
S

LT : LAV , BV 8o

ol Tl v oh el . L o

Jay [y Y e

sty Rt T )

and -

eV oV a2V

A 8w8w'+ﬁ 8w8y’+ Y 8087
, 82y s , OtV

O“a 8y8w’+l3 3y3y' 5 Y Syszl: (Y)
0NV o2V Y

0=«

nw P maptVnw

The second members of the three first equations (X) vanish when the initial medium is uniform,
and those of the three first equations (Q) when the final medium is so; and in this latter case,
of a final uniform medium, the final portion of the ray is straight, and in its whole extent we
have not only the equations (W) but also the following,

Yo const., %’= const., 88—3= const., (Z)

the constants being by (B) those functions of the final direction-cosines and of the colour which
we have denoted by

éa’ 6B’ &y’
and which are here independent of the coordinates. In general, if we consider the final co-
ordinates and the colour as constant, the relations (Z) between the initial coordinates are forms
for the equations of a ray. And though we have hitherto considered rectangular coordinates

only, yet we shall show in a future number that there are analogous results for oblique and even
for polar coordinates.

Transformations of the Fundamental Formula. New View of the Auwxiliary
Function W; New Awwiliary Function T. Deductions of the Characteristic
and Auxiliary Functions, V, W, T, each from each. General Theorem of
Moaxima and Minima, which includes all the details of such deductions.

Remarks on the respective advantages of the Characteristic and Auxiliary
Functions.

4. The fundamental equation (A) may be put under the form

8V=o*3a:—a'8m'+7-8y—7'8y'+v5z—u’82’+g3x, ; (A")
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employing the definitions (E), and introducing the variation of colour; it admits also of the
two following general transformations, *

SWe=uda+ §8r+s8u+ a8 + 7' 3y + V'8 -%;-’sx, (B")
and
8T=w8¢—w’8¢r'+y8'r—y'8'r'+230—Z'8v'—88—;’8x, (%))
in which
W=—=V+ac+yr + 2v, (D"
and
T = W — a?’a" . y"r’ —Z’U,. (EI)

In the two foregoing Supplements, the quantity W was introduced, and was considered as a
function of the final direction-cosines a, 3, v, the final medium being regarded as uniform, and
the luminous origin and colour as given; we shall now take another and a more general view of
this auxiliary function W, and shall consider it as depending, by (B’), for all optical combinations,
on the seven quantities o, 7, v,2", %/, 2, . Inlike manner, we shall consider the new auxiliary func-
tion 7'as depending, by the new transformation (C'), on the seven quantities o, 7, v, ¢’, 7', v/, 5. The
forms of these auxiliary functions, W, 7', are connected with each other, and with the characteristic
function V, by relations of which the knowledge is important, in the theory of optical systems.
Let us therefore consider how the form of each of the three functions, V, W, 7, can be deduced
from the form of either of the other two.

These deductions may all be effected by suitable applications of the three forms (A") (B") (C’),
of our fundamental equation (A), together with the definitions (D) (E’), as we shall soon see
more in detail, by means of the following remarks.

When the form of the characteristic function ¥ is known, and it is required to deduce the
form of the auxiliary function W, we are to eliminate the three final coordinates, #, y, z, between
the equation (D’) and the three first of the equations (E); and similarly when it is required to
deduce the form of 7' from that of V, we are to eliminate the six final and initial coordinates
@, y, 2 &,y 2, between the six equations (E), (which are all included in the formula (A’),) and

the following,
==V4ao—do" +yr—y'v’' +2v—-2"V': (F")

and if it be required to deduce the form of 7' from that of W, we are to eliminate the three
initial coordinates ', ¥/, 2/, between the equation (E’) and the three following general equations,

B iy O . BN, .
a'|=8?-, 'r——s-?, vﬂv. (G)

But when it is required to deduce reciprocally ¥ from 7' or from W, or W from 7, we must
distinguish between the cases of variable and of uniform media; because we must then use the
equations into which (B’) and (C’) resolve themselves, and this resolution, when the extreme
media are not both variable, requires the consideration of the connexion that then exists between
the quantities o, 7, v, o', 7/, v/, x : which circumstance also, of a connexion between these variable
Guantities, leaves a partial indeterminateness in the forms of 7' and W as deduced from ¥, and
in the form of 7' as deduced from W, for the case of uniform media.

* [See Appendix, Note 15, p. 488.]
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When the final medium is variable, then o, 7, v, §, may in general vary independently, and
the equation (B') gives
SW_, SW_ SW__ SW_ 3V o
3o T Py I B e RS S (
and, in this case, V can in general be deduced from W by eliminating o, 7, v, between the
equation (D’), and the three first equations (H'). But if the final medium be uniform, then
o, T, v, ), are connected by the first of the relations (F'), from which, in this case, the final co-
ordinates disappear ; and instead of the four equations (H’) we have the three following

SW_ W W W &V

— =% =Y w——2 — +
oa % or . v oot ox & ; @)
g e b
oc or dv dx
by means of the two first of which, combined with the rclation already mentioned, namely,
0=20 (0,7, v, %) (K')

which depends on, and characterises, the nature of the final uniform medium, we can eliminate
o, 7, v, from the equation (D’), and so deduce V from W.

In like manner,if both the extreme media be variable, then the seven quantities o, 7,v,6",7,v',%,
may in general vary independently, and the equation (C’) resolves itself into the seven following,

3 " o AR 3 A SRR e R L

PRk bt M Rl 8 i i i Loain i b0 i b
by the three first and three last of which we can eliminate @, 7, v, o', 7', v/, from (F’), and so deduce
V from 7. And in the same case, or even in the case when only the initial medium is variable,
the three last of the equations (L) are true, and suffice to eliminate o', 7/, v, from (E’), and so to
deduce W from 7.

But if the final medium be uniform, the initial being still variable, then e, 7, v, y, are con-

nected by the relation (K'), while o', 7, v/, remain independent; and instead of the four first
equations (L) we have the three following,

BT T 8T 3OV
3 =7 BT—y__Sv Z_Sx oy .

g e o ol
do or v Sy

by the two first of which, combined with the relation (K’), and with the three last equations (L),
we can eliminate o, 7, v, o', 7', ¢/, from (F'), and so deduce V from 7.
If both the extreme media be uniform, we have then not only the relation (K’) for the final
medium, but also an analogous relation
0=0'(", 7,7, %) (N
for the initial ; and instead of the seven equations (L), we have the two first of the equations

(M’), and the two following,
T 8T 8T

87"+$_87+y _W'*‘Z
' ORBE R ¢ el - o

8o’ 5 &

(09
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together with this equation,
8T 8V _ . 80 30/

VR i TR ol (P")
in which A is the common value of the three first equated quantities in (M"), and A’ is the common
value of the three equated quantities in (O’). And in this case, by means of the two equations
(0’), and the two that remain of (M’), combined with the two relations (K') (N’), we can eliminate
a, 7, o, v, from (F), and so deduce V from 7: while, in the same case, or even if the initial
medium alone be uniform, we are to deduce W from 7', by eliminating o', 7/, v’, between the
equations (E’) (N') (O").

When all the media of the combination are not only uniform, but bounded by plane surfaces,
which happens in investigations respecting prisms, ordinary or extraordinary, then of the seven
quantities o, 7, v, o', 7', ¥/, x, only three are independent; two other relations existing besides

(K’) and (N’), which may be thus denoted,
0=0" (o, 1,v,0,7,V, x),}
0=0Q"(a, 7, v,0,7,V,%);

@)

because, in this case, the initial direction, and the colour, determine the final direction. In this
case, we may still treat the variations of o, 7, v, ¢/, 7, ¥/, x, as independent, in 87', by introducing
the variations of the four conditions (K’) (N') (Q’), multiplied by factors A, A, A", X"/, that is by
putting

8T =080 — o 80’ +ybr —y' 87’ + 58u— 2 8V — g—;’sxnmn'sw+x'sn"+x~sn'"; (R)

an equation which decomposes itself into the seven following,

8T 80 i 8O 8! ]

Sz'_z=x g+7\, B | anden!

8T & . ., .,

- e Y~ ety R~

8T BT B L D

g;—z =\ g; +A —S—J-'*‘X —80 ,

8T, ,_ .., 8 ,,80" ., 80" /

8;,+w—)» ST‘I"X —s—'a—,'f'x W, r (S)
5 sﬂl N " e 80/’/

B+ =N g N N

BT . iy O8N 80’ 80"

144 nr
T3 et n Ll v ot

SRBF o U 80 . .07, 807

A ikl "I I I T
between the six first of which, and the five equations marked (F) (K’) (N’) (Q'), we can eliminate
the ten quantities o, 7, v, o/, 7/, ¥/, A, X, A, A", and thus deduce the relation between
V,a,y,2&,y, 7, x from that between 7, o, 7, v, o', 7', v/, x. It is easy to extend this method
to other cases, in which there exists a mutual dependence, expressed by any number of equations,
between the seven quantities o, 7, v, o/, 7', V', x. .

HMP

23
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And all the foregoing details respecting the mutual deductions of the functions V, W, T, may
be summed up in this one rule or theorem: that each of these three functions may be deduced
from either of the other two, by using one of the three equations (D’) (E’) (F') and by making
the sought function a maximum or minimum with respect to the variables that are to be eliminated.
For example we may deduce 7' from V, by making the expression (F') a maximum or minimum
with respect to the initial and final coordinates.

An optical combination is more perfectly characterised by the original function V, than by
either of the two connected and auxiliary functions W, 7'; because V enables us to determine the
properties of the extreme media, which W and 7' do not; but there is an advantage in using
these latter functions when the extreme media are uniform and known, because the known
relations which in this case exist, of the forms (K’) and (N’), (together with the other relations
(Q’) which arise when the combination is prismatic,) leave fewer independent variables in the
auxiliary than in the original function. At the same time, as has been already remarked, and
will be afterwards more fully shown, the existence of relations between the variables produces a
partial indeterminateness in the forms of the auxiliary functions, from which the characteristic
function V is free, but which is rather advantageous than the contrary, because it permits us to
introduce suppositions and transformations, that contribute to elegance or simplicity.

General Transformations, by the Auxiliary Functions W, T, of the Partial Dif-
Jerential Equations in V. Other Partial Differential Equations i V, for
Extreme Uniform Media. Integration of these Equations, by the Functions W, T.

5. Another advantage of the auxiliary functions W, T, is that they serve to transform, and
in the case of extreme uniform media to integrate, the partial differential equations (C), which
the characteristic function V" must satisfy. In fact, if the final medium be variable, the first of
the two partial differential equations (C) may be put by the foregoing number under the two
following forms,

0=Q(a’, . SW 8W 8W ),

) 'S;y F bl —8;' X :
O=Q(a'rv8—T 40 x)' i
3 2 b 80_ ’ 8' 2 SU 3 )
and if the initial medium be variable, the second of the two partial differential equations (C) may
be put under these two forms,
0=Q’(§V—V SW oW Y )
oz’ Syl,sz/’ yY,%,X)>
o bl iy ki
e TN X),

(U")
0=’ (o", T Uiy

of which indeed the first is general. But if the final medium be uniform, then W remains an
arbitrary function of the four variables o, 7, v, %, which are in this case connected with each
other by the relation (K’); and the two equations (D) (K’), together with the two first of
those marked (I”), compose a system, which is a form for the integral of the partial differential
equation

(V)

0=Q(8V sV &V >’

gx—', Ey_) '_SZ;X
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to which the first equation (C) in this case reduces itself. In like manner, if both the extreme
media be uniform, in which case the second equation (C) reduces itself to the form
i o R L S 1
0=0 (_8_.’0’-, —s_yi’ —g) X)»

the system of the partial differential equations (V') (W’) has for integral the system composed
of the equations (F’) (K’) (N) (O’), and the two first equations (M’), in which 7" is considered
an arbitrary function of @, 7, v, o', 7, v/, x. It will be found that these integrals are extensively
useful, in the study of optical combinations.

The two partial differential equations, (V') (W’), of the first order, are themselves integrals
of the two following, of the second order,*

(W)

BYSVEV BV BV BV _BY(BVV NV SV SV SVY
,  wwa + 2 5oby Byos Ssde - 808 \3y8z) T35 (523s) * 5 (8w8y> )
an
RVEV SV BV BV BV y( BV N RV BV N BV BV N L
82" 5y 8577 ” 828y’ 8y' 82’ 82/ 84" 8a"* \Sy' 8z’) oy’ (8z’8w’> 52" (5.7; 'S J') 4
which are obtained by elimination from (Q) and (X), after making
v v B
R up U8 i i
&' &' &'
8_$’ - O, 8——'y, d O, S—z—; o= 0

The system of the three first of these six equations (Z’), or the partial differential equation of
the second order (X'), or its integral of the first order (V ), expresses that the final medium is
uniform ; and the uniformity of the initial medium is, in like manner, expressed by the three
last equations (Z’), or by the partial differential equation (Y’), or by its integral of the first
order (W’). The integral systems of equations, also, which we have already assigned, express
properties peculiar to optical combinations that have one or both of the extreme media uniform.
The first equation (U’) has for transformation the second equation (U’), when the initial
medium is variable; and it has for integral, when the initial medium is uniform, the system
(E) (N") (O’), by which, in that case, W is deduced from the arbitrary function 7': while, in
the same case, of an initial uniform medium, the first equation (U’) becomes of the form
,(OW W &W
09 (57 3y 57 %)

and is an integral of the following equation of the second order, analogous to (Y’),
DTN N A L T AR AR e A

da'? 8yt 87 32’ 8y’ 8y’ 82’ 82'8a’  Oa'* \Oy' 67 oy'? \62' 8a’ 62'2 \82'8y’/) *
When the final medium is variable, the function W satisfies the following partial differential

equation, analogous to the general equation (D),
3EW 8W &W  &W &W 8’W SEW 8w W
8084 578y Bvdd T 8o by 5187 Suds T 8ad7 8184 Sudy

W 8w S’W 3EW W &W 8W 8&W &W

(A?)

= 5037 53y 8537 T Buly 5:87 8old T Buds brdd boly’ (0D
# [(X’) expresses the vanishing of the Jacobian 3 (%Z, %;, aV)/a (2,9, 2) by virtue of (V’).]
23-2
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and when both the extreme media are variable, the function 7' satisfies the following analogous
equation,
L R o ST BT Y. R ST
8080 5167 Sudy' | 5507 SToV Sude’ t 5ot 5roc duer

R i e 2T '8 3T O “ORT & ‘OAT
T Svdo’ 87187 S v’ * oudT 81V dodo’ A Sudv’ 678c” Sa b7’

(D?)

General Deductions and Transformations of the Differential and Integral Equations
of a Curved or Straight Ray, Ordinary or Extraordinary, by the Auailiary
Functions W, T.

6. The auxiliary functions W, 7| give new equations for the initial and final portions of
a curved or polygon ray. Thus the function W gives generally the following equations, between
the final quantities o, T, v, analogous to the equations (W),

w W W :
i const, B const., P const., (E?)
in which 2', 3, 2, are the coordinates of some fixed point on the initial portion, and the constants

are, by (G’), the corresponding values of the initial quantities ¢’, 7/, v’, The equations (E*) have
for differentials the following,

W SW . 8w

0—8 57 'da+878'dT+8 B'd’

W SW . 8w ;

0= 5oog 2 tsanp SahBety (%)
W QW . 8w

0=5o57 % 5757 ¥ 5,57 W

d still referring to motion along a ray: and if we combine these with the following,

S 8W v W  Sv W

0= 555080 T 5y 57bc T 25082’
_ Sy 8W 8w &W v W G
"~ 8z 808y Y 8y 878y’ + 5 dvdy’’ i
0=Sv EW v W | v 82W

58082 T8y 5res T 52 5087

which are obtained by differentiating the first equation (T’) relatively to the initial coordinates

#',y', 2, and by attending to the relations (K), we see that for a curved ray the differentials
de, dr, dv, are proportional to

oz’ oy’ o6z’
and from this proportionality, combined with the relation

ado + Bdr +'ydv—( +'88y rygv)d (H2)

\AAAN FOIlN ora Nl
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which results from (H) and (P), we can easily infer the equations (O): these differential equa-
tions (O) for the final portion of a curved ray, which can be extended to the initial portion by
merely accenting the symbols, may therefore be deduced from the consideration of the auxiliary
function W. The equations (O) for a curved ray, may also be deduced from the function W, by
combining the differentials d of the three first equations (H'), with the partial differentials of
the first equation (T"), taken with respect to o, 7, v.

The same auxiliary function W gives for the final straight portion of a polygon ray, the two
first equations (I’), which may be thus written,

{e-4)-36- )30

these equations may also be put under the form

da 87‘+ Sv_ﬁ’
“s0 tVs0 %50 = 50
da ot v W
BE VRS PRRS T T

(K?)

if in virtue of (K’), we consider o, 7, v, as functions, each, of y, and of two other independent
variables denoted by 6, ¢, and consider W as a function of the six independent variables 6, ¢, y,
', y, 2. We may choose o, 7, for the independent variables 6, ¢, considering v as, by (K'), a
function of a, 7, , such that by (H),

dv a Sv_ B dvu_1dv

_— - - - = - — R 2

da v’ .ot v’ &x wéx’ (L%

and considering W as a function of the six independent variables o, 7, x, @/, %', #'; and then the

equations (I2) or (K2), for the final straight portion of a polygon ray, ordinary or extraordinary,

will take these simpler forms, which we shall have frequent occasion to employ,
a W B__&W

C——-2=5—

P LISPRRY - SP ) 2
v 5’ Y ryz ot ' (M)

The other auxiliary function, 7) gives the following equations between o, 7, v, for the final
portion, straight or curved, when the initial medium is variable,

88;1,' = const,, g—f—: = const,, é = const., (N?)

in which o', 7/, v/, belong to some point on the initial portion, and in which the constants are,
by (L), the negatives of the coordinates of that point; it gives, in like manner, for the initial
portion, when the final medium is variable, the following equations between o/, 7/, v/,

8T 8T - 8T 4

const., F g const,., Tw const., (0?)
o, 7, v, belonging to some point upon the final portion, and the constants being the coordinates
of that point: and from these equations we might deduce the differential equations (O), by
processes analogous to those already mentioned. When both the extreme media are uniform,
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and therefore both the extreme portions straight, we have, for these straight portions, the
following equations, deduced from (M’) (O) (I),
177 192 )
(z ov)’

i(e-5)-80-5)

1 oT 1 oT 1 8T il
07(” +ﬁ)=ﬁ7(y +W)=7(z +w)?
which may be thus transformed,
S or MRy i
Oze ety .30t %80 %0
oo or oy O
O=2z +y +z — =
8¢ 8¢ 8¢

, &a”’ , o7 e O ST
50 tYsg t¥ 5p tg

30’ 87‘ 8v 8T
0 w Q17 + ’)
AR A T
if, as before, by virtue of (K), we consider o, 7, v, as functions, each, of x and of two other inde-
pendent variables €, ¢, considering similarly ¢’, 7', v/, as functions, each, by (N’), of three
independent variables ¢, ¢',x; and T as a function of the five independent variables 6, ¢, ', ¢, x.
If we choose the independent variables 6, ¢, so as to coincide with o, 7, and if in like manner we
take ¢’, 7', for the independent variables €', ¢, making, by (H),
L R P R e (R?)
oo 'l or v’ dx « ox
and considering I' as a function of the five independent variables o, T, o', 7/, %, we have the
following transformed equations for the extreme straight portions of a polygon ray, ordinary or
extraordinary,

0=2a

O—w—gz—g—f O=y—§z—8—?°
a od B’ 8T
0= .7;—'75+8,,0 y — ,z+87

Cy)

which are analogous to the equations (M?) and, like them, will often be found useful.

It may be remarked here, that from the differential equations (O) of a curved ray, ordinary
or extraordinary, to which, in the present and former numbers, we have been conducted by so
many processes, the following may be deduced,

do , 80 . dr 80 dv  8Q
iy s o T i ] R el I

v v

(T®)
AW = dT = ( 8v+y8y+zs)ds—acda-+yd7+zdu

We may also remark, that when the final medium is uniform, and when therefore the quantities
o, T, v, X, are connected by a relation (K’), the quantity

n
W (o®+ 7% +12) "3
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may, in general, by means of this relation, be expressed as a function of

g T z yl 2
—3 -
v vl ad » Xo

n
and that 7' (¢ + 72+ v®) “ 2 may, in like manner, be expressed as a function of
i Pt e
5’ u»o'»'r; v, X
and that therefore W, 7, may both be made homogeneous functions, of any assumed dimension
n, relatively to o, 7, v, so as to satisfy the following conditions

SW W W
a&—+T§;+vw=nW,

T o 8T
0'55_ +T §;+Ug; =nT.

(U?)

With this preparation, the two first equations (I'), and the two first equations (M’), which
belong to the straight final portion of the ray, may be transformed by (L) to the following,

50 SW 80 3T 30
z—§(¢w+w+vz)-g—nwg=aa—"TB\;,

50 SW .80 8T 80
y—-§;(6$+Ty+vz)=8—-r—7lW§=—8—;-nT"8—T) (V’)

8Q swW 80 8T 80
Z_E‘(U@+W+UZ)=§; —nW—b\;=§, ey RTE.
If then we make n=1, that is if we make W homogeneous of the first dimension relatively to
o, 7, v, and if we attend to the relation (D’), we see that the equations of this straight final
portion may be thus written,

SW 80 W 80 sW 80
w—-8_;+V§” y=‘§; +V'8:'; Z=W+V‘8_U’ (WZ)

of which any two include the third, and which we shall often hereafter employ, on account of
their symmetry.

In like manner, when the initial medium is uniform, and therefore the initial portion straight,
the equations (O’) of this straight portion may be put under the form,

R i T U i P 0
a.’—87(az + 7'y +uz’)==—s—;,+nT37,

’ 80 o o ’ oy 8T ’ 80/
Y — g (@ 7y + V2 =—8_1-7+nT-8—17’ (X*)

80/ ' 1 ’ ’ oy T ’ 80/
Z - 87(0’3 +TM+UZ)=—8—0,+‘”T‘87,

by making 7' homogeneous of dimension »’ relatively to ¢’, 7/, v/, s0 as to have

TR e, .
68—¢'—+78—1'+u '87—7&7'. (Y)

www.rcin.org.pl



184 IV. THIRD SUPPLEMENT [6,7

If both the extreme media be uniform, and if we make n =0, n’ = 0, that is if we express
W as a function of

O TE gl

;’ ;:w’y’z;X1
and 7 as a function of

e o 0', 'r'

;’ ;: ;I—) 1')_/) X

we find the following forms for the equations of the extreme straight portions of a polygon ray,
ordinary or extraordinary, less simple than (S?), but more symmetric,

oQ SwW 8T
x—g(ow+7y+vz)=g=8—&,
X0 sw 8T

Y ——S;(o-a:+'ry+vz)=g=§_,
z—§2(aw+'ry+vz)=8—w=8—gv;
ov dv  dv

: - (VA)

! 8Q' ¥ v AT 8_1'
w—-w(aw + 7'y +vz)——80_,,
’ 80/ 't s gr __S_T_
Tk 70 ol s s
zl_%%(o_lwl_l_'rlyl_l_vlzl =_g§:‘

/

The case of prismatic combinations may be treated as in the fourth number.

General Remarks on the Connexions between the Partial Differential Coefficients of
the Second Order of the Functions V, W, T. General Method of wnvestigating

those Connexions. Deductions of the Coefficients of V from those of W, when
the Final Medium s uniform.

7. It is easy to see, from the manner in which the equations of a ray involve the partial
differential coefficients of the first order, of the functions V, W, T, that the partial differential
coefficients of the second order, of the same three functions, must present themselves in investi-
gations respecting the geometrical relations between infinitely near rays of a system; and that
therefore it must be useful to know the general connexions between these coefficients of the
second order. Connexions of this kind, between the coefficients of the second order of the
characteristic function V, taken with respect to the final coordinates, and those of the auxiliary
function W, considered as belonging to a final system of straight rays of a given colour, which
issued originally from a given luminous point, were investigated in the First Supplement; but
these connexions will now be considered in a more general manner, and will be extended to the
new auxiliary function 7', which was not introduced before: the new investigations will differ
also from the former, by making W depend on the quantities o, 7, v, rather than on ¢, 3, ¥.

The general problem of investigating these connexions may be decomposed into many
particular problems, according to the way in which we pair the functions, and according as we
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suppose the extreme media to be uniform or variable ; but all these particular problems may be
resolved by attending to the following general principle, that the connexions between the partial
differential coefficients of the three functions, whether of the second or of higher orders, are to
be obtained by differentiating and comparing the equations which connect the three functions
themselves: that is, by differentiating and comparing the three forms (A") (B”) (C’) of the
fundamental equation (A), and the equations into which these forms (A’) (B") (C') resolve
themselves.

Thus, to deduce the twenty-eight partial differential coefficients of the second order, of the
characteristic function V, taken with respect to the extreme coordinates and the colour, from
the coefficients of the same order of the auxiliary function W, or 7', we are to differentiate the
equations into which (B’) or (C’) resolves itself, together with the relations between the variables
on which W or 7' depends, if any such relations exist; and then by elimination to deduce the
variations of the first order of the seven coefficients of the variation (A’) as linear functions of
the seven variations of the first order of the extreme coordinates and the colour: these seven
linear functions will have forty-nine coefficients, of which, however, only twenty-eight will be
distinet, and these will be the coefficients sought.

More particularly, if the final medium be variable, and if it be required to deduce the
coefficients of the second order of ¥ from those of W, we first obtain expressions for 8o, 87, dv,
as linear functions of 8, 8y, 8z, 82', 8y’, 87, 8y, from the differentials of the three first equations
(H'), deduced from (B’), expressions which will necessarily satisfy the first condition (H); we
then substitute these expressions for 8o, 87, dv, in the differentials of the three equations (G'),
deduced from (B’), so as to get analogous expressions for 8¢’, 87, 8v/, which must satisfy the
second condition (H); and substituting the same expressions for 8c, &7, 8v, in the differential of
the last equation (H’), also deduced from (B’), we get an expression of the same kind for
8‘21—7: after which, we have only to compare the expressions so obtained, with the following,

tha.t. is, with the differentials of the equations into which the formula (A’) resolves itself,

8c—§:8x+88';’8y+88’;:8 +32§;,8 / 8881:/8-’/4’8 sz,Sz +8i;’8 |
8 si’s sz+§;:s ﬁs +8§;’,sz+88’8y o 85;8z+8§;’s
b ss’;’s“;';'s + g B g 8+ 5 sy 0+ szszs"'*ssz;’ %%
80" = oy Bk g DY+ o B g T g By 4 T e (A9
. _88'8‘;sz+88'8y 8y+88’81;,8z+8§;:/8«:’+8y,,83/+88’,;;8:’+sz’;’ Sy,
_o = o be g 8/8«/+si’s';82+387§}8w’+§§;81/ wsnf{ %
S%Z si’st;s‘”sisxs“ss’szs”si/’g 8‘”’*85? 83/'"8:’8 8"*%,::8 )
s 5
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But if the final medium be uniform, then @, 7, v, x, are not independent, but related by (K'.);
and the formula (B’) resolves itself, not into the seven equations (G') and (H') but into the six
equations (G') and (I'), the differentials of which are to be combined with the differential of the

relation (K'), so as to give the expressions for 8a, 87, dv, 8d”, 87, &', 8 % , which are to be

compared with (A%) as before. And in this case, of a final uniform medium, we may employ,
instead of the two first equations (I'), any of the transformations of those equations in the
foregoing number ; or we may employ the following transformations of (I"),

Sv_SW, dv_&6W_  &v 8V oW (BY)

B1A5e T80 Y BB R e 280 B0 B

in which W is considered as a function of the six independent variables o, 7, x, #', ¥', &,
obtained by substituting for v its value as a function of o, 7, 5; the form of which function v
depends on and characterises the properties of the final medium, and is deduced from the
relation (K’). It may be useful here to go through the process last indicated, both to explain its
nature more fully, and to have its results ready for future researches.

Differentiating therefore the two first equations (B3?), we obtain

Sv , W i AR . 4 82v 82w 8%v
o+ g 0= e = (r =2 5 8+ (o5~ 50n) o o
dv W e RV 8%y ew 8%y
8g/+g$z—8 ST +z878xsx_<gr8'r_z$a'5'r>8d (8—72_ il ™ )87’
in which we have put for abridgment
W W L, TPW LB L e
5 %% " e S haag O hawae b Yy Vi

W _BW . BW ., 8W ., &W
i it ™ Al s ki A 75 o T

&’ referring only to the variations of the initial coordinates and of the colour: and if we put

e (SZW 32v> (82W 82v> ik (82W v )2’ : (EY)

TADA T 50 .7 R > Sodr " 8abr

the equations (C?) give, by elimination,

w'ss= (5N —s o ) (82 + %az_s'sl;-wa—”xax)
)

<50’8’r X (F?)
’” g 8eEw 2u Sv ,SW v
"’8‘(302‘28?)(83/*878 5% Zsfaxsx)
32w S%v Sv ,OW &%y A
—<80'87'_230'8'r) <8w+§;8 8 W+Z«S ) Sx),}
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and hence by (A®) we can deduce already, without any farther differentiation,
o ot P W M LR
82 82 % 57 )} 5wz 8 ¥ T 87 Sady’
#V _ 1 /&W 8’u)_ 3V dv 8"‘V+8u eV
Sady W’ (so—sf‘z §o61)° Sybz~ 8 dady T 8r Oy
BV 1 BW_ 8y BV _8u BV b 8V
5 T w’( 50 7 352 ) 52 ~ 8 Swdz T 87 dydz’

observing, in deducing the sixth of these equations (G®), that by the definitions (E), and by the

dependence of v on o, T, %, we have

8—V—(3v—-)8

(G?)

SV 8u88V dv

3

The equations (A®) (F?) (H?) give also

AV 1B (AW %y S’W W v
Sada’ ~ w’ 8184 (Wr 80-87) dada’ (87’ zﬁ?’);
V. 1 W W v 1 W (8W 8w\,
8x8y’ ~ w’ dtdy’ \Sadr 80‘81') w'’ 808y’ (873 zS?) g
otV L W LW S%v 1 8W (8#W &
STz' =W’ 5rés (878; 80‘87> w'" 882 ( zgﬁ>;
1 8&W /&8&W 8 1 8W (8W &\,
8y8ar = w” 80 8d’ (scsT 80'87) W' 878a' (saﬂ“za?)’
SV. 1 #W [&W 1 &W (B2W v
w=mw(m; sas-r> W Sroy ( ”w); * @)
SV 1 BW /W 8%v 1 S’W BW v
5557 = " 5a82 \6a8n ~* 5557) ~ " v 7 (5ot~ 750%)
8V v &V 8u eV
5280 ~ 8o Swoa’ | o7 Syéa’’
8BV & &V Su eV
828y ~ 8a Suwby” b - Sydy ’
32V v 8V v &3V
8287 ~ 80 bwbs T 8t dyds’ )
and
2V 1 (8W 82y \ [ 8W 8%v 1 /8W 8\ (B2W 8y
Sady W’ (81'8x —z878x) (sasf"’sasf) T (m;“‘m;) (W & w)
2V 1 (&W 8v \ (W 8v 1 /83W v \ (W 8
Sy x=i7(80'8x_280'8x) (8087_28687)—1}1-'—'(8_7577_2373;) (W_Z-B—a—’); (X

3V _Sv &V v 8V 8u
828y 6a dady g;'Sny S’

We have therefore found expressions (G?) (I?) (K?), for eighteen out of the twenty-eight partial
differential coefficients of V of the second order; and with respect to nine of the remaining ten,

namely all except %%:, we may obtain expressions for these by differentiating the three

242
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[7

equations (G'), and comparing the differentials with (A3); for thus we find,

a2V
S’
&V
oy'2
&V
0z'2

o2V

ol RN A o N g A

T8’ d0 da' dwda’ STda’ Syda’’
8w M ol R, A
T8yt T Sady dxdy  8vdy Sydy'’
AW s SR @RV R,
022 8087 Sads’ ~ 8787 Sydd’

FW - By W ey -

Sa'8y ~ 84’8y~ 8ada’ dwdy 87w Sydy ’

2V

EW

EW &V

SW 8V

8y'87 ~  8y'87 b8ady dwds ordy dyds ’

a2V

W

SW ol

SW 8V

5700 8704 8007 dxdx 0187 dyda’’ )

and

8V

SEW

AWV

EW &V

8’8y~ 84’8y Scoa Swdy ordx dydy’

a2V

2w

2w &8V

EW &8V

Sy~ 8yoxy 8oy Sudy ordy Sydx’

2V

aEW

EW &V

BW &V

(L2

(M)

878y 878y oadds dwdy orés Sydy )

the equations (G’) give also
2V

8EwW

*W VY

QW SV

8’8y~ 88y~ Sady Swbd ~ 818y Syéw’

4

aEW

EW &V

QW 8V

&y’ 82 ~ By 87 &adr dady ords dydy’

2V

oW

oW o

aEW &V

88~ T 8784  Bcda’ Swds  8rod dyd7’

(N?%)

but these three expressions (N?) agree with the corresponding expressions (L?), because, by (I3),

EW &V 3 e A B B 4 oW 'Y

8a 8z’ dxdy * 8rdx’ Sydy  Sady dxbda’ T 618y Syda’’

S BV PN PV B Y 3 ey 0»
8ady’ 8z8z" T 878y Syds  8adz dxdy " 818z Sydy'’ ( St
AN BV P RY L BV 8V 8K

8557 Suba’ T 8767 Syoa’  Saodx Swd7 | 8réw Syds

: ‘
Finally, with respect to the twenty-eighth coefficient i—xz , this may be obtained by differentiating

the third equation (B?), which gives

BV sy 8W
55T o

+(2

8%

EWYN &V

8%

a2wW

2V

oa oy

i 80'8x)

dxdy

(Z Srox aTsx)

Syox’ (P?)
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And if we would generalise the twenty-eight expressions (G®) (I?) (K?) (L?) (M?®) (P?), so as to
render them independent of the particular supposition, that W has been made, by a previous
elimination of v, a function involving only the six independent variables o, T, x, ', ¥, 2/, we may
do so by suitably generalising fifteen out of the twenty-one coefficients of W, of the second order,
which result from the foregoing suppositions ; that is by leaving unchanged the six that are

2
formed by differentiating only with respect to ', ¥, 2/, but changing %alr, &e., to the following

i aEwW g
more general expressions So? | &e. ;

(2w _8W 2%80 dv\*? SWS‘v. )
| do? | 80” da dv 80' ( a) v S’
[8* W W W 8v S’W Su\?  SW &%

S'r’1 i It = v = (_'r) * 3 5
"8’W EwW W dv 8 W (8u\* W &%

50| =5 2 agmo sy 5 (5g) * B b
[ &*W W +8’W 8u+8*W 8v+8’W8u 8u+§£’ v |
| 8adT =80t ' o1dv 8c ' badu ot = &v* 8o 8t Sv dadr’
& W _8’W+8'W§E+S’W8_u+8_’£’§£8_u+§}f v |
| 808y |  8ady  Sxduda  Sadudy  Ov* da oy dv dady’
8 W _8’W+8’W8_U+S‘W§£+8’_W§£_8£+8_W 3
| 878y | ~ 8rdx ' Sxdudr  8rdu 8y &t ot 8y  ov drdy’ i
B A AR o L al A L A A i @)
| 8a 8z’ | =387 T 8uba’ 80’ |Sréa |~ Srda T Svéw 51’
—8’W7_8’W+8’W§£. L4 _8’W+8’W§.
508y’ | ~ Sady " Sudy ba’ [878y | &rdy’ " Svoy or’
[ 82W ] 8’W 83W dv aW _8’W+8’W dv
(8082 | = 3587 T8us 8o’ |5r87| T 6787 ' udd r’
[ W _ W S’W dv
| 8x8a’ | Sxda’ +5vsd 8x
[ S’W'} 8’W 8EW dv
[ Sx8y' |  oxdy 8u8y Sx
[ 8*W ] S’W 8EW bv
| 5x 82 | ~ oy 67 tsver Sx

obtained by differentiating the three corresponding expressions of the first order,
BW) _3W B b [A0)_OW S by, [3W) SV SWE g
b T e |or | o ' Swdr |y Sy = dv oy’

which are to be substituted in (B?®), in place of

W W oW
L [ i
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Deduction of the Coefficients of W from those of V.*
Homogeneous Transformations.

8. Reciprocally, if it be required to deduce the partial differential coefficients of W, of the
second order, from those of V, in the case of a final variable medium, we have only to compare the
expressions for

5, 8y, s, Ba’, 8¢, Bv', =B %g ;

as linear functions of 8, 87, v, 82', 8y’, 82, 8y, deduced from the equations (A3), with those that
are obtained by differentiating the seven equations (G') (H’), into which (B’) resolves itself: that
is, with the developed expressions for the variations of

SW oW &W &W &W &W W
o S s e g TG
But if the final medium be uniform, then (B’) no longer furnishes the seven equations (G’)
(H'), nor can 8z, 8y, 8z, themselves, but only certain combinations of them, be deduced from (A3%);
and the auxiliary function W is no longer completely determined in form, by the mere knowledge
of the form of the characteristic function V, with which it is connected; because, in this case, the
seven variables on which W depends, are not independent of each other, four of them being con-
nected by the relation (K’), by means of which relation the dependence of W on the seven may
be changed in an infinite variety of ways, while the dependence of V on its seven variables, and
the properties of the optical combination, remain unaltered. Accordingly this indeterminateness
of W, as deduced from V, in the case of a final uniform medium, produces an indeterminateness,
in the same case, in the partial differential coefficients of W; and whereas W, considered as a
function of seven variables, has thirty-five partial differential coefficients of the first and second
orders, we have only twenty-seven relations between these thirty-five coefficients, unless we make
some particular supposition respecting the form of W; such as the supposition, already mentioned,
that one of the related variables, for example v, has been removed by a previous elimination,
which gives the eight conditions,

oW 32w 32w W W W 2w . s
~8~l;—0’ 30’811:0’ 578u=0’ ov? e 8v8x=0’ 8u3x’=0’ 8v3y'_0’ SUSZ'—O' &)

This last supposition removes the indeterminateness of W itself, and therefore of its partial
differential coefficients; of which, for the two first orders, eight vanish by (S?), and the remaining
twenty-seven are determined, (when the variables and coefficients of V are known,) by the six
equations (G'), (B?), the three left-hand equations (G3), the six first (I%), the two first (K3), and the
ten (L?) (M?) (P?); in resolving which equations it is useful to observe, that by (E?) and (G3),

it AT Y (82V)2

o T TR 5 \bady

And the twenty-seven expressions thus found for the coefficients of W of the two first orders, on
the supposition of a previous elimination of one of the seven related variables, may be generalised,
by (Q°) and (R?), into the twenty-seven relations already mentioned as existing between the thirty-

(T?)

* [See Appendix, Note 16, p. 490.]
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five coefficients on any other supposition; which supposition, if it be sufficient to determine the
form of W, will give the eight remaining conditions analogous to the conditions (S?), that are
necessary to determine the coefficients sought.

If, for example, we determine W by supposing it made homogeneous of the first dimension
with respect to o, 7, v, we shall have the eight following conditions,

OW s W . B

¥ AP T SRl O
and
R O, )
i > T Y e
P g AP s LTI
T8cor "o " USrow !
L AR N
ot > i v gty v T
BW BW W W
7 P = P v il P i
BW BW  BW W
T35y T Toroy T VNSy " Sy
W BW BW _W
Y8087 " " 5ro7 @ USver o7’
SW W BW W
a&rb‘x 781‘8x ub‘va_—S—x_'J

to be combined with the twenty-seven which are independent of the form of W, and are deduced
by the general method already mentioned. But this supposition of homogeneity appears to
deserve a separate investigation, on account of the symmetry of the processes and results to which

it leads.
Let us therefore resume the equations

W, .80 _SW, 80 _ SW_ 380

ek OB i TRy A (%3

which were deduced in the sixth number from the homogeneous form that we now assign to W,
and which are to be combined with the following

SW &V 80

0= —S; E s 5 'S-x- ’ (W3)
and with the general equations of the fourth number,
oo, W . o, 3W. ;
U—W, ‘T—’s?, U——87. (G)
and let us eliminate
8z, 8y, 82, 84, 87, &V, & %;-f,
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by (A3?), from the differentials of these seven equations, (W2) (G') (W3), that is from the seven

following,

RIS LR A
e 30
85 + V8 =8y~ 257,
AW 30 i :
85, +VE S =b— 28V, L (X2)
530 =5c, aB—W_aT, o v,
a%—w+vasﬁ=_581_3__ﬂsv.
A X ox oK. B
This elimination gives SV s e 4 i Sl
: Q
A0 =~ 80 +8 S+ 5 (é;‘F 0 ) 52y (8E+V8§T—>
B AW Sy
+8w8z (STSU-FVSS—U);
3V BV ((8W . 80\ BV (SW .80
AMa0 = br +8 Tt s <88 +V3§;)+S—y—2 (373;+V3-8;)
By AW 0
t 55 (5 +78%);
,sv SV [ SW . . 80\ 8V [ SW . . 80
ADBQ =~ Bu+8 S+ 8z< —;+ng)+—-83/82 (8—8—;+V88—T)
SV /1 SW . .. 80
+ 5 (8—8;+V8g>,
W, OV, BV ((8W .30\ BV (8W . 80
NSO =85 +8 s+ Sw,(a§+ng)+8y8x,(a—8;+vsg)
Y9)
BN s £ AU B i
+828w’(88—v+v.88_u>’
W, o8V BV (8W .80\ ¥V (8 .80
MO 80 =357+ i+ 5 y<5§;+‘7837>+3ysy'(88_£+m%?)
. A
(s + 7822,
85y Sv SU)’
SW , 5OV BV ((SW 80\ BV ((8W .. 80
OB =8+ ot s <8—$+V83}->+8—-——y82,(83 +V88)
BV SW . 50
+W<8 5 g
W Y Y
AR =BT Ve +as( 3)
BV (W 80\ 8V /W 80\
<8—8?+V88) d (881; VSE),)

Sy ox
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it we put for abridgment

LR gy & i i g et £
Ve nw Wt o ¥ty

POV ol B i Sy -8 ) o S

&y ~ Syda
8V &V eV v, AT
te: Sy’ 0282 o 820y %

5 8z~ Sz0a
" A% L FHOR. SSe A SR A8 8 SR
8 8’ = 8a? 8 +8a;'8y' 8y +8.z"82' 8 +8w’ dx 8 [ )

8z’ 8y +

sV &V

SV BV ., By ., 8v . a8y
8&7-—@&%4‘ ‘sy—,’ 8y +8y'82'82 +8y,8x8x,

B WY il S ey O ey
57 =swse O tayme Wt v ¥ gy %

a7 B e U Y
vt =4 aadid o A 74 Rl

8
s

using &’ as in the notation (D%); and if we observe that the partial differential equation of the
fifth number,
8V 8V &V v
°=“Q$'§yf§"xf bt
gives
0=8Q' 8_27 +8_(.) E_V_.*._ag ﬂ ¢
8o 8a® " 8t Sady ' Sv Swds’

_80 BV a0 BV b0 BV
8a xdy " 8t &y ' dv oOyoz’

_30 BV 50 8V 30 &V
=8¢ wdz T o1 bybz T ou 82

80 &V 80 8V 80 &V

0

0

0= 5 587 T 5 8y37 T B 800 [ (A9
0 80 &8V 80 8V 80 BV

= 8q Sady gk > oy &y’ S 6zoy"’

_%a &v +8f) 8V +8Q eV
8c 8287 " 81 8yds  Sv 8287

_30_30 8V 50 BV 80 BV
8x O8a baby ' Ot Sydy = v 8zdy "

0

We have introduced, in the equations (Y?), the terms A™ 8%, ... A8, that we may treat
as independent the variations 8a, 8, 8v, 8y, which are connected by the condition 60 =0.
HMP 25
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To determine the multipliers A®, ... A®, we are to observe that in deducing the foregoing
equations, the relation Q=0 between the four variables o, 7, v, v, has been supposed to have
been so expressed, by the method mentioned in the second number, that the function Q when
increased by unity becomes homogeneous of the first dimension with respect to o, 7, v; in such
a manner that we have identically, for all values of the four variables o, 7, v, x,

s34 n20, e ny (BY
oo oT Sv
and therefore,
20 .80 80
7 32 +780-87+U80'8v T
820 020 820
050'87+T F-FUSTSU =%
20 .80 80
T 8oyt orboil LA
20 80 80 80
T Sobx | Sroy T YSusy dx

\ (CYH
B 0,

Hence, and from the conditions (V3), relative to the homogeneity of the function W, it is easy
to infer that the multipliers have the following values;*

M=—g; AM=—qr; AO=_y; AO=g'; AO=7"; AO=); 7\‘7’=—g: (DY

attending to (G’) and (W3). If we substitute these values of the multipliers, in the seven
equations (Y?), we may decompose each of those equations into seven others, by treating the
seven variations da, &r, 8v, 82', 8y/, 87, 8y, as independent ; and thus obtain forty-nine equations
of the first degree, of which however only twenty-eight are distinct, for the determination of the
twenty-eight partial differential coefficients of the second order of W, considered as a function
of o, 7, v, &', y', 2, x, which relatively to o, 7, v, is homogeneous of the first dimension: the
corresponding coefficients of the first order being determined by the seven equations (G')
(W2) (W?).

Instead of calculating in this manner the coefficients of W of the second order, by eliminating
between the equations into which the system (Y3) may be decomposed, it is simpler to eliminate
between the equations (Y?) themselves, and thus to obtain expressions for the variations

W 48W
oa” " by

of the coefficients of the first order, from which expressions the coefficients of the second order
will then immediately result. Eliminating, therefore, between the three first equations (Y?), in
order to get expressions for the three variations

SW oW
83;, 8—5;_—,

8

sW

_S_J ’

8

* [By putting in (Y3) 8o :0r:8v=0:7:v.]
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we find, after some symmetric reductions,

35 = ”i“ 1V~( 3~ 5uy) 1 (o7 - W) "= ) |
_i V" ( 88:;;2 V=5 8’V {o (Su —-v (80’ -9& —Sgg)}
+ V" ( 8’V 88:;81/; T (80' 0’(87 -8 %)},
LLANE § 1 ava (v 5 ‘W ;;f; {u(sT ‘s—) T(su-s'%’)}
5. 8_9' 8V (u 88;;; 88;;:) {a‘ (Sv %I-’) v (80' —& %—E)} r(EY
(" 88:082 S,V) # (8 "(87 o %)}
8%,— ”s + a7 ("sis ){" (8" T "(8”'8'%1_:)}
SR +v,V,,( b M){q 8u—8'8 0(80'-8'6:3—1;)}
2
LI v’V” ( 8y Jsz sisi) {’ o~ 8 "(8’ Wi %I/f)} )
in which,
P (T Y (Ev) + 5 2‘25 G .
and 2o+ )+ G

v having the same meaning as before: 8’ also referring, as before, to the variations of &', ', 2’, x,
alone, and V"’ having the same meaning as in the First Supplement In effecting this ehmma-
tion, we have attended to the forms of the functions W, Q, which give

¢(888W+Vsm)+r(ssl'+vssi’) (8 88W+Vs§2)_-s'v (G

we have also employed the equations (A*%), which give, by (F4),

VeV S’V) o 30 8V S’V—HS’V—V"v’é\Qsﬁ'
oy® 822 (8y82, (80-) * Saby 828z 8a® Sydz or dv’
eV eV 82V g (00 SV By #V BV, 8080 "
82 822 T (858@') gl (87) 8ydz dudy &y 828w B v 80’ e
BYBY_ (BTN B0) BV BV SV V0000
8z 8y \dzdy (8v * 828z Sybz 82 Swdy éa o1’

Having thus obtained expressions (E*) for the three variations

L W W W
8 5o’ ) e ) 5
it only remains to substitute these expressions in the four last equations (Y?), and so to deduce,

without any new elimination, the four other variations
SN W  8W"  8W.
8 W ’ 8 W y - 8 ’g ’ 8 W ’

25-2
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after which, we shall have immediately the twenty-eight coefficients of W, of the second order.
The six coefficients, for example, of this order, which are formed by differentiating W with respect
to o, 7, v, are expressed by the six following equations, deduced from (E*):

W P IR AN 2 LT D4 \

5o =V g + syl gty N 2Tv8y8z>

W 21y B ey 8y
=Vt (P e 2 )

W 0. 1 [, BV, 8V 8y

8—112— = V8v2+ Vn(o' 8 2+T28$2 20’1"8 By) :
BW__, B0 1 BV BV BV 8217) 3
Soor aasTJ“sz"( Visady t ™V 528a TV Syss 7T 5

8w 0 1 JRE Y- oy v By

i g (‘ B Wadyl Thebu 8402)

S 20 1 JBE SR ey e

5080 =~ ' Sude T AV (' s30T T 8ydz T VSuty T 5 )

which may be shown to agree with the less simple equations of the same kind in the First
Supplement, and may be thus summed up,

AV (82 W + VS”zﬂ)— 8 £ (.,-3,,_ v87)? +2 5y (u8o- o 8v) (a7 — 780)
88 5 (v8o — o’8v)2+2 8 (a‘87‘——78¢7)(78v—v8'r)

+—8—z§(0'8-r Td0 )2+2 8 (’rSu-vS’r)(vSa—o'Sv) (K%

the mark of variation 8" referring only to the variables g, 7, v, as 8 referred only to o, ', 2/, x.

And the whole system of the twenty-eight expressions for the twenty-eight coefficients of W,
of the second order, may be summed up in this one formula:*

RV (W +VRQ+28VQ +82V) = ﬂf { ( ) (87 g 8’ )}2

i (br-v ) —o(so- 5} 4 5k o (3 i b (5 9%
832;;{ (sv-85 ) v (87~ 8,317)}{ (30 =53 ) (05 )}
+2 (-9 g) e (o3 o (or-2 ) -7 (oo )}

Lt oo Dot D)oo

in which the symbols &% &% are easily understood by what precedes, and in which the seven
variations 8a, 87, v, 82, 8y, &2', 8y, may be treated as independent of each other.

* [See Appendix, Note 16, p. 490.]
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The formula (K%) has an inverse, deduced from (X?), namely
= (o +V 5) (s 2o 50 )
(o oy, )
$3 (S’Z s?al) ( sy) ( % &)
+2 (530 + 7 3r55) (50 2~ 50 ) (503 i )
+2(§g+v%)(m Sw)( i S %) (M)
in which 8" refers to z, ¥, 2z, and in which V"’ may be deduced from W by the relation
= (5ot V ) (57 528) ~ (oo V)
+ (5 + 7 50) (5t +V 50) (o * Vi)
'+(8-;ul,v+v‘§—lf,’) (%%’+V%?)—(%+V%)’: (NY)
and the more extensive formnla (L*) has an inverse also, namely,*
V,, (8'V+ V820 + 28V + 82 W)
s,,- o) i v - )R (- e )
M{&hw%aw?w»
{gg W vy 88“) L (s R g“)}
A
g(.s ~8 5 - )| |- E(sz-a S——VS’ L )
30 oW , 80 30 W , 800\
srév’ " ‘7(8",8'5'”'%) k—-g(sw—s'g-vs'g)
2(8 ) sus" { Es%(s-’/-s'i%— A 28%) [ Zgg(Sz—S' }l;r- & %%) » (09
5 s ) | n - g -7
* [See Appendix, Note 16, p. 490.]
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&' retaining its recent meaning, so that, as Q does not contain 4, y', 2/, we have, in the last
formula,

N e 0
BQ—st, 8 Q—S—xzsxz,
4
80 80 80 80 , 00 80 S

8 8—a'=80-8xsx’ J §;=578x8x’ J 8—u=8v8x8x'J

If we do not choose to suppose W homogeneous of the first dimension with respect to o, T, v,
and if we put for abridgment

SW . 8W W . i
0”50—_+7'767+U§7—W—w1: QY

and denote by 8W;, 82Wy, the expressions already found on this particular supposition, for the
variations of W, of the two first orders, so that, for the first order, by (G’) (W?2) (W?3),

SWi=28c+ydr+28v+0' 8 +7' 8y +v'87 — g—zb‘x-— V8Q, (RY

and, for the second order, 82W; = the value of 82W assigned by the formula (I4); we may
generalise these particular values 8§ Wy, 82W,, by the following relations,

SWI = SW_w:lSQ,

EW,=8W —w, 82Q — 28w, 80 (S%)
Swl 8w1 Bwl
(o 5o r o) ot

in which 8 W, 82W, are general expressions, independent of the condition of homogeneity w; = 0,
and of every other particular supposition respecting the form of W. It is, however, here under-
stood that the final medium is uniform, and that in forming the variations of the function W,
the quantities o, 7, v, %, 4/, ¥, 2/, on which it depends, are treated as if they were seven
independent variables.

And if we would deduce expressions, 8 W,,, 8W,, for the variations of W, of the two first
orders, on the supposition that W is made, before differentiation, homogeneous of any dimension
n, with respect to o, 7, v, we may put

W oW oW (T

0'80_ +T—ST+U8—U—nW=wn’

and we shall have the following relations

W, =8W —w,8Q,
W, = STW — w. 530 —
8EW, = 82W — w, 82Q — 26w, 8Q (U9
- (0%+7%+v—8—% +'w,,—nw,,>89,2,
oo ot ov
which include the relations (S*). The general analysis of these homogeneous transformations is

interesting, but we cannot dwell upon it here.
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Deductions of the Coefficients of T' from those of W, and reciprocally.

9. The general principles of investigation, respecting the connexions between the partial
differential coefficients of the second order, of the characteristic and auxiliary functions, having
been sufficiently explained by the remarks made at the beginning of the seventh number, and
by the details into which we have since entered, we shall confine ourselves, in the remaining
research of such connexions, for the new auxiliary function 7) to the case of extreme uniform
media. And having already treated of the mutual connexions between the coefficients of the
two functions V and W, it will be sufficient now to connect the coefficients of either of these
two, for example, the coefficients of W, with those of 7} of the first and second orders: since the
connexions between the coefficients of all three functions will thus be sufficiently known. We
shall also suppose that W has been made, before differentiation, homogeneous of the first
dimension with respect to o, T, v, that our results may be the more easily combined with the
symmetric expressions already deduced from this supposition, expressions which can be generalised
in the manner that has been explained: and similarly we shall suppose that 7" is made homo-
geneous of the first dimension with respect to o, 7, v, and also with respect to o’, 7, v/, Let us
then seek to express the partial differential coefficients of the two first orders, of 7', by means ot
those of W, both functions being thus symmetrically prepared.

In this inquiry, we have, as before, the conditions of homogeneity (U?) (V?), relative to the
function W, and analogous conditions relative to 7, namely, for the first order,

87 81 T
0$+T §;+ 8— T

8T 8T 9
8'+ 8I+ SI—T
and, for the second order,
7 8T 8T SPPR A SR, BT )
ek ~ Siugnd |y R~ AR =l =
ST 8T 7 , 8T 8T, BT
O=o5 51788 V55 =575t "sn tVsrss
o BT D PR o WD #T 8T
Tt Throvt Ve b 0= sus T T srsw T Vs
ST BT T 8T ST, 8T »T |, 8T
8 =508 Y T8r85 T USue" 80=C 8085 T T sos7 TV sosrr [ (WY

S G Y MY N e SO PR A
= Aaid >3 =Rl ™ =k 7 =L Sl = = A = = A =k

i _pr Py T _, #T  , BT _, BT
57 =557 T ooy TVSusd’ 8v=C Suss T susr TV Susy

8_1'_0_ T ¥ 8T 3 o Y | R Py i ¥ U
Sady ' Srdy YSudx 8x’ ?x 878x 81'8x SUSxJ
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together with the conditions relative to Q, &', namely (B*), (C*), and the following,
, 80 B0 BT i pedlia Y )
0'8;,— +TW +U-8—v,— =0"+1=1,
, 820/ DA y SR
St 80"37'+u SU'SU'_O’
820/’ 820/ 80!
’ il Lo S L Xd
74 e = S b il
r ¥ i e R L B L 0
ey kR = R
;0! gy 8%/ , 80 Y
T SOy T & oy U8By ox’
we have also the general equations
SW i B iy 1@ Wosos @

T 7 Al U s

by combining which with the foregoing conditions and with the partial differential equation (A2),

we find the following, analogous to (A%),*

o0 BW 50 BW 80 BW
T 8 St T O 8a'dy T 8 8’8"’
oY BW MY BW o0 B
=555y T S s T st
030 BW 8 B a0 5W
T8¢’ 84’87 T o' 8y’ 8 T & 8%
Y 1 82 AR
o o ow wow ey |,
dc 8o’ 8a8z’ ' 87 8a8y ' OV d5dz
50 S0 BW 0 BW 50 BV
5 8 5w T o 3rdy’ * & ordéd
5030 BW 50 BW 80 SW
8 ~ 5o 5uda T 57 Sudy T 8 bues
805 s BW 80 W 80 B
Sx ~ Oy ~ 8o syba T o Sxy T 8 887 |

and if we combine the conditions of homogeneity of the two functions W, T, with the funda-
mental relation (E') between these two functions, and with the properties of Q, ', and attend

to (G"), we find the following expressions for
order,

the partial differential coefficients of 7' of the first

* [2' may, through (G'), be considered as a function of o, 7, v, &/, ¥/, 2, x. Since 8Q'=0 for arbitrary indepen-
dent variations 82/, 8/, 87, with 8o=8r=38v=38y=0, we easily deduce the first three of (Y4). Making use of these

equations, 8Q' may be expressed in terms of 8, dr,

8v, 8y, and this expression may be equated identically to

A8Q. We then find A=1, and the last four of (Y*) follow immediately.]

ANANN
VWW

rein ora ol
.rcin.org.pl
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if T T-g §—5=- +W§Q"»
Rt Iy fr=— 4+ Was
gr SW +(T- W)s +W88”' J

201

(Z%)

Differentiating the expressions (Z*), and eliminating 82, 8y, 82/, by means of the differentials
of the general equations (G’), we obtain, by (Y?), the following system, analogous to the

system (Y3);

7\189 + Xl'&ﬂ' =

A8 + 2080 =

As8Q + N80 =

A8 + 280 =

As0Q + 280" =

Ae8Q + 0680 =

HMP

s,%",7+s'
S ) B ) S 68l
--8,8814,’+8'r,
a2 (3§ _Wsssn")”s',?f (88 -Ws'ss—g)+%;¥(sg—ws§—g)
;88u,7+8v,
L 8- woE) I 0w ) 20 6 m)|
-85 +5(5 - T8“)+W888_; Aid
55 (35— Wo%5) + 5rgy (057~ W57 + 5oy (O~ WO 5
o RALGY L YT (18
ss.:z'(ng W&%%?l(&%-ws%%ﬁ%(sg—ws%)
55 s (p - T 50) + Wa s
I e Y ) Y )
's'i—vxy”(g—T-Tfs) +W5(-50):

www.rcin.org.pl
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in which 8, refers only to the four variations 8a, 87, 8v, 8y, and in which we may treat the seven

variations, 8o, o7, dv, 8y, &a', &7', &
A1, ... Ay, the following values;

8T 8&wW 8T &W
M

v/, as independent, if we assign to the fourteen multipliers

=3 822 +378w’8y'+

8T #W 8T W
M =57 sy T 5 5y

R i T A

8T &W W \
&' 84’87 o'’
8T &W SW.

\ T ®W OT 8W ST EW _SW.
® =57 5087 T 87 8yos T ov 822 | o7
\ 0T BW ST BW ST BW _ .30
¢ =57 80w T 57 Sady T 50 Sadd | (b’

T ®W 8T ®W 8T W .50 L (BY)
M =57 557 T 57 brdy 57 57 T e '

8T &W 8T &W

8T W 80

M =37 Svea 57 Sudy
3T W 8T &W

+<W Svds T_SZ ?

ST OW 30,

i =87"8x8w'+W8x8y’+8—v’ SXBz'—TW-FWW’
xll — a_l; Az’ =T’ ; xal =vl;
y W oty . 5 8w BlL /| oIS W ol T AW 30
Memge=Wags Weme Wi Mgy ~Uaiéai Soun e |
the values of A4, ... A7, may also be thus expressed,
Sw' Suw' 80 )
- S 7\4=-§+(W—T)g,
Suw' ouw' 0]
A'2_‘ 87‘} X5=—F +(W—T)—8_'T’
) 8Q r ik
duw’ w'
M=~ M=—§;+(W“T)g,
duw' 8Q
=——+(W-T)<,
m=—gr+ (W=D )
if we put for abridgment
7 sOW. o LadW G OW. (D)

=ww+y 8—yr+z Fyad

and consider o', like W, as a function of o, 7, v, ), @', ¥/, 2, which, relatively to o, 7, v, is homo-

geneous of the first dimension. The
them respectively by &g, &, dv, &y,

four last equations (AS) give, by addition, after multiplying
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ST =(T-W)&Q + WaQ' +(W-T)302 \
+ (8T —=8,w')8Q + (5, W — WdQ) Q' +8*W
SW 8T 3/
-(az =) (50 - M)
SW 8T Q'
(S,F—S'r) (35— %)
W 8T 80’
(357 =) G5 =" %)
8, still referring only to the variations of o, 7, v, x; and the three first equations (A®) give, by
elimination,

8T m' 50
85— Wos=5r(8W- W89)+8,

< Zh- EE) () 0 -)
e srse=" 50 o (057 o) = (3-8}
8T 80 8 b‘T

85— W85 = 8,(zsvv W80) + 5 80

- (ES5)

J

-+ "W'"

4 e WIII

2 W"'( 8.'0 8z’ i 82';: ) {" (8' %{" ‘8"') re (8'%'" 8'”)} -
+ g (7 5y 8y 5~ s ¥ (35 -37) — (857 -8v)
¥ "W"’( Sz" - 8"W ){ (8 %Z/!’s"> 774 (8'%%'7'8"')};
5o — Wb %%,’-i“,’(s W - W80)+ o 8
e S'f;m(s )i
e By T ) -0
+ iy sae ~ e ) 17 (3 ) =7 (b5 5}
in which ,
W= s st~ (st * g e~ Gga2) * o8 6~ (o75w) © (@
¢ et
P
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' having the same meaning as in the second number. In effecting the last elimination, we have
attended to the relations (Y#), which give

FWOW 1PN P L {01 )
s 5~ (5y5e) = 7 (5)

SWEW (W, . 38\

Wm_(b‘z’h’) sl (——') !

PWEW L8R, il P SIS

57 5~ (swag) = V" (39) o
BW SW W BW _ ., 0080 |

8’8y 88« ~ 8 &y’ VTS S

BW SW _OW SW _ 1y 8080

587 S sy  syidred " U B 8d°

MW AW W OW Wy 8Q’ 30

82'8a' 8y' 82’ ~ 822 8’8y dc’ 87 '

And combining (E®) (F?), we obtain the following formula for 827, analogous to the formula (L*),
which completes the solution of our present problem, because it is equivalent to twenty-eight
expressions for the twenty-eight partial differential coefficients of 7 of the second order, deduced
from the coefficients of W ;

0=02W"" (8T + (W —T) 80 — WY —28,W.8Q — 82 W + 2 (2 8" + ¢ 87 + 2’ 8v') 80}

Ao [ (8 -8, %7W) ~v (8-, ‘2—3)}2

+ ?y—‘f‘: {v' (8'=5, 57 ) — ' (83 %—z”,i)}z

el {a' G %ZZ) (873 %V)}z |

+2 % v (8v-85%0)-v (5 -3 g)} o (3-8, 50) ~ o' (3w =8 )}

+2g e o (3-8, 50) ~ ' (v =8, 50 o (o =8 557) = 7 (3-8 )}
Yt {a" (5 -, %gl) ) %%K)} {7' (8 -2 ) —v (5, %V)} (K5

And if we denote by 827} ; the value of the second differential 627" assigned by the formula (K5),
and determined on the supposition that 7' has been made, before differentiation, homogeneous of
the first dimension with respect to o, 7, v, and also with respect to ¢’, 7', v', and denote by 874 ,
the corresponding value of 87, determined by the coefficients (Z*), we may generalise these values
by means of the following relations, analogous to (S%);

8T1'1 =87 — BQ.VIT—' 8QI.V1’T;

&8I, =8T-80.V,T-80'.V/T—-280.8V,T - 280 .8V, T (L?)

+802. Vi (Vi+1)T+280Q.80" . V,Vy/T+802.V/(V/+ 1) T':
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V1, V4, being here characteristics of operation, defined by the following symbolic equations,

B ) )
V1=0'8;+78—T+UE—1, !
5 8 5 (%)

’_ '__ ’_ l____
o Pt 8a’+T S'r'+v o’ L

More generally, if we denote by 7}, the function deduced from 7' by the homogeneous
preparation mentioned in the sixth number, which coincides with 7' when the variables
o, 7,v,0,7,V,x, are connected by the relations Q& =0, Q' =0, and which is, for arbitrary values
of those variables, homogeneous of the dimension n with respect to o, 7, v, and of the dimension
n' with respect to ¢’, 7, v/, we have the following expressions, analogous to (U*),

8Ty w=8T-80.V,T-80'.V', T,
8T, w=8T-80.V,T-80 .V, T-20.8V,T - 280" .8V, T (N®)
+802.V, (Vo + 1) T+ 280.8Q" .V, V', T+ 802V (Vi + 1T
defining the characteristics V,, V'y, as follows,

8 8 8 BT , 8 » 8 gl ey 5
V,.=a'8;+'rs—.r+u§;—-n, V,.:=a'ro_,+'r§17+v S'L—,—’Il. (O)
Reciprocally to deduce the coefficients of W, of the second order, from those of 7) on the
same suppositions of homogeneity, and with the same dimensions n=1, n'=1, we are to
eliminate 8o’, &', 8v’, between the differentials of (G’) and (Z%), and we find the following

system,

Mo = g—ﬁ —W%’%)s%‘,’ (83'.§r' = si"(sl;')s%"r“(sj’g/ —Wsif‘;;,)s%?
| 8, 20 ws, 5 s -3 sw;
M'80= (57~ W gor5) 5 (55— 5m)? %,71;"7 + (5o~ 55) S 5
+820 w5 sy 3w
S s?g'./)s%g (559~ 5?&)8%7 (glu?;-w%‘?;)si_:‘,’
+830 w3 4 as 5T e

o 8T 8T 80\ 8W 82T 8T 80\ 8W 82T 8T 80\ W

NB0= (555 ~ 57 30) 87 + (5057~ 5 80) 8y +(sobw 5 80) O 57
SW 8T 80 80

—83;""8,8—0_+(W—T)8-8—‘,_~+§‘-(8W—8,1'); T

8aT 8T80)88W 8T _§_1_’8i1)88W+(8’T _8T_8i)) sW
(8181" ot or 37 Srév’ & 8r)° 87

W . , 8T 50 80 ;
—STT'FS,E'*'(W—T)S'&; +E(8W_8rT):

A0 - (81'80' ~ & ot

ox'
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siges T 8T 8Q\ 8W 82T 8T 8\ 8W 8T 8T 8Q\ 6W
N80= (550 50 5u) WJ’(W"FE)S—'J’(W‘_'_) 4
i B e 7)8 52 + 282 (31— 8,1);
b o BT 820" 8T 80\ oW 8T 820 ST 8Q\ W
MSQ_(SG"BX_ 8a'8y & S—X_) —8_107-'-(37'87(_ 878y &7 8_72) 8y
(S 2T sy aw
3v'8x— SU'SX_SU' ox/ o7
SW 89 80 80 &
88 +8,8 +(W-— T)B 8 OW=81)— W8’8X_S_X8W’,
8, still referring only to the variations of o, 7, v, , and the values of the multipliers being,
Vit 9%, ,,_SW 3O
M =—2; A __SF_TSU'
H__ ps ,,_8W SQ.
5 Mo Y R @)
LA i ”_8W 80'
Af3 it )"8 ———S;—TS—U,
S 80
A = SX—TS\}'J

Hence may be deduced, by reasonings analogous to those already employed, the following
formula for &W, which is equivalent to twenty-eight separate expressions for the partial
differential coefficients of W, of the second order, considered as deduced from the coefficients of
T, on the foregoing suppositions of homogeneity :

0= g (B2 W = 827+ (T =) 80 + W80 + 28 (5,0’ - 80) + 28,780
4 ((%Tz -W ‘?92) D 42 (szg; - 8?‘;”) 9%
+ (5= gm) D +2 (5750 =W 5750) DD
+ (5 = 53) D42 (g~ W g D (R)
in which we have put for abridgment,
D= 88 (850 +o/80+8, gf —ws, ‘Zf) = (87 + 5045, gf _Ws, i—‘j) L (9
=32 (8 +y20+8, 22— Ws,g) o (8 +ar30 48, 5% _ws, %%)
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and in which W’ can be deduced from 7', by the relation

i = (5= 5g) (5 50)~ (557~ ¥ s57)
(5 57%) (=W 50n) = (573 = 7 5089)
(5= 508) (v 500) - 73~ W ooa) -

General Remarks and Cautions, with respect to the foregoing deductions. Case of
a Single Uniform Medium. Connexions between the Coefficients of the Functions
v, Q, v, for any Single Medium.

10. We are then able, by combining the formule of the three preceding numbers, to deduce
the partial differential coefficients of the two first orders, of any one of the three functions
V, W, T, from those of either of the other two, when the extreme media are uniform and known:
since we have expressed the coefficients of ¥ by those of W, and the coefficients of W by those
of 7', and reciprocally, for this case of uniform media. And if the extreme media be not uniform,
but variable, that is, if they be atmospheres, ordinary or extraordinary, we can still connect the
partial differential coefficients of the three functions, by the general method mentioned at the
beginning of the seventh number: which method extends to orders higher than the second,
without much additional difficulty of elimination, but with results of greater complexity, and of
less interesting application,

This general method consists, as has been said, in differentiating and comparing the equations
into which the general expressions (A’) (B’) (C') for the variations of the three functions resolve
" themselves: and in making this preliminary resolution of the general expressions (A') (B') (C'), it
is necessary to attend with care to the relations between the variables o, T, v, o', 7', V', x, or between
o, 7, v, &,y 2, x, when any such relations exist. The investigations into which we have entered
in the three last numbers, for the case of extreme uniform media, suppose that the variables are
connected only by the relations O =0, Q' =0, which arise from and express the optical properties
of these media ; and other but analogous processes must be deduced from the general method, when
any additional relations Q" =0, " =0, ... between the variables of the question, arise from the
particular nature of a combination which we wish to study. In the very simple case, for instance,
of a single uniform medium, we have the three relations

=0, =1 V=y (U")

which are to be combined with'the relation Q= 0; and with this combination of relations, the
general expression (C) for the variation of 7' will no longer admit of being resolved in the same
way as when more of the quantities on which 7' depends could vary independently of each other.

; In the case last mentioned, of a single uniform medium, the characteristic function ¥ involves
the coordinates «, ¥, z, #, ¥/, ¢, only by involving their differences z —4a', y —y', 2~ 7, and is,
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with respect to these differences, homogeneous of the first dimension, being determined by an
equation of the form

0=¥ (255, 158, 55 0), (v9)

which results from the equation (N) for the medium function v, by first suppressing in that
equation the coordinates on account of the supposed uniformity, and then making

g o B e o g 5
i s e R AW

<R

The relation (V%) may also be deduced from the relation @ =0, by eliminating the ratios of
g, 7, v, between the three following equations,

v—ao 80 y—y Q0 z-4 8O (X5)
Vo Ule i W cue T B

We have also, in this case of a single uniform medium,
V=o(w;w’)+7(g/—y')+v(2—z’), (¥®)
and therefore, by (D’) (E) (U?),
W=oa' + 1y + v, } X
T'=0: (&9

the last of which results may be verified by observing that the general expression for the
auxiliary function 7' may be put under the form
T=w88—z+yi—;7+2%1—z’+x'g+y'g—;+z'§—z—17, (A%

so that 7' vanishes when V is homogeneous of the first dimension with respect to the six
extreme coordinates. The formule of the last number, for the partial differential coefficients
of T, all fail in this case of a single uniform medium, for the reason already assigned; but we
may consider all these coefficients of 7' as vanishing, like 7' itself: we may however give any
other values to these coefficients which when combined with the relations between the variables
will make the variations of 7' vanish. The coefficients of W may be obtained by differentiating
the expression (Z°), which is of the homogeneous form that we have already found it convenient
to adopt; they are, for the first two orders, included in the two following formuls,

W =a'8c+y'dr+2 8v+ada’+78y + v82’,}

6
82 W = 25080 + 2878y’ + 28087, )

and they vanish for orders higher than the second. And the coefficients of V, of the two first
orders, may be deduced from those of W by the formula of the eighth number, which are not
vitiated by the existence of the relations (U?%), because those relations do not affect the variables
that enter into the composition of ¥ and W. The variation of V, of the first order, is

8V=a-(8w-8a;')+7(8y—8y')+v(82—8z')—V§—(—;’ 3y ()
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and that of the second order is given by the following equation, deduced from (O%), (N%), (Bf),

¥ {m 80 (s*n >= L2080 ( 80 ), 820 80 (sm )ﬂ} (s=V+ V820 + 28 VS'Q)
57 5o

3a® 87 \door Stdv) T R 82 \Svde o+ 74 ?
80 (50 , 80\ 80 YN
=s7{s_(8 ~5/ -8 S )-78—(83/—8;9 -7 5 )}

Pt {88“(8 o8~ V8 §7) - 50 (s:- 8¢ - Vs'%‘—’)}’

+%{%’(sy sy — V& 88“) 3 (s0-8a - V¥ 88“)}

pa 20 80(8z—8z’ Va'}i)}{ ;%i:(sw_sx'-vs'%)*
-——(s- -V88—> -g(sz-s'—vs'ﬁ))

(20 if’;(s _SI—Vsii)»{ zs—z(sy_sy'_vs'zs—(‘z)r
S HCEUER ) ~ s (So—80 = V)

(a0 Zs_z(sy Sy — V¥ m) %‘T-;(sz-sz'- v :z) | o
-5 (se-8a =V ) 3;(sg by - V& )

in which the symbol &’ has the same meaning as before, so that as o, y', 2, do not enter into the
composition of the function £, 8" refers here to the variation of colour only. This equation (D°)
may be put under the following simpler form,

Y @v vy 2vin)

88":(8::: S - V& %9)'
sB'(sy T 889)
g(& 5/ -V %9)
+2 &'78 B (so—tc — V532 (3y—sy -V )
+2 SFF (sy Sy V¥ 88“) (6522 - V¥ 88“)
+2py (e =82 - V&' 52) (3080 - 7 2 (E
HMP 27
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if we attend to the equations already established, in the second number,
a8QBSQ vy 60 18w 8Q

~ 8q’ B! e ibe ! —I:ng}
St
U—g, 'T-SB, U_Sfy,

and to the relations which result from these, by differentiation and elimination. For thus we
obtain ; - Rare
. b R (0 S 2() v & )
8——8 8¢~ Ba® 8§&+86878$3+30'3v83ry’
5B 80 80 &v . &0 5 v 80 (S

;_8 &t 803783a+ 57 8,—8+ Srdu Oy’ (F%)

80 30 v 80 Sv % Oy
3 Bbuie [ Bale 35 6 By
—8(1 Sv) , 00 8% 8@+ 320 @_I_ 820 Sy

Sy 8ady Sa ' 818y OB " dudy oy’
in which v is considered as a homogeneous function of the first dimension of e, B, v, involving
also the colour x; and in which, although the three variations de, 83, &y, are connected by the
relation ada + 888 + y8y=0, yet we may treat these variations as independent; because, if we
introduced indeterminate multipliers of a8a+ 888 + &y, in (¥®), to allow for the relation, we
should find that these multipliers vanish, on account of the conditions of homogeneity of ». And
if we put for abridgment

n_ 0°Q 830 82&))2 82081)._(829)2 8&)8&)_(82&) g (@

o = 5ot 53~ (505) * 508 58 (5780) * 58 58~ (aube) ° )
the equations (I'®) give the following formula for &%, that is, for the second variation of v, taken
as if a, B, 1, x, were four independent variables,

sy b

v 8y

0%1%2(820+08’2Q+ 287;8'9)_8‘0’{89 (38~ Q) i—?(&y 08 iﬂ)}
4«34 {iﬂ (5v- 538“) %-‘J’(s — o8 ‘Zf’)}
+ 5 [ (bu = 0850 — 5 (08 o)}

i) 1B (i) (i)
oy 18) 80 B 8) ()
+2§%{%’(& 3389) g(aﬂ-va'g)}{%(a,s—va"zﬂ) 88“(37 08’80)}; ()

which justifies the passage from (D®) to (E°), and expresses the law of dependence of the partial
differential coefficients of the second order of the function v on those of Q, for the case of a

uniform medium.
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If the medium be not uniform. and if we would still express the law of this dependence, we
have only to change &', in the four equations (F®), to a new characteristic §, referring to the
variations of @, y, 2,7, and to combine the four thus altered with the three following,

1 dv 80 80 v 820 Sv 8 v
8(Cx) - % 52 = 5580 8 T 5750 58 T Sutw OBy’
1 &v 80 a0 Sy &0 S 80 §1} 10
il 8?/) 8 Sy = Bty 8a T 5oy 258 T B0y 5y ()

1 & 80 880 v a0 S 30 (S
—8(587)_8”& = 5e8s°85a T 578: 058 t 58z O oy’

in which 8, is the same new charactenstlc and which are deduced from the equations already
established for variable media,
18v 8Q 18 30 18y 80
Tvdz dx’ wdy Sy’ “wvd 8
and we are conducted to a formula for 8%, which no otherwise differs from (H®) than by having
8, instead of 8" throughout.
And if, reciprocally, we would express the law of dependence of the coefficients of Q of the
second order, on those of », we may do so by the following general formula,

v"v’(vS’Q+8”’v+28,,v80)=g—3{v (5v-35, EB) (0 -3, g;’)}z

+§-%’,{c(80—8,, g—) ( 8, sa)}a

+s?{( b, 5) = (5r 8"8,9)}’

e B{v(&f-sus‘iz) - su_ g Ha 8v sg v(Sd—S,, 8%’)}

N P AN
Bt P S

in which 8, refers still to the variations , y, 2, y, and in which »"” Las the same meaning as in
the First Supplement, namely

&% &% &% &% &% 8% \? &% &% 5% \2
’ pe . 5 a4 o Phack’- 14 4 it samine Sl s LO
v =5 i (se3) + 355~ (62%) "5 e~ (o m) e
this quantity v’ is also connected with the " of (G°) (H®), by the relation
5 v " Ba”"'*'::‘{‘u" (MO)

The formula (K®) is equivalent to twenty-eight separate expressions for the partial differential
coefficients of £, of the second order, which extend to variable as well as to uniform media: the
formula gives, for example, the six following general expressions, which enable us to introduce
the coefficients of the function v, of the second order, instead of those of £, if it be thought

27-2
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212 IV. THIRD SUPPLEMENT [10

desirable so to do, in many of the general equations of the present memoir, as the expressions
contained in (H®) would enable us to introduce  instead of v, in many of those of the First
Supplement:

80 1 /7,8 &% 5
8_65_—_-?),,”3(72 g+ Neg —21v 585y ),

$Q_ 1 (% 5 5%

sEove(teate 57 2”"33)

20 1 8, &% 5

TATYS (0'2% ST S - 20 8a3,3> (N®)
g0 1 ( g itk 500y ool ﬂszv) ’ ;
Sadr 0B\ Y 8adB T TV Syoa T VT 8By” 7 Oy

820 _L( o P Ul LBl o B e a%)

Srov v P\ 7 8BSy Y sadR T 7" Syda by

80 1 5 & & &

Svda =v"—v“’(— 8y +"3,83~,+T”8a3,8“”"8_,82)' )

To make more complete this theory of the coefficients of the function £, which determines the
nature of the final uniform or variable medium by the manner of its dependence on the seven
variables o, 7, v, @, ¥, 2, %y, and is supposed to have been so prepared that Q + 1 is homogeneous of
the first dimension relatively to o, 7, v, let us investigate the connexion of these coefficients of Q
with those of the simpler though less symmetric function v, considered as depending on the six
other variables o, 7, @, ¥, 2, x, by the relation Q=0. For this purpose we are to combine the
differentials of that relation with the conditions of homogeneity (B*) (C%), and with the following
other conditions of the same kind, which are only useful in variable media,

820 A (o) 8?0 80
? Scox " T8rdnt USvew ox’
820 o 820 46 30 80
T 8csy " Ty Voudy Oy’
820 # 820 “ &0 80
7808z " 878" "Suds 6z )
In this manner we find, for the first order,

r (0%

Sv dv dv dv Sv dv
80 =1 (Ju— 52 80— 52 b7~ 52505y 0 55 D 5. ax) (P
that is
s0__ % 80 o to_
oo 6c’ Or gt Oy @)
§9__X_8i’- §(_)__X8i’- Sil__xs_"- o0 _ 7\8"-
O LT By TN B L N i T T

A being a multiplier introduced for the purpose of treating the variations of o, 7, v, 2, ¥, 2, X,
as independent; and to determine the value of this multiplier we have, by the condition
of homogeneity (B?),

3o v 1
X(u—a’s—:_—'rs_r) O41lml: (R")
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the coefficients of Q of the first order are therefore known, and we have for example,

Again, for the second order,

532 87\.2—:_+7\1(8v %‘;:sa—szc.);1
8%‘%=—8.X§—:+7\,(8u—g—:80‘—&c.);
532 +xs(su-%sa-&c.);
LB Xg%+7\4(8u—§1~;80--&c.); >
sasi;__s.x‘;—;ﬂ,(su-g—;aa—&e.);
s%ghs X%E+M(8u—g§_80'—&c.);
8%%-—8.)»?—;+7L7(8v—§—;86—&c),J
in which, by (C*) (O°) (Q®), the multipliers Ay, ... A7, have the following values,
X1=X(6§8;+78%_).K88—:; i
x.=x(a%+rs—i).x§7‘r’;
)‘°="7‘(”8%+78£-r)“
M=x(a§8; +rs—i).xg—;—x’§£; !
x,=x(a£+f§).xg—"-vg—;;
x.=x(¢£+r§).x§%—v%—:,
M=x(688+1387r).7\.¢%12—)\.88§,‘

A. like v, being here treated as a, function of o, T, @, ¥, 2, x: and if we put, as usual,

80 80 80 80 30 80 80
8’Q=8¢r8§ + 878 5 +8vd S;+8w8$ +8y8—8§ +8z8-8;+8x8 Sx’

and similarly
' =855 +8r8 % + 5082
o or ow

dv Sv v
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we find
820 = — A%
v v dv v Sv dv
+ 280, (Sv-g—b‘a 8787_%8”‘858?/‘&8"‘&876)
—m( g2+2 "8ng+ 237")(8u—§”80—&c), (X9)
in which
Sv Sv dv v dv dv
2 ol iy
B =2 (a8 +78 s — < o 5900~ 585 Sxax), (¥9)

and which is equivalent to twenty-eight expressions for the partial differential coefficients of ()
of the second order : it gives, for example,

o O 8% o %
s LI el T
&2 dv dv k
( g g )
And since the forms of the connected functions Q, v, v, of which each expresses the optical
properties of the final medium, may be deduced, by the method of the second number, from the
form of the characteristic function V, it is evident that their partial differential coefficients also,

of all orders, are not only related to each other, but may be deduced from the coefficients of that
one characteristic function.

(Z°)

General Formula for Reflection or Refraction, Ordinary or Extraordinary. Changes
of V, W, T. The Difference AV is =0; AW =AT= a Homogeneous Function
of the First Dimension of the Differences Ao, At, Av, depending on the Shape
and Position of the Reflecting or Refracting Surface. Theorem of Maxima
and Minima, for the Elimination of the Incident Variables. Combinations of
Reflectors or Refractors. Compound and Component Combinations.

11. Let us now endeavour to improve our theory of the characteristic and related functions,
by applying the methods of the present memoir to improve the determination given in the First
Supplement, of the sudden changes produced in these functions and in their coefficients, by
reflexion or refraction, ordinary or extraordinary.

The general formula of such changes, which easily results from the nature of the characteristic

function V, is

0=AV = Vz""Vl, (A7)
Vi, Vs, being the two successive forms of the function V, before and after the reflexion or
refraction ; and the final coordinates #, ¥, z, in these forms, being connected by the equation

0=u(zy92) (B
of the reflecting or refracting surface. The formula (A7) may be differentiated any number of
times with reference to the final and initial coordinates and the colour, attending to the

relation (B7); and such differentiation, combined with the properties of the final uniform or
variable media, conducts to the general laws of reflexion and refraction, and to all the conditions
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necessary for determining the changes of the coefficients of V, and therefore also of the
connected coefficients of W and 7, as well as to the laws of change of the functions V, W, T,
themselves.
Thus, for the first order, we have the general formula
SVg e 8V1 =8AV = XSu, (07)
which, on account of the multiplier A, and the definitions (E), resolves itself into the seven
following,

A0=Xg—u; AT=7\.§E; AU=X§!’;
@ x oy oz
(D7)
Ad'=0; Ar=0; AV =0; A§—I—,=0:
ox

the symbol A referring, as in (A7), to the finite changes produced at the surface (B?), so that
Ac, A7, Av, denote the differences oy — oy, T2 — 1, Vs — v1, between the new and the old values
of o, 7, v, that is, of the partial differential coefficients of the first order, of the characteristic
function V, taken with respect to the final coordinates. The three first of the equations (D)
contain the general laws of the sudden reflexion or refraction of a straight or curved ray, ordinary
or extraordinary ; because, when combined with the equation of the form (F),
0= Q3 (aq, 72, va, @, Y, 2, X), (E7)

which expresses the nature of the final medium, they suffice, in general, when that final medium
is known, to determine, or at least to restrict to a finite variety, the new values a3, 75, vy, of the
quantities o, 7, v, on which the direction of the reflected or refracted ray depends, if we know

the old values &y, 71, v;, which depend on the direction of the incident ray and on the properties
of the medium containing it, and if we know also y, #, ¥, z, and the ratios of %’, %’ g’—:, that is,
the colour, the point of incidence, and the normal to the reflecting or refracting surface at
that point. A remarkable case of indeterminateness, however, or rather two such cases, will
appear, when we come to treat, in a future number, of external and internal conical refraction.
" With respect to the new form Vj of the characteristic function ¥, it is to be determined by
the two following conditions; first, by the condition of satisfying, at the surface (B?), the
equation in finite differences (A7), that is, by the condition of becoming equal to the value of
the old form V;, when the final coordinates =, ¥, z, are connected by the relation »=0; and
secondly by the condition of satisfying, when the final coordinates are considered as arbitrary,
the partial differential equation of the form (C),
0=0.(%.%%,¥:1,w,y,z,x), (F7)

if the final medium be variable, or the simpler partial differential equation of the form (V’),
if that final medium be uniform. And as it has been already shown that the partial differential
equations relative to the characteristic function ¥V may be transformed, and in the case of
uniform media integrated, by the help of the auxiliary functions W, 7, it is useful to consider
here the changes of those auxiliary functions, which are also otherwise interesting.

It easily follows from the definitions of W, T, that the increments of these two functions,
acquired in reflexion or refraction, are equal to each other, and may be thus expressed,

AW=AT=z0Ac + yAT+zAv. (G7)
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And because the differences Ao, AT, Av, are, by the general equations of reflexion or refraction (D7),
proportional to g—z, g—z, %, we may consider these differences as equal to the projections, on
the rectangular axes of the coordinates @, 7, 2, of a straight line =/(Ac®+ A7%+ Av?),
perpendicular to the reflecting or refracting surface at the point of incidence, and making with
the axes of coordinates angles of which the cosines may be called n,, ny, n,; in such a manner
that we shall have

Ag=n,+/(Ac?+ AT+ Av?);

At =mn, V(Ac®+ AT+ Av?); (]7)

Av=mn,4/(Ac?+ A%+ AV?);

AW = AT = (any + yny, + 2n,) o/(Ac? + A2 + Av?).

Now the quantity an,+ yn, + 2n, is equal, abstracting from sign, to the perpendicular let fall
from the origin of coordinates on the plane which touches the reflecting or refracting surface
at the point of incidence ; it is therefore constant if that surface be plane, and in general it may
be considered as a function of the ratios of Ao, A7, Av, because when those ratios are given we
know the direction of the normal, and therefore, if the surface be curved and given, we know the
point of incidence, or at least can in general restrict that point to a finite number of positions:
we have therefore in general
AW = AT = f(Ag, AT, Av), I
the function f being homogeneous of the first dimension, and depending for its form on the
shape and position of the reflecting or refracting surface, from the equation (B?) of which surface
it is to be deduced, by eliminating =, 7, 2, A, between the equations (B?) (G?) and the three first
of those marked (D7?). We have also

oL O Bt Oy MO B D e

%\ T b

)

be_ 8 _ (b2 B

i 7 yb‘y_qb Sz’ Sy)

the form therefore of the homogeneous function f may easily be deduced from the equation of
the surface (B7), by so preparing that equation as to express z—z g—:;-—- y% as a function ¢ of

—gg, —:% , which function ¢ reduces itself to a constant when the surface is plane:* and we

* [In one of Hamilton’s note-books (28, p. 1 (back)) we find the following simple illustration :]
Applications of 3rd Supplement :
Parabolic Reflector of Revolution.

g oz oz
= 2 2 — = —=(g=
it A mr o 98 om Cad tu ba  aal
AW ¥AT gt de Qs gt e dz\? 02\?_  Ac’+Ar?
& = m s - -s=-i () - () =T
Therefore

2
AW AT =0 HAT
2Av

For a single parabolic reflector or refractor of revolution, ordinary or extraordinary, 7'=A7"; therefore
S Ao FArt oo Fir e )
i 2Aav 2(w-7)
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have a simple expression for the variation of the homogeneous function f, namely

8f =a8Ac + ySAT + 28Av, (L7)
which, when the reflecting or refracting surface is curved, resolves itself into the following
remarkable expressions for the coordinates of the point of incidence,

8 ) 3

She* Y= Bhet £ Bhv (3
so that these coordinates, which, for a curved surface, we knew before to be functions of the
ratios Ao, Ar, Av, are now seen to be, for such a surface, the partial differential coefficients of
the homogeneous function /. When the surface (B7) is plane, the differences Ag, Ar, Av, are ne
longer independent, since their ratios are then given; and although the expression (L7) for §f
still holds, it no longer resolves itself into the three equations (M?).

Having thus studied some of the chief properties of the common increment f, which the
functions W, T, receive, in the act of reflexion or refraction, we are prepared to investigate the
new forms W, T, of these functions W, 7, considered as depending on the new quantities
a3, T2, Vg, instead of the old o1, 71, v;. For this purpose we have first the equations

W2= W1 +f(0'3—0'1, s b ke b § ) . asad Ul), }
To=Ti+ f(oz— 01, Ta = T1, va— vy),

by which W,, T, at the reflecting or refracting surface, are expressed as explicit functions of
o1, T1, V1, 03, Ta, vz; the expression of W, involving also 2,9/, 2/, i, and the expression of T in-
volving o', 7', v/, x: and to eliminate from these expressions the incident quantities oy, 71, v1,
we have, if the surface be curved, the following equations, in which the symbol &,,, ,,, ., refers
to the variations of those incident quantities,

8'!.71",l.f=—w8¢71—y81'1—3801=—8,1' Ty, Vgt W1= —8¢hfhvl. Tl; }
and s % Sq,fl'v‘.Wg=o; S'l'fl.vluT’=0;
we are therefore to disengage the incident quantities from the expressions for Wi, T3, by
making each of those expressions a maximum or minimum with respect to those quantities,
attending to the relation Q,=0, between them; the phrase mawimum or minimum being
employed with the usual latitude. For the case of a plane surface this method of elimination
fails, the form of f becoming indeterminate, on account of the constant ratios which then exist,
by (K7) or (D7), between Ao, A7, Av; but these very ratios, combined with the relation Q; =0,
between the quantities o1, 71, vy, enable us in this case to eliminate those quantities from
W,, T;. And when we have thus determined the new forms Wy, Ty, of the functions W, T, for
the points of the reflecting or refracting surface, we may extend these forms to the other
points of the final medium, if that medium be uniform, because then the final rays are straight,
and for any one such ray the quantities oy, 73, va, Wy, T3, are constant ; but if the final medinm
be variable, then the final rays are curved, and the general forms of Wy, T, for arbitrary points
of the medium, are to be determined by combinations of partial differential equations and
equations in finite differences, analogous to the combinations of such equations for V3, and easily
deduced from the principles already laid down.

It is easy to extend the foregc;ing remarks to any combination of reflexions or refractions,
and to show, for example, that in the case of any combination of uniform media, producing any
system of polygon rays, ordinary or extraordinary, the auxiliary function 7' is equal to the
following expression,

L=

(N7)

07

T=3 f(Aoc, AT, Av), (P7)

* [See footnote to p. 370.]

HMP 28
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that is, to the sum of all the homogeneous functions f of the differences of the quantities o, 7, v,
obtained by considering the successive reflecting or refracting surfaces: from which expression
the intermediate quantities of the form , 7, v, are to be eliminated by making the expression a
maximum or minimum with respect to those intermediate quantities, attending to the relations
between them which result from the properties of the media, and using, for plane surfaces, the
other method of elimination, founded on the ratios of A, A7, Av. And when the function 7' is
known, we can deduce from it, by the methods of the fourth number, the other auxiliary
function W, and the characteristic function V.

In general for all optical combinations, whether with uniform or with variable media, we
have, by the definitions of the functions ¥, W, T, and by the results of former numbers, the
following expressions,*

e 08 diliiy gl W8Ty SBEYY 9
V=fovds, T—f0<w8—x+y8—y+zs—z)d«9,

s

W=a'c' +y'r +z’v’+f0(w%+y%+zg—z>ds:
ds being, as before, the element of the curved or polygon ray; and hence it follows that if we
consider any total combination, of m 4+ n — 1 media, whether uniform or variable, as resulting
from two partial combinations, of m and of n» media respectively, combined so that the last
medium of the one partial combination (m) is the first of the other partial combination (), and
so that the final rays of the one partial combination are the initial rays of the other, then the
functions V, 7, (but not in general W,) for the total combination, are the sums of the corresponding
functions for the partial combinations : it follows also from the general expressions for the
variations of these functions, that the intermediate variables, belonging to the last medium of
the first partial combination, or to the first medium of the second, are to be eliminated from the
sum, by the condition of making that sum a maximum or minimum with respect to them.
Analogous remarks apply to compound combinations, composed of more than two component
combinations. These properties of the functions V, T for total or resultant combinations, will
be found useful in the theory of double and triple object-glasses, and other compound optical
instruments.t

@)

Changes of the Coefficients of the Second Order, of V, W, T, produced by
Reflexion or Refraction.

12. With respect to the changes produced by reflexion or refraction in the coefficients of the
second order, of the characteristic function V, and therefore also of the connected functions W, 7,
they may be deduced from the following formula, analogous to (C7),

SBAV = 8% . M= A8%u + 200\ 8u; : (R7)
u, A, having the same meanings as in (B”) (C7); and the multiplier A, which was introduced also
in the First Supplement, and was there regarded as a function of the final coordinates , y,
being now considered as involving also the initial coordinates ', 9/, 2/, and the chromatic
index . The seven variations &z, &y, 8z, 8a', 8y, 82', &, may be treated as independent in (R7),

* [To the expressions for 7" and W there must be added the sum of the sudden increments in 7’ across the

reflecting or refracting surfaces.]
t [The above arguments form the basis on which No. xxr is developed. See Appendix, Note 17, p. 492.]
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if we assign a proper value to 8\, as a linear function of these seven variations; so that we may
deduce from (R7) the seven following equations,
3V du & du

3% —7\8%+8—w8u+&8x,

8V=7\.8§'—‘+g}8u+8—u87\;
y Oy

Ad

Ad

Sy T oy
A8%=x8%+%8u+2—28x; , ()
A8g=%8u; A§g=g—;8u; A8g=g—:—;8 :
AS%’:%&“ |

of which each may again be decomposed into seven others. But of the forty-nine expressions
thus obtained for the changes of the twenty-eight coefficients of V" of the second order, only
twenty-eight expressions are distinct; and these involve seven multipliers as yet unknown,
namely, the seven partial differential coefficients of A: however we can determine these seven
multipliers, and the twenty-eight coefficients of ¥, of the second order, by introducing the seven
additional equations obtained by differentiating the partial differential equation (F7), with
respect to @, y, 2, &', ¥, 7, x.

The differential of the equation (F7) is

80, 8V, 80y 8Vy 805, 8Vy 8Dy 8as 8Dy  ag *
and this, when combined with the three first equations (S7), conducts to the following formula,
80, 8Vy 80 8Vy 803,83V 8 80y 8Q, 80,

0—8—.-875 +-8;:8—8—y—+-s—ws—8—z—+—8;8w+—-8?8y+—8—z‘82+ SX 8x

80, (Su | 80y (8u 80, Ou
(5o B0y B 002)
80y 8N | 80, 80, 80, 6N
o0 (o bt T By B )
; 80, Su 80, du 80. 8“ . 7
+8X-(r"$+—8:;8—y+—8‘;8—2); (U7
which resolves itself into seven separate equations, sufficient to determine the seven multipliers

mon B BB BB
Sz’ &y’ &2’ & & & oy
Three of these seven equations into which (U7) resolves itself, give, by a proper combination,

a value for the trinomial
30,51 , 80,5  80; 01
8oy 8z ' 81y 8y Suy 82’
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which enables us to eliminate that trinomial from (U?) and so to deduce a value for &\, which

being combined with (R?) gives,

i Bﬂz)z (Siv_l #
(80’ 2 83’)2

y 82_u) L 28080, <a= Vi

8Q, (82V, xﬁz_“)‘
88) T % Bry Sup \8ydz T M5y8z
892 8 82V1 82 805 802 8 Vl 82u
+(s_72> (8—y2 g > )* Suli Beny (828.70 "W) o
b
802 ® 82V1 S%u 892 802 &2 Vl S2u
+(m) (W hd 8z2>+ 280-2 87y (BxSy )‘820—85)
L3080, 50,50, , 50, 30,
80‘2 8.'1: 8'7'2 8y 8U2 85 /
o (8Qs du 80 du | 8Q, Su
‘2(372870+Esg7 o 52) O
803 ) Vl ) 892 B Vl du 892 ) V] ou
il (8 3 “8890) v (8 ok o 7 ) e (8 e )
L80y 804, 80, 80,
8387 7 8"'8 8y+8 8+8 dx

= (527, — 82V, — A &%) (802 Su 80 0u 80, 3u>z' o

Sos 0z | Brs 3y | Sus 85

a formula that is equivalent to twenty-eight separate expressions for the twenty-eight co-
efficients of V3, of the second order. This formula supposes the rays to be reflected or refracted
into a variable medium; but it can be adapted to the simpler supposition of reflexion or

refraction into an uniform medium, by merely making the quantities %%‘, %%?, %, vanish,
Whether the last medium be variable or uniform, the formula (V7?) gives,*
8%V, =8"V;; (W7)

&' referring, as in former numbers of this Supplement, to the variations of ', 3/, 2/, y, alone, that
is, to the variations of the initial coordinates and of the colour; and the final coordinates
z, ¥, z, being those of any point on the reflecting or refracting surface. Thus the ten differential
coefficients, of the second order, of the characteristic function V, like the four of the first order,
taken with respect to the initial coordinates and the colour, undergo no sudden change by
reflexion or refraction; but the differential coefficients of both orders, which involve the final
coordinates, take suddenly new values which we have shown how to determine: and from these
new coefficients of V, we can deduce those of W and 7, by the methods of the foregoing numbers.
The coefficients thus found, of W, and T}, remain unchanged through the whole extent of the
last reflected or refracted portion of the ray, when this last portion is straight, the final medium
being uniform ; but the coefficients of V3, of the second order, change gradually in passing from
one point to another, even of this straight portion, according to laws deducible from their con-
nexion, already explained, with the constant coefficients of W,.

* [This follows since « is independent of /, g/, #, x ; but (W7) is obvious from (A7).]
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The coefficients of Wy and 7 of the second and higher orders may also be calculated, whether
the last medium be uniform or variable, by differentiating the expressions (N7), and eliminating
the variations of @, 71, v1, by the help of the conditions already mentioned, of maximum or
minimum.

Another method of calculating the changes produced in the partial differential coefficients of V"
of the second order, by reflexion or refraction, ordinary or extraordinary, into a medium uniform or
variable, is to develope the second differential of the general formula (A7), considering AV as a
function of the seven variables @, y, 2, 2, ¥/, 2/, x, and considering @, ¥, 2, as themselves functions
of two independent variables; for example, considering 2 as a function of @, y, of which the form
is determined by the equation of the reflecting or refracting surface. In this manner we obtain,
besides the formula (W?), which is equivalent to ten equations, the eleven following ;

o BAV BAV S 8AV §_z)ﬂ SAV 8% |

= TPt 58 (Sx 8z 8a’
AV | BAVE:  SAV (82\* AV

9= A unnt s (@) o 5

o DAV BAVE: BAVE: AV S8 SAV ¥

" dady  bwdz by  Sydzdw ' 82° 3:1:8y+ 8z daudy’

0 DAV BAVS:  BAV AV S J
Su8x 8204 8z’ - dyda ' Sadal By’ f (X

o SAV BAVE: . BAV FAVS:.

~ Sady’ ' 828y ba’ _8y§y 528y 8y’

o SAV BAVE: o BAV SAVE:

“owsr v 85287850 U byds T 8287 5y

o BAV BAVEs o BAV PAVS:
Saby T 820y 8z’ | byby T 826y 8y’ )

" which may be put under the form

eV 82V 82 8V (82\% &V &%
" {8.1;’ Ll PE P 7 (&) + 3 Sw’} (Y7)
&e.;
and are deduced by differentiation from the analogous equations of the first order
8V 8V s\, 8V 8Vé:z
ey A(Sa: 73 IRy A(8y+ 73 Sy) @)

And the eleven equations thus deduced, when combined with the ten given by (W7?), and with
the seven into which (T7) resolves itself, suffice, in general, to determine the twenty-eight
coefficients of V3 of the second order.
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Changes produced by Transformation of Coordinates. Nearly all the foregoing
Results may be extended to Oblique Coordinates. The Fundamental Formule
may be presented so as to extend even to Polar or to any other marks of position,
and new Auxiliary Functions may then be found, analogous to, and including,
the Functions W, T': together with New and General Differential and Integral
Equations for Curved and Polygon Rays, Ordinary or Extraordinary.

13. In all the foregoing investigations, it has been supposed that the final and initial co-
ordinates, @, y, 2, &', y', 2, were referred to one common set of rectangular axes. But since it may
be often convenient to change the mode of marking the final and initial positions, let us now
express the old rectangular coordinates as linear functions of new and more general coordinates
%,Y,, 2,,and @/, 9/, z/, which may or may not be rectangular, and may or may not be referred
to one common set of final or initial axes. For this purpose we may employ the following formulz,

&= Ty + X, &) + Xy, Y, + 2,,2,; b

Y=Y+ Y2, % +¥.Y +Y:.%;
2=20+ 25,2, + 2,Y, + 2,,2; (As)

’ ’ ! ’ Al ’ 4 ’
=2 +& 5@ + 2y, T2

Y=y +Yua +yyy +y4;

4 ’ 4 ’ ’ ’ ’ ’
2 =20 +24% toyuY t2,% ;)

in which each of the eighteen coefficients of the form , is the cosine of the angle between the
directions of the two corresponding semiaxes, so that these coefficients are connected by the six
following relations, on account of the rectangularity of the old coordinates,

U ’
Tt Yt 2a2=1; TPty t+2 =1,
e g ’ .
ity t+al=1; oP+y,r 42, =1, (B%)
& ’ ' 4
lez + yzlz + Zzlz = 1 ) &@X z"2 + y z"2 + 2'5/2 = 1.

Let us also establish, according to the analogy of our former notation, the following definitions
similar to (P),

dz, dy, dz,
al:%’ B]="—iyg9 'Y/‘:—d—S:]
8
T e e
e i fiadin T LR e T
and the following, similar to (E),
R SR £ b
WV ege MR
D8
R Al e St
TR U g v
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we shall then have
@ =a,z, + B,y + v,2;,;
B= @Yy, + Blyy, + %Yz,
Y= 2+ BIZ!I, +9 2,

o = al’ w'c,’ o Br' “"’y,’ v 'YI’ "EIZ,' 3 [ (ES)
B = a;' y'w,’ T Br’y’y,’ + o) ylzf >
7' g ar' z’m,’ +8/ z,y,' " 'Yl' z,z,' "y
and
0, =0y + T, + V23 0/ =00y + 7Y+ V705
T, =0xy, +TYy, ey T =00+ 1Y+ VD (F%)

v, =00+ Y, +v2,; v =d'dy +1yY 4+ V.

And if, by substituting in the former homogeneous medium-functions, v, ', the expressions (E®)
for @, B, v, @, B, o, we obtain v under a new form, as a homogeneous function of «,, 8,, v,, of
the first dimension, and ' as a homogeneous function of the same dimension of &/, 8/, v/, and
then differentiate these new forms of v,v’, with reference to their new variables, we find, by (E®),
the following relations between the new and the old coefficients,

Sv  dv v v )

3a,~ 8a "ot 5g Yot 5 %0

B b B b

58, Sa 8,33/"‘ s,yzv,:

S & & v

§_%=—m,,+g5y,,+yz,l;

a8
& &, &, &' 1 1en
Sa7 37 Vet gg Yot gy Vel
& &, &' &',
8;, 57 v +sﬁli'ly +svrzv:
&' Sv’ 81; b O

By =82 T T ag Y gy T
from which relations, combined with (D’) (F®), and with the equations (B) (E), of the second
number, we obtain the following generalisations of the equations (B),

8V dv SV Sv 8V v,
r 8“ 8.'/, sﬁr -S;I 8'7:

/ (H?)
L B el SV 8 8
5z "8’ T8y OB T8 by’
and therefore the following important generalisation of the fundamental formula (A),
v v v .
8V=——8a:, $8z,+858, 813 8 +&Y8 3—,82,, (I#)

which is thus shown to extend to oblique coordmates and not even to require that the initial
should coincide with the final axes.
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We may adapt nearly all the foregoing reasonings and results, of the present Supplement, to
this more general view. We have, for example, partial differential equations of the first order in
V, analogous to the equations (C), and of the form

Gr | g% 8T
8-@, ) By, ) 82, s @y Yys 2y X))

Ao nag i S TS NER e R
O=QI <_Sw_,"_m’_§z7’$”y"z“x)’

0=0,(
(K*)

which conduct to a partial differential equation of the second order, analogous to (D): and if we
put the equations (K8) under the form

0=9Q, (a,, Ty YUy &py Yys 2 X);} (La)

A L S e e R
O=Q, (0'”'7‘,,'1,,40,,?/”2,:%),

and suppose them so prepared, by the method indicated in the second number, that the function
Q, + 1 shall be homogeneous of the first dimension with respect to o/, 7,, v;, and that Q,/+1
shall be homogeneous of the same dimension with respect to ¢/, 7/, v/, we shall have

a, 8%, B, 8%, v, _ %0,

PR T T T T

o! B0 o8l BOE . wbt By

vl o 81},’ b

)

(M°)

vl L3 80’/ bl 'U' g 87‘,’ )

with many other relations, analogous to those of the second number. The differential equations
of a curved ray, ordinary or extraordinary, in the third number, may be generalised as follows,

db by dbn_ b dbn b i
dsda, 8z’ dsdB, &y’ dsdy, 8z’

and their integrals may be extended to oblique coordinates, under the form,

(%:7/: = const.; %7 = const.; _8? = const.: | (08)
while, if the final portion of the ray be straight, we have also, for that final portion,

g = const.; %’f = const.; %—Z = const. (P9)

The formula (A7) of reflexion or refraction, ordinary or extraordinary, namely,
AV =0,

extends to oblique co-ordinates; and if we introduce new auxiliary functions W,, 7, analogous
to W, T, and defined by the new equations

VV;=“V+$/°':+leI+z;vn } (QB)

ik ¥y gL ke
T, _Wl—wl o =Y T =45y,
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analogous to the definitions (D’) (E’), and attend to the meanings and properties of the symbols
a,, T, v, a/, 1/, v/, we shall obtain the following expressions for the variations of V, W,, 7',

3V

8V =g,80,—0a,/0a +7,8y,—7,/8y, +v,02,—v/d2+ 3x dxs
’ 4 ’ ’ ’ ’ 8V
SW,=a,8a,+0,/8x, +y,87, +7,/8y +2,8v,+v/82 — X dx;

8T, =u,80,—a/'da) + 4,81, —y,/ 87 +2,8v,—2/dv, — %;-’8)4;

(B)

which resemble the expressions (A’) (B’) (C’), and lead to analogous results. Thus, the partial
differential coefficients of the new auxiliary functions W,, 7,, may be deduced, by methods
similar to those already employed, from the new coefficients of the characteristic function V,
which may themselves be deduced from the old coefficients of that function, by the following

general formula,

B @ ) R & @)
" (w,, 8% +Ya, LI 2, Si)‘ (w',', 8%’ gl 8%’ S 53;, )“

) il i AL S A
(‘”v,s_‘,c"'yy.@'*'zv,gZ) (“’v,'&?'*'yv.’s-:yr'*'zy,'s‘;)

) ) S\ w8 RN p i"S’_V
(a’z,s—“z'*"yz,s_z;‘}’zz,'a_z‘) (zz,'s'fni""?/z,'gy‘;'i’zz,'szr) axz-J

and the equations of a straight final ray may be put under the forms,
1 L AT SWA 1., 8W,
2% =B 3) 5l %):
1 3TN\ 1 87T\ _ 1 87,
55 ) "5l 55l &)
while those of a straight initial ray may be put under these other forms,

S i) i) - (48

1

(%)

(T%)

(U9

these new equations (T%) (U®) being analogous to (I%) and (P?). It is evident that the arbitrary
constants introduced by these transformations of coordinates must often assist to simplify the
solution of optical problems. In the comparison, for example, of a given polygon ray, ordinary or
extraordinary, of any given system, with other near rays of the same system, it will often be
found convenient to choose the final portion of the given polygon ray for the axis of 2, and the
initial portion for the axis of 2/, 4 choice which will make ¢,, 8,, ¢/, B/, and many of the new
partial differential coefficients vanish, without producing, by this simplification, any real loss of

generality.

~ We may even carry these transformations farther, and introduce polar coordinates, or any
other marks of initial and final position, and still obtain results having much analogy to the

HMP
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226 IV. THIRD SUPPLEMENT 13

foregoing. For if we suppose that the final coordinates @, y, z are functions of any three quanti-
ties p, 6, ¢, and that in like manner the initial coordinates 4, y', 2’ are functions of any other
three quantities p’, &', ¢', so that

Sz Sz dz Sz ox Sz B
8a;=8—8p+ 80+8¢8¢>, da:--8 dp + 55 d0+8¢d¢

% & gy8p+8y80+8¢8¢ dy=Yap+ a0+ i,

5 56

b =0+ 2500+ 2209, de =3 dp 4 2 d0+ 22 i,
5p 56 5p z 5 ek
ox’ Sz’ o'

&c—a—,s +80'89+8¢8¢ dw_s,dp+80,d9 8¢d¢

8y = 23/,3 + 50+ 83) Bats gy '+ ap + ¥ ag,

86’ <;b
&7 82 &2’ o7’ 87
’= wkte) ’ ’ 15 I d
8z SP,S 80’80 8¢> 8¢, dz S’d +80,d€ 56 ¢,

we may consider V as a function of p, 6, ¢, p, €', ¢, , obtained by substituting for =, y, 2,
@', y', 2, their values; and if we substitute also the values of dz, dy, dz, in the differential dV,
or vds, which was before a homogeneous function of the first dimension of da, dy, dz, such that
by our fundamental formula*
8V _8.vds _&v 8V )
8z~ 8dz  Sa Sz’
odV d.vds &v &V
C-Srpmfhitnfn gy~ Rl e We
&y~ &y 8B &y’ v
0dV _8.vds & 3V
Sz T 8dz 8y oz’

we may consider this differential d V' = vds as becoming now a homogeneous function of dp, d@, d¢,
of the first dimension, such that

S.vds _8dV _8Véx &V ou 8V oz 8V
8dp T ddp T 8w dp By % T 82 5 T 5
S.vds _8dV 8V éx &Vdy 8V éz 8V
Sd9 ~8d0 sz o0 syse 5 50 89°
S.vds _8dV &Véx 8V8y 8V éz_8V
Sdp odp  ewdp T Sydsp T 5254 8¢ )
the symbol d referring still to motion along a ray. In like manner we may consider the initial
differential element of ¥, namely +'ds’, as a homogeneous function of the first dimension of
dp’, df’, d¢’, and then we shall find that the partial differential coefficients of the first order of
this function, are equal respectively to
8V sV sV
& T T8

~

(X%)

* [The symbol %? means the partial derivative of the form dV with respect to da.]
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we may therefore generalise the fundamental formula (A) as follows
8. vds 8.vds 8.vds

8V = =50 0+ =5z 80 + 54 9
8.vds s, 8.0ds y, 8.0dS ., 8V i

And the auxiliary functions W, 7', correspond to the following more general functions,

8V . &V .. 8V B BV LW sV 8V 8V
—V+p8—P +0@+¢$, and —V+p$+987+¢8$+p8? + 0 s T ¢ Pk

of which the first may be regarded as a function of

8_.V E_V. S_V ’ 0; ’
SP, 80» 8¢) P> ) ¢: x>

and the second as a function of

sV 8V &V 14 14 14

'g;: 8_0: 8_¢’ —a—pls —W: —8—(51’ X-
It is easy also to establish the following general differential equations of a curved ray, ordinary
or extraordinary, and the following general integrals analogous to and including those already
assigned for rectangular and oblique coordinates,

SV 3V 8V 8V . 8V 8V
8dp ~ 8 ' " oA 80’ " &y ¢ )
14 SRt 1y s | Ak

8_p’ = const.; 50 = const.; ga, = const.

General geometrical Relations of infinitely near Rays. Classification of twenty-
Jour independent Coefficients, which enter into the algebraical Expressions of
these general Relations. Division of the general Discussion into four principal
Problems.

14. It is an important general problem of mathematical optics, included in that fundamental
problem which was stated in the second number, to investigate the general relations of infinitely
near rays, or paths of light ; and especially to examine how the extreme directions change, for any
infinitely small changes of the ewtreme points, and of the colowr: that is, in the notation of this
Supplement, to examine the general dependence of the variations e, 88, 8y, &a’, 88’, &/, on
8z, 8y, 8z, 82/, 8y', 8, 8x. This important case of our fundamental problem is easily resolved
by the application of our general methods, and by the partial differential coefficients, of the two
first orders, of the characteristic, and related functions: it may also be resolved by the partial
differentials of the three first orders, of the characteristic function ¥ alone. For from these we
can in general deduce six linear expressions for 8a, 883, 8y, &<, 84’, 8y/, in terms of 8z, 8y, 8z,
8a/, &y, 8z, &y, involving forty-two coefficients, of which however only twenty-four are
independent, because they are connected by fourteen relations included in the formula
ada + BB+ 48y =0, d’8c’ + B'8B' ++'8y' =0, and by four more included in the conditions

29-2
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228 IV. THIRD SUPPLEMENT [14

that the final direction does not change when the initial point takes any new position on the
given luminous path, nor the initial direction when the final point is removed to any new point
on that given path.

Thus, if we employ the characteristic function ¥V, and the final and initial medium-functions
v, ¥', we have, by (B), the following general relations :

LY 3-317 Bif e B ¥ b 28
5~ %5’ 7Sl it ™ f
i sing, _8§_I_f_83_v_ 37 S
8/ 8" 8:’/'_ 83/, 8/ 8['J

in which, by the last number, we are at liberty to assign different origins and different and oblique
directions to the axes of the final and initial coordinates, if we assign new and corresponding values
to the marks of final and initial direction, e, B, v, @, 8, #/, so as to have still the equations (P),
dz dy dz ) it 5
e B“%) 'Y‘—d_s, a_W’ B = ds" 'Y—E;_/z
ds being still the final, and ds’ the initial element of the curved or polygon path. We may
suppose, for example, that both sets of coordinates are rectangular, but that the origins of the
final and initial coordinates are respectively the final and initial points of a given ordinary or
extraordinary path, and that the positive semiaxes of z 2’, coincide with the final and initial
directions, so as to give

2 =0, g=0,.2=006=0 820 yod by =0;}

B9
#=0, Yy=0, 7=0, /=0, B=0, =1, 8/ =0; (B2

and then the six equations (A®), of which only four are distinct, reduce themselves to the four
following,

o% &V BV )

53 28a+8a838’3_8w8w pfiadt > 7ol +(8w8x 8a8x> X

SV s BV S 3% By
+(W‘m>3”+(w"m>3y+(sm 5a57) 5%

&% (ol 32V &%

5238 +8328B_8y8 poallip s omy +<8y8x_8,88x)8

i) (- (-

dwdy 6B06 oy?  8Bdy oy oOB¢ )
M7 98 8V SV SV &
~541%% ~ 5758 P = 5uta 8“83/3 %y +(8w s +8a'8x> X

+(82V 8%’)8 +(82V -ﬂ)gy'_(&’ 8%')82’

5 T 35 8’8y " 8 Sy’ oz’ od' 67
o' i Ol oV o2V oV o'’
~ 57858 2% ~ 553 F =gasy Ot 55y +(m+m)
eV %' 3 R i &%’ ',
g (8.70’8 ' 8B 8 ) g (83/2 t 5oy 888y’ ) kSy oB's ) . /
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they give therefore, by easy eliminations, expressions for 8, 88, 3c', 88', of the form

da da da Sa da \
8—8:c+8 8y+8 8z+ ; oo’ +g-,8 +8—8x,

83_838 +§B8y+§8z+§§,8w'+~8—é8y'+%§8

S’ o’ da’ Sa’
8,8 +'8_'8 +8'8 +8—8 @ + y8y+8xsx

da =

(DY)
o =

8/3' 8B’ 3B 8B’ 8B 88’
8B =<y 8a' +8'8 +8'8 + 8 8+§§/~8y+sx8x,J
which involve twenty-four coefficients, and enable us to determine the general geometrical
relations between the final and initial tangents to the near luminous paths.

If the extreme media be ordinary, that is, if the functions v, ¢/, be independent of the
directions of the rays, we have

v=pN(@+ B+, v =p W@+ B+, (E)

u, ¢’ being functions of the colour y, of which u involves also the final coordinates, and 4’ the
initial coordinates, when the extreme media are atmospheres: and then the equations (C?)
reduce themselves at once to the following expressions of the form (D?),

b =, (5 %ot g 8y8 Y+ 530 g +sisv'8 +i§isx) )

58 = (88’;;3 +88;,’8 +g"8 2+ 550 SV,S +8§8V,8 +§gv:8x) :
"8 = — (g’zs ' 882;"8 J gﬂ"s +8§:8V' 8w+3§8w 8y+&i I‘;sz) E
08 = = 1 (seray 30 + gyred¥ = oy + s 00+ 5y 57 3+ gy B0)

In general we see that the twenty-four coefficients of the expressions (D?) can easily be deduced,
by (C?), from the partial differentials of the two first orders of the characteristic function ¥, and
of the extreme medium-functions v, »": we have for example

oa 18’»(8”1’ S’v) 1 & (SﬂV

BN

Sz~ v 6p2\ 822 T Sabz) v Sadp SwSy 868)

da 1 &% 8V &% 1 &%

8y o 5B (8z8y SaSy) v’ SaSB( oy? SﬁSy) @)
Sﬁ_lSLv oV oy 1. % BV . M

8z v’ 8a? (sty 8ﬁ8x) v’ SaSB(W e &T&'l_:)'
8_3=l3_'"(8’V _E";)_l__s’" (ﬂ_i’”_)

sy ' 82 8BSy) ' badB\bzby bady)’

»"" having the same meaning as in the tenth number. The same twenty-four coefficients of (D?)
may also be deduced (as we have said) from the partial differentials of the two first orders of the
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other related and auxiliary functions: or even from the partial differentials of the three first
orders of the characteristic function ¥ alone. Let us therefore suppose that these twenty-four
coefficients of the expressions (D?) are known, and let us consider their geometrical meanings
and uses: that is, their connexions with questions respecting the infinitely small variations of
the extreme directions or tangents of a luminous path, arising from variations of the extreme
points and of the colour.

In discussing these connexions, it is evidently permitted, by the linear form of the differential
expressions (Df), to consider separately and successively the influence of the seven variations
8z, 8y, 8z, 8a', 8y, 82, Oy, of the extreme coordinates and the colour, or the influence of any
groupes of these seven variations, on the four variations 8a, 883, 8¢/, 88, of the extreme small
cosines of direction. Thus, if it be required to compare the extreme directions of a given path
of ordinary or extraordinary light of the colour y, from a given initial point 4 to a given final
point B, which path we shall denote as follows,

(4, B),, (H®)
with the extreme directions of an infinitely near path of infinitely near colour y + 8y from an
infinitely near initial point A4’ to an infinitely near final point B’, which near path we shall in
like manner denote thus

(A’r B,)x+3x) (Ig)
we may do so by comparing separately the extreme directions of the given path (4, B), with
those of the three following other infinitely near paths;

ist. (A4, Blia; 24(A, By 8d. (4% B): (K?)
which are obtained by changing, successively and separately, the colour v, the final point B, and
the initial point 4. We are therefore led, by this consideration, to examine separately and suc-
cessively the meanings and uses of the three following groupes, out of the twenty-four coefficients
of (D%):
88 o OB .
8’ &’ &’
o de . be 08 BB 88 8« A A8 S
2d groupe A A o S A e T L (L?)
Oa 1 8a (BB I BB ON Bl BRl L8E 88
3dgr0upe %, S_y_', g, @,, 'S?, s——y,, -87, —8_.507’ S_yi" S—Z,.
But we may simplify and improve the plan of our investigation, by means of the following
considerations.

Of the three comparisons, of the given path (H?) with the three near paths (K?), the third is
evidently of the same kind with the second, and need not be treated as distinct; because, of the
two extreme points of a luminous path, it is indifferent which we consider as initial and which
as final. We may therefore omit the third comparison (K?®), and confine ourselves to the first and
second, that is, we may omit the consideration of the third groupe (L?), in forming a theory of
the general relations of infinitely near rays. For a similar reason we may omit the consideration
of the two last coefficients of the first groupe (L°), and so may reduce the study of the whole
twenty-four to the study of half that number.

e
1st groupe e

On the other hand, the second comparison (K®) may conveniently be decomposed into two: for
instead of the arbitrary infinitesimal line BB’, connecting the given final point B with the near
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point B', we may conveniently consider the two projections of this line, on the final element or
tangent of the given luminous path, and on the plane perpendicular to this element: that is, we
may put

BB""= BBy + BBy, (M?)
BB, being the projection on the element, and BB;s the projection on the perpendicular plane,
and we may consider separately the two near points By, Bs, upon this element and plane, and
the two corresponding paths,

(A) Bd)x’ (A’ BB)x) (NB)
instead of considering the more general near point B, and the near path (4, B),. In this manner
we are led to consider separately, as one subordinate class or set, suggested by the path (4, Bqy),,

the system of the two coefficients g%, g’—f-; distinguishing these from the eight other coefficients

of the second groupe (L?), which correspond to the other near path (4, B;),; and these eight
may again be conveniently divided into two distinct classes, according as we consider the changes
of final or of initial direction.

We are then led to arrange the twelve retained coefficients of the expressions (D?), in four
new sets or classes, suggesting four separate problems:

First set o ) = ; Second, §¢_z’ 8—/8-;
ox’ oy o0z’ Oz "
Phioke .. &5 S SE S PR % B

g ’ gy ’ _8?0- ) F’y ) _8; ) 'S?y" ) 8_{6 ’ 3:1; .

In each of these four problems, the initial point is considered as given, and may be supposed to
be a luminous origin, common to all the infinitely near paths of which we compare the extreme
directions. In the first problem, the final point also is given, but the colour y is variable; and
we study the final chromatic dispersion of the different near paths of heterogeneous light, con-
necting the given final point with the given luminous origin: whereas, in the three remaining
problems, the light is considered as homogeneous, but the luminous path varies by the variation
of its final point. In the second problem, the new final point Bj is on the original path, or on
that path prolonged; and we examine whether and in what manner the final direction varies, on
account of the final curvature of that original path. In the third problem, the new final point
B; is on an infinitely small line

81=BB;, (F?)

which is drawn from the given final point of the original path, perpendicular to the given final
element of that path, namely to the element

ds = BBy; Q)
and we inquire into the mutual arrangement and relations of the final system of right lines
which coincide with and mark the final directions of the near luminous paths, at the several near
points B; where they meet the given final plane perpendicular to the given element ds. In the
fourth problem, we consider the initial system of right lines, which mark, at the luminous origin,
the initial directions of the same near paths of homogeneous light; and we compare these initial
directions with the positions of the points B;. Let us now consider separately these four principal
problems, respecting the geometrical relations of infinitely near rays.
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232 IV. THIRD SUPPLEMENT [15

Driscussion of the Four Problems. Elements of Arrangement of near Luminous
Paths. Awis and Constant of Chromatic Dispersion. Axis of Curvature of
Ray. Guiding Paraboloid, and Constant of Deviation. Guiding Planes, and
Conjugate Guiding Axes.

15. The first of these four problems, namely that in which it is required to determine the

o8

final chromatic dispersion, by means of the two coefficients 88702, Sx’ is very easily resolved: since

we have the following equations for the magnitude and plane of this dispersion,

TRANET S &
Final angle of chromatic dispersion =8y ; &= \/ o ) + (ﬁ@) :

Sx
Final plane of dispersion..................... Y 88; %i

We may geometrically construct the effect of this dispersion, by making the given final line of
direction of the original luminous path revolve through the small angle £8y, in which £ may be
called the constant of final chromatic dispersion, round the following line which may be called
the axis of final chromatic dispersion,

(R?)

2 oy =0, z2=0. (89

The second problem, which relates to the final curvature of the given luminous path, is
resolved by the analogous equations,

750\2  /SR\2
Final curvature of ray = \/ (‘;—Z) + i—f) ;

Plane of curvature......... Y g—: 88’5

(T°)

we have also the following equations for the axis of curvature, that is, for the axis of the circle
of curvature, or of the final osculating circle to the gi.en luminous path,

B | .
8 ik R it O 0: (U®)
and in all these equations of curva,ture we may, consistently with the notation of the present
Supplement, express the coeﬁ&'cients 8 / 8’8 by the symbols ?]_ le, because they relate to
motion along a given luminous path. It is evident that these coefficients vanish, when the final
portion of this path is straight. But when this final portion is curved, we may geometrically
construct the effect of the curvature on the final direction, by making the final element ds
revolve through an infinitely small angle round the final axis of curvature.

The two remaining problems are more complicated, because each involves two independent
variations &z, 8y, namely the two rectangular coordinates of the near point B; on the final plane
of #y, which point is considered as the final point of a near luminous path. The equations of the
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15] IV. THIRD SUPPLEMENT 233
right line, which is the final portion or final tangent of this near path, are

w=8m+z(§%8w+—8—q Sy),

oy
(V*)
3 S
y=8y+z(§gb‘w+ 5383/);

and the equations of the right line, which is the initial portion or the initial tangent of the same
near path, are

p) I (g_: Sz + %;— 83/),
§a ¥ S BI 8 BI

y =2 (%—8w+ WSy)-
Our third problem is to investigate the geometrical relations of the system of right lines (V?),
which we shall call final ray-lines, with each other, and with the coordinates 8z, 8y; and our

fourth problem is to investigate the connexion of the same coordinates or variations with the
right lines of the system (W?), which may be called initial ray-lines.

The third problem may be considered as resolved, if we can assign any surface to which the
final ray-lines (V?) are normals, or with which they are determinately connected by any other
known geometrical relation. Let us therefore examine whether the ray-lines of the system (V)
are normals to any common surface, which passes through the given final point of the original
luminous path. If so, this surface may be considered, in our present order of approximation, as
perpendicular to the final rays themselves. Now, in general, when rays of a given colour diverge
from a given luminous point, and undergo any number of ordinary or extraordinary and gradual
or sudden reflexions or refractions, they are, or are not, perpendicular in their final state to a
common surface, according as the following differential equation

adz+ B8y +y8z=0 (X?)

is or is not integrable; and if there be any one surface perpendicular to all the final rays, there
is also a series of such surfaces, represented by the integral of this equation, Hence, in the
present question, the normal surface sought is such, if it exist at all, as to satisfy the conditions
8z=0, and

(W9)

82+ 8adx+ 888y =0; (Y?)

that is, if it exist, it must touch the given final plane of #y, and must have contact of the second
order with the following paraboloid, which may therefore in our present order of approximation
be employed instead of it,
S S & 8B
2z+8—ww’+<§/+3; wy+87y’—0. (7
The normals to this paraboloid, near its summit, that is, near the final point of the given
luminous path, or the origin of the final coordinates, have for their approximate equations,

z=8z+2 (S_a‘ 83+§(—l Sy) + zn.8y,
S oy (Am)
b 8
y=8y+z (£8¢+ 8’—;8;1/) —zndz,
HMP 30
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234 IV. THIRD SUPPLEMENT [15

if we put for abridgment

{38 da\ . 10
n=1(5 -5) (BY)

they coincide therefore with the ray-lines (V°) when the following condition is satisfied,
88 _da 10

which is in fact the condition of integrability of the differential equation (X?), because we have
made @, B vanish by our choice of the axis of z. The condition (CY) is satisfied, by (¥*), when
the final medium is ordinary; and in fact the final rays whether straight or curved are then
perpendicular to the series of surfaces represented by the equation

V = const. : (6B

which is, for ordinary rays, the integral of the equation (X?), and gives, as an approximate
equation of the normal surface at the origin, the following,

8V 8V 4
- 2 b i e L AR AL 10
0=08V+ 48V, or O—pz+1}8w2w2+8w3ymy+§8yzy, (Ev)
agreeing, by (F?), with the equation of the paraboloid (Z°). In general, the condition (C') for
the existence of a normal surface, may be put, by (G®), under the form

&% (82V 8%) &% (821/' 8%)

82 \8z8y ~ 6B8z)  8adB \8a2  Sada
Sudtgt BAV 1) 1 O% 2y (82V %W \ u
B (a“w&y i SaSy) " 8adp (&7 " 8352/) : ()

and it is not satisfied by extraordinary rays, except in particular cases. We may however always
consider the paraboloid (Z°) as an auxiliary surface, with which the final ray-lines of the
proposed system (V?) are connected by a remarkable and simple relation. For if we take the
rectangular planes of curvature of this paraboloid for the coordinate planes of zz, yz, and
denote the two curvatures corresponding by 7, ¢, so as to have the following form for the equation
of the paraboloid

z=4%ra® + §ty? ’ (GY)
we shall satisfy the condition
da < 88 _ 0 H1o
T ik o
and may employ the following expressions for the four coefficients of our problem,
da Sa _ 5B _ B <l $t (10)

B RS R T TR

the ray-lines of our system (V?) may therefore be thus represented

z =8z — z (rdz + ndy),
(K1)
y =8y — z(t8y —ndz),
while the normals to the paraboloid are represented by these equations
xw=0w—2rdx, y=~0y—=ztdy; (LAY

www.rcin.org.pl



15] IV. THIRD SUPPLEMENT 235

from which it follows that the angle dv between a ray-line (K'¥) and the corresponding normal
(L) may be thus expressed

Sv=ndl, in which =822+ 82, (M)

8! being the same small line BB; as before; and that the plane of this angle 8», or in other
words, the plane containing the ray-line and the normal, has for equation

@duw +ydy = 81* — z (rda® + t8y*): (N¥)
this plane therefore contains also the right line having for equations

312

=5t + oy @

zdx+ydy=0, 2z
that is, the axis of the osculating circle of curvature of the normal or diametral section of the
paraboloid, of which the line 8/ is an element; and the normal may be brought to coincide with
the ray-line by being made to revolve round the element 81, through an angle 8v proportional to 81,
and equal to that element multiplied by the constant n: the direction of the rotation depending on
the sign of the constant. On account of this simple law of deviation of the final ray-lines from
the normals of the paraboloid, we shall call this paraboloid the guiding surface: and the constant
n, we shall call the constant of deviation. And we may consider this theory, of the guiding
paraboloid and the constant of deviation, as containing an adequate solution of our third general
problem, in the discussion of the geometrical relations of infinitely near rays: since this theory
shows adequately the general arrangement of the final system of ray-lines (V?), and the geo-
metrical meanings of the third set of coefficients (O®), namely,

ba du 3 38
oz’ &y’ 8z’ 8y’
The geometﬁcal construction suggested by this theory may be still farther simplified by
observing that the infinitely near normals to the guiding surface all pass through two rectangular
lines, namely, the axes of the two principal circles of curvature of the surface; it is therefore

sufficient to draw through any proposed point B; two planes containing respectively these two
given axes of curvature, and then to make the line of intersection of these two planes revolve

round the proposed small line 8 or BB;, through the same small angle 78 as before, in order to
obtain the sought final ray-line for the proposed final point.*

Finaily, to compare, as required in the fourth problem, the initial system of ray-lines (W?)
with the corresponding final points B on the given final plane, we may denote these initial ray-
lines by the equations

o =280 .cos.¢’, y' =280 .sin. ¢, (P)
if we put
8a’ =380 .cos.¢', OB =30 .sin.¢': (QY)
and if in like manner we put
8z = 6l . cos. ¢, 8y = 61.sin. ¢, (RW)

~ * [This piece of work depends simply on (V?), in which the partial derivatives may be regarded as any con-
stant coefficients. The investigation therefore deals with a general rectilinear congruence.]

30-2
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236 IV. THIRD SUPPLEMENT [156

we shall have the following relations, between ¢, ¢', &/, 80", and the fourth set of partial
differential coefficients (09),

.cos. ¢’ = ( 'cos ¢+ il sin. ¢)
(59)

¢’ .sin. ¢’ = ( ’cos ¢+8—§,sm ¢)

These relations give

88’ +§B L ¢

tan ¢ _—
AT
8 o Sy tan. ¢

(T)

they enable us therefore to determine, for any given value of ¢, that is, for any proposed direction

of the small final line &I, or BB;, the corresponding value of ¢', that is, the direction of the initial
plane of ray-lines, having for equation

y' =o' tan. ¢'. ' (U)

Thus the final line 8/ and initial plane ¢’ revolve together,* but not in general with equal
rapidity ; and arbitrary rectangular directions of the one do not in general give rectangular
directions of the other, because the conditions

8B 8 b 3

2 3 e 28+ 3 tan 4,
tan. ¢1’ bt —Sa—’ ta.n ¢2 S—IT

5ty ten % ey Pt i

¢2_¢1+2’ ¢2—¢1 -

(in which 7 is the semicircumference to the radius unity,) give the following formula for the

angle ¢y,
(I ot (2 () G- () o

which is not in general satisfied by arbitrary values of that angle. There are however in general
two rectangular final directions determined by this formula, which correspond to two rectangular
initial planes; and if we take these rectangular directions and planes respectively for the direc-
tions of #, y, and for the planes of 2’2/, y'2’, we shall have

3 8,3 10
87 A O’ 8$ ' (X )

We may also in general satisfy, at the same time, by a proper choice of the semiaxes of co-
ordinates, the following other conditions,

58’ S _ 88 &
"0 Ty (Y1)

* [Either in the same sense throughout, or in opposite senses.]
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15] IV. THIRD SUPPLEMENT 237

By this choice of coordinates, the relations (S¥) are simplified, and become

. . o0 )
8¢’ .cos. ¢’ = = .8l.cos. ¢; ke
oy | st
8¢’ .sin. ¢ —W.Sl.sm.da.
while the equations (W?) of the initial ray-lines reduce themselves to the following,
R e Sal i ROV S_B: 11
a:-zs;&v, y_ZSy 3y. (AD)

If, then, these initial ray-lines form a circular cone having for equation

o'+ y't =2280", (BY)
the corresponding locus of the final point Bj, on the final plane of ay, will not in general be a
circle, but an ellipse, having for its equation

of which, by (Y), the axis of # coincides with the least and the axis of y with the greatest axis;
and reciprocally if the final locus be a circle having for equation

8a2 + 8y = 812, (D™)
the initial cone of ray-lines will have for equation
Sa"\ 2 A
7Y ol 2 (OF 7 yrage
@ (5) +v(5) =" (EM)

so that its perpendicular sections are ellipses, having their greater axes in the plane of 2’z', and
their lesser axes in the plane of 3'z’. It is evident that a circle equal to the final circle (D)
may be obtained from the elliptic cone (E™), by cutting that elliptic cone by any one of the four

following planes, G ST BANT
s ) ey VTG -

and in like manner the four elliptic sections of the circular cone (B"), made by the same four
planes, are all equal and similar to the final ellipse (C*). In general it is easy to prove by the
equations of the initial ray-lines (AM), that whatever final locus we take for the point Bj,

represented by the equation
8y = f(8x), (G™)

' 188\ 2’ (8a’\ X
) -G o
will have four sections equal and similar to this final locus, namely, the sections by the four
planes (F1*). We may therefore consider these as four guiding planes for the initial ray, since
each contains for any proposed final curve or locus (GY) of the final point Bs, an equal and
simalar guiding curve or locus, which is a section of the sought initial cone, and by which therefore
that cone may be detarmined. If, then, we know these four guiding planes, or any one of them,
and the corresponding system of final and initial rectangular directions, or conjugate guiding
awes, of which two are determined by a guiding plane, we shall be able to construct the initial
ray-line or ray-cone corresponding to any final position or locus of the point B;. The fourth and

the corresponding initial cone
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238 IV. THIRD SUPPLEMENT [15, 16

last general preblem of those proposed above, may therefore be considered as resolved, by this
theory of the guiding planes and guiding axes.

We see then that in order to compare completely the extreme directions of any two near
luminous paths

(A’ B)x’ (A” Bl)x+8x1
in which 4 is the initial and B the final point of a given path, and 4’, B, are any other initial
and final points infinitely near to these, the following geometrical elements of arrangement, or
some data equivalent to them, are necessary and sufficient to be known.

-First. The final axis, and the initial axis, of chromatic dispersion; and the corresponding final
and initial constants § £, with their proper signs, to indicate the directions, as well as the
quantities of dispersion.

Second. The final axis, and the initial axis, of curvature of the given path.

Third. The final pair, and the initial pair, of axes of curvature of the guiding paraboloids, at
the ends of this given path; and the final and initial constants of deviation =, n'". ;

Fourth. A guiding plane for the initial ray-lines, and a guiding plane for the final ray-lines;
together with the final system and the initial system of rectangular directions, or conjugate
guiding axes, connected with these guiding planes.

When these different elements of arrangement of the extreme ray-lines are known, we can
deduce from them the dependence of &, 88, 8¢, 83’, and more generally of e, 883, &y, 8c’, 83', &/,
on &z, 8y, 8z, 8x', 8y’, 82', &x; and reciprocally when this latter dependence has been deduced
from the partial differential coefficients of the characteristic or related functions, we can deduce
from it the geometrical elements above mentioned.

Application of the Elements of Arrangement. Connexion of the two final Vergencies,
and Planes of Vergency, and Guiding Lines, with the two principal Curvatures
and Planes of Curvature of the Guiding Paraboloid, and with the Constant of
Dewviation. The Planes of Curvature are the Planes of Extreme Projection of
the final Ray-Lanes.

16. To give now an example of the application of these geometrical elements of arrangement,
let us employ them to determine the conditions of intersection of two near final ray-lines, corre-
sponding to a given colour and to a given luminous origin; and let us suppose, for simplicity, that
one of these two straight ray-lines being the final portion or final tangent of a given luminous
path (4, B),, the other corresponds (as in the third of the foregoing problems) to a final point
B; on the given final plane perpendicular to this given path at B. Then if the constant n of
deviation vanishes, so that the final ray-lines are normals to the guiding paraboloid, the condition
of intersection requires evidently that the near point Bs should be in one of the two principal
diametral planes, that is, on one of the two rectangular tangents to the lines of curvature on this
surface; and the corresponding point of intersection must be one of the two centres of curvature.
But when = does not vanish, the deviation of the ray-lines obliges us to alter this result. The
intersection of the near ray-line with the given ray-line will not now take place for the directions
of the lines of curvature; but for those other directions, if any, for which the angular deviation
n8l of the ray-line from the normal is equal and contrary to the angular deviation of the normal
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16] IV. THIRD SUPPLEMENT 239

from the corresponding plane of normal section, that is, from the corresponding diametral plane
of the guiding paraboloid. This latter deviation, abstracting from sign, is, by the general pro-
perties of normals, equal to the semidifference of curvatures multiplied by the element of the
normal section 8/, and by the sine of twice the inclination of this element to either of the lines
of curvature; it cannot therefore destroy the deviation #8l of the ray-line from the normal, unless
the semidifference of the two principal curvatures of the paraboloid is greater, or at least not less,
abstracting from sign, than the constant of deviation n; this then is a necessary condition for the
possibility of the intersection sought. But when the semidifference of curvatures is greater
(abstracting from sign) than n, then there are two distinct directions Py, Py, of the normal or
diametral plane of section, symmetrically placed with respect to the two principal planes of
curvature, and such that if the element of section 8! be contained in either of these two planes, Py,
P,, (but not if the element 8! be in any other normal plane,) the corresponding ray-line from the
extremity of that element will be contained in the same normal plane P or Py, and will inter-
sect the given ray-line as required; and the point of intersection of these two near ray-lines
will be the centre of curvature of the corresponding normal section. We may therefore call the
curvatures of these two diametral sections the two vergencies of the final ray-lines; and the two
corresponding planes Py, Py, we may call the two planes of vergency.*

The same conclusions may be deduced algebraically from the equations (K1), which give the
following conditions of intersection of a near ray-line with the given ray-line or axis of z,

0=(z1=r)dz—ndy; 0=(s-t)dy+ndx; )
2 being the sought ordinate of intersection, and therefore z~* the vergency: for thus we find by
elimination the following quadratic to determine the ratio of 8, 8y, that is, the direction of &/,
(t —17) 828y =n (8y* + 8a*), (K1)
which may be put under the form "
: n
| sin, 2¢ = o (L)
the angle ¢ being, as in (R™), the inclination of 8/ to the axis of #, that is, to one of the tangents
of the lines of curvature, while 7, ¢, are the two curvatures themselves, of the guiding paraboloid;
there are therefore two real directions of &I, or one, or none, corresponding to the intersection
supposed, according as we have

— 2
(t2___r) >, or =, or < n?; (M1).

so that we are thus conducted anew to the same conditions of reality, and to the same symmetric
directions of the two planes of vergency, which we obtained before by a reasoning of a more geo-
metrical kind. The same conditions may also be obtained by considering the quadratic for the
vergency itself, namely

(z1=-r)(z 1= t)+n*=0, (Nm)
which results from the equations (I'*) and shows that the sum and product of the two vergencies
may be thus expressed, by means of the curvatures 7, ¢, and the constant of deviation n,

zl_ll B z’_l =71+ t; Zl—lzg—l =rt+ 'nz. (011)
The equations (I') give also, by elimination of »,
z71=rcos. ¢* + ¢ sin. ¢?; (Pm)

# [“Focal planes.”]
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we see, therefore, as before, that the two vergencies, when real, of the final ray-lines, are the
curvatures of the two corresponding sections of the guiding paraboloid. In general the centre of
curvature of any section of this surface, made by a normal plane drawn through the given final
ray-line, is the common focus by projection of all the near ray-lines from the points of that section;
that is, the projections of these near ray-lines on this plane all pass through this centre of curva-
ture. The two rectangular planes of curvature, or principal diemetral planes, of the guiding
paraboloid, may therefore be called the planes of extreme projection; under which view they were
considered in the First Supplement, for the case of an uniform medium, and were proposed as
a pair of natural coordinate planes passing through any given straight ray. The two planes of
vergency, for the case of straight final rays, were also considered in that First Supplement, in
connexion with the two developable pencils or ray-surfaces which pass through a given straight
ray, and of which the two tangent planes contain rays infinitely near, and therefore coincide with
the two planes of vergency.

When the planes of vergency are real and distinct, then, whether the final rays are straight
or curved, there exist two guiding lines* perpendicular to the given final ray-line, which are both
intersected by all the near final ray-lines from the points B; on the given final plane of xy, and
which therefore suffice to determine the geometrical arrangement and relations of that system of
final ray-lines. To prove the existence and determine the positions of these two guiding lines, let
us examine what conditions are necessary and sufficient, in order that a right line having for
equations

y=wtan. ®, z=2, (Q™)
should be intersected by all the near final ray-lines of the system (K°). These conditions are
Z1=r+mncotan. P =¢—n tan. P; (Rw®)
they give
; 2n o
sin. 2P = 7T (S1)
and
(Zr=r)(Z—t)+n?=0: ()
when therefore
(t—7)? > 4n?, (Uw)

that is, when there are two real vergencies, there are also two real guiding lines of the kind
explained above; and these two guiding lines are contained in the two planes of vergency, and
cross the final ray-line in the two corresponding points in which it is crossed by other ray-lines
of the same system: the intersection of each guiding line with the given final ray-line being the
point of convergence or divergence of the near ray-lines contained in that plane of vergency which
contains the other guiding line. When the constant of deviation n vanishes, these guiding lines
are necessarily real, and are the axes of the two principal circles of curvature of the guiding
paraboloid. And when the final rays are straight, then, whether n vanishes or not, the two guiding
lines (if real) are tangents to the two caustic surfaces; that is, to the two surfaces which are touched
by the final rays, and are the loci of the two points of vergency. If the guiding lines are imaginary
then the points of vergency are so too, and the final rays are not all tangents to any common sur-
face. We shall have occasion to resume hereafter the theory of the caustic and developable surfaces.

If it happen that
t—r=412n, (V)

* [“Focal lines”; cf. p. 44, where a normal congruence was considered.]
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without ¢ — » and n separately vanishing, then the two planes of vergency close up into one plane,
bisecting one pair of the right angles formed by the two principal planes of curvature of the
guiding paraboloid; the two vergencies reduce themselves to a single vergency, corresponding to
this single plane, and equal to the semisum of the two curvatures of the same surface: and the
two guiding lines reduce themselves to a single guiding line, passing through the corresponding
point of convergence or divergence, and having still the property of being intersected by all the
near final ray-lines, although this property is not now sufficient to determine this system of
ray-lines.

But if the two members of (V) vanish separately, that is, if the difference of curvatures and
the constant of deviation are separately equal to zero, then the guiding paraboloid is a surface of
revolution, having its summit at the given final point B, and all the near final ray-lines are normals
to this paraboloid of revolution, and (with the same order of approximation) to the osculating
sphere at its summit, and they all pass through the centre of this sphere. Reciprocally, if there
be any one point 0, 0, Z, through which all the final ray-lines pass, the equations (K') give

n=0, t=r=2" (W)

and the more general equations (V?), in which the rectangular axes of # and y are arbitrary, give

A PP R 1

Sx——_-—-z 1’ Sy—o, 8@—0, (‘X)
that is, by (G®), or (C?),

32V 7 M _ &M )

8a? Sa® ~ Sabu’

eV &% & &% "

7 TR 5 7k = vl 77 AN ¢ (X

PP oy &

W2 ey

When the final rays are straight, and satisfy these last conditions (Y'), which then reduce
themselves to the following,

eV . &% RET L, N o AN

ot gRt i =t Pt
the given final ray becomes one of those which we have called principal rays in former memoirs,
and the point of convergence or divergence 0, 0, Z, is what we have called a principal focus.

=0, (Z1)

Second Application of the Elements. Arrangement of the Near Final Roy-lines
Jrom an Oblique Plame. Generalisation of the Theory of the Guiding Para-
boloid and Constant of Deviation. General Theory of Deflexures of Surfaces.
Circles and Awxes of Deflexure. Rectanmgular Planes and Awxes of Extreme
Deflexure. Deflected Lines, passing through these Axes, and having the Centres
of Deflexure for their vespective Foci by Projection. Conjugate Planes of
Deflexure, and Indicating Cylinder of Deflexion.

17. The foregoing theorems respecting the mutual relations of the final ray-lines, suppose
that the near final point B; is on the given plane which is perpendicular to the given luminous
path (4, B), at iws given final point B: but analogous theorems can be found for the more

HMP " 31
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general case where the near final point B’ is not in this given perpendicular plane, by combining
the solutions of the second and third of the four problems lately discussed ; that is, by con-
sidering jointly the second and third sets of coefficients (O°), and therefore by employing the
following equations for a final ray-line,

w=8x+z(g 8w+8—a 8y+(§S Sz)
8 (A®)
i 3g+z(858w+858y+3 2).

If, in these equations, we establish no relation between 8z, 8y, 8z, then the system of these final
ray-lines (A%2) is what has been called (in my Theory of Systems of Rays) a System of the Third
Olass,* because the equations of a ray-line in this system involve three arbitrary elements of
position, namely, the coordinates 8z, 8y, 8z, of the near point B’; but to study more con-
veniently the properties of this total system of the third class, we may decompose it into partial
systems of the second class, that is, systems with only two arbitrary elements of position, by
assuming some relation, with an arbitrary parameter, between the three coordinates dz, dy, oz,
or, in other words, by assuming some arbitrary and variable surface, as a locus for the near
point B’. For example we may assume, as this locus, an oblique plane passing through the given
point B, and having for equation
8z = pdxz + qdy, (B®)

in which one of the two parameters p, g, is arbitrary, and the other depends on it by some
assumed law; and then, for every such assumed plane locus (B'2), we shall have to consider
a partial system of the second class, deduced from and included in the total system of the third
class (A%); namely, a system in which the equations of a ray-line are as follows,

m=8x+z(8—a +p§—1) 8w+z(g +q§a> 8y

y=8y+z(8'8+p85’8)8x+ <§B+q§§)8y

(O]

Let us therefore consider the geometrical arrangement and properties of this system of final ray-
lines (C™), corresponding to the oblique plane locus (B*?) of the final point B’.

The system (C*2), of ray-lines from the arbitrary oblique plane (B*?), includes, as a particular
case, the system of ray-lines from the plane of no obliquity: that is, the system (V®), considered
in a former number. And as the ray-lines of that particular system (V®) were found to have
a remarkable connexion with the guiding paraboloid (Z°), which touched the given perpendicular
plane locus of the near final point B;, and which satisfied the differential condition of the second
order (Y?): so, the ray-lines of the more general system (C') may be shown to be connected in
an analogous manner with the following more general paraboloid, which satisfies the same
differential condition (Y?), and touches the more general oblique plane locus (B®) at the given
final point B,

¢ =pa+ gy +3ra® + szy + §ty*; D®)

* [See p. 15. It must be remembered that the ray-lines are tangents to the rays. The rays, for given initial point
and colour, form a doubly infinite system of curves, but the ray-lines form a triply infinite system, or complex.]

www.rcin.org.pl



17] IV. THIRD SUPPLEMENT 243

in which p, ¢, retain their recent meanings, and the coefficients r, s, ¢ have the following values,

r=-<z::+p§z> (§§+ ) o

But in order to develope this more general connexion, between the ray-lines (C'*) and the
paraboloid (D), it will be useful previously to establish some general theorems respecting the
deflexures of curved surfaces, which include some of the known theorems respecting their
curvatures and planes of curvature.

Let us then consider the paraboloid (D), or any other curved surface which has, at the
origin of coordinates, a complete contact of the second order therewith, and which is therefore
approximately represented by the same equation: that is, (on account of the arbitrary position
of the origin, and arbitrary values of the coefficients p, ¢, r, s, ¢,) any surface of continuous
curvature, near any assumed point upon this surface. The tangent plane at this arbitrary point
or origin has for equation

z=pr+qy; (F*2)

and the deflexion from this tangent plane, measured in the direction of the arbitrary axis of z,
which we shall call the aais of deflexion, or in any direction infinitely near to this, is, for any
point B’ infinitely near to the point of contact B,

Deflexion =} 6% = §r8a® + s 8u 8y + § 18> (G™)

This deflexion depends therefore on the perpendicular distance 8/ of the near point B’ from the
axis of deflexion, and on the direction of the plane containing this point and axis; in such
a manner that if we put, as in (R1),

Sz =28l.cos. ¢, 8y=2al.sin.¢,

and give the name of deflezure (after the analogy of the known name curvdture) to the quotient

-g%f , that is, to the double deflexion divided by the square of the perpendicular distance from

the axis of deflexion, we shall have the following law of dependence of this deflexure, which we
shall denote by £, on the angle ¢,

Deflexure =f .. Sl’ =1 c08. % + 28 cos. ¢ sin. ¢ + ¢ sin. % (H®=)

There are, therefore, two rectangular planes of extreme deflexure, corresponding to angles ¢y, ¢,
determined by the following formula,

tan. 2¢ = ()

77_2’
and if we take these for the coordinate planes of @z, yz, and denote the two extreme deflexures
corresponding by f3, f2, we have ‘

r=f;, 8=0, t=f, (K*#)
and the general formula for the deflexure becomes
Sf=/1008.4" + fysin. ¢*: (L)
31-2
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which is analogous to, and includes, the known formula for the curvature of a normal section.
And as it is usual to consider a system of circles of curvature, for any given point of a curved
surface, namely, the osculating circles of the normal sections of that surface, so we may now
more generally consider a system of circles of deflexrure: namely, in each plane of deflexure ¢, a
circle passing through the given point of the surface, and having its centre on the given axis of
deflexion, and its curvature equal to the deflexure f; so that the radius of this circle, or the

ordinate of its centre, which we may call the radius of deflexzure, is}, and so that the equations
of the circle of deflexure are,

y =wtan. ¢, m2+y2+22=27z. : ()

We may also give the name of awis of deflexure, to the axis of this circle, that is, to the right

line having for equations

9 = — @ cotan. ¢, z=},: (N=2)

and we easily see that there are two principal circles of deflexure, analogous to the two principal
circles of curvature, namely, the two circles having for equations

First =0, a,2+z"‘=g—z;
Ji

2 (0%)
Second z=0, 72+22= _E;
Je
and two principal rectangular awxes of deflexure, namely,
. 1 1
First =0, =—3 S d =O, At P
b el ) T (P

These principal axes of deflexure are analogous to the principal axes of curvature, that is, to the
axes of the two principal osculating circles of the normal sections, in the less general theory of
normals. And as, in that theory, the near normals all pass through the two principal axes of
curvature, so we may now consider a more general system of right lines, which we shall call the
deflected lines, all near the arbitrary axis of deflexion, and all passing through the two corre-
sponding principal axes of deflexure, and therefore having for equations,

x=08w—zf 8z, y=238y—=zf2dy, (Q®)
when the coordinates are chosen as before. These deflected lines are normals, in the present

order of approximation, to the locus of the circles of deflexure (M*2), that is, to the surface of the

fourth degree
22 (@ + 7).

[+ foy?’
and they might be defined by this condition, or by the condition that they are normals, in the
same order of approximation, to the following paraboloid,

=1 (Aa+farf), (s

which osculates to the locus (R*?), and has the property that its ordinates measure the deflexions
(G*2) of the given surface.

B4yt A= (R®)
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A deflected line of the system (Q) is in the corresponding plane of deflexure
y 8w = dy, (™)
if that plane coincide with either of those two principal rectangular planes of deflexure, which

we have taken for coordinate planes; but otherwise the deflected line makes with the plane of
deflexure an infinitesimal angle 8y, expressed as follows,

=% (fi—/2) 8l .sin. 2¢: (U

this angle, therefore, is equal to the semidifference of the extreme deflexures multiplied by the
infinitesimal perpendicular distance from the axis of deflexion, and by the sine of twice the
inclination ¢ of this perpendicular (or of the plane of deflexure containing it) to one of the two
rectangular planes of extreme deflexure.  In this general case, the deflected line (Q'?) does not
intersect the given axis of deflexion, which we have made the axis of z; but the deflected line
(Q®) always intersects its own axis of deflexure (N®), in a point of which the coordinates may
be thus expressed

R . S v =1 yi2
@ 7 sin. ¢, ¥y f.cos.¢, z 7 €V

the symbols £, ¢, and 8y, retaining their recent meanings. It is easy also to see that if a near
deflected line be projected on the corresponding plane of deflexure, the projection will cross the
axis of deflexion in the centre of the circle of deflexure; and therefore that this centre of
deflexure may be considered as a focus by projection, and that the planes of extreme deflewure are
planes of extreme projection.

The foregoing results respecting the deflexures and deflected lines of a curved surface, near
any given point upon that surface, and for any given axis of deflexion, may easily be expressed
by general formule extending to an arbitrary origin and arbitrary axes of coordinates. If, for
simplicity, we still suppose the coordinates rectangular, and still take the given point upon the
surface for origin, and the given axis of deflexion for axis of 2z, but leave the rectangular
coordinate planes of #z and yz arbitrary, so that the coefficient s in the equation of the surface
shall not in general vanish, then the equations of a deflected line become

w=08x—z(rdéz+sdy), y=238y—z(sdz+1dy); (W22)
since the equation of the paraboloid (S®), to which they are nearly normals, and of which the
ordinates measure the deflexions (G) of the given surface, becomes
z=4ra®+ swy + }ty2 (X12)
The deflexure for any plane ¢ is expressed by the general formula (H'); and in like manner
the general formule (M) (N2) determine still the circle and axis of deflexure. The two principal

planes of deflexure, ¢;, ¢z, are still determined by the formula (I'*), while the corresponding
extreme deflexures, f;, f2, are the roots of the following quadratic

CfrA—f(r+t)+rt—=0: (Y*)

and the angular deviation 8y of a deflected line from the corresponding plane of deflexure, is
thus expressed,

Y =3(fi—/f).sin.(2¢ — 2¢,).8l = (%t sin, 2¢ — 5. cos. 2¢) 8l. (Z2)
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Before we proceed to apply these general remarks on the deflexures of surfaces to the optical
question proposed in the present number, that is, to the study of the connexion of the ray-lines
(C®) with the paraboloid (D), we may remark that the theory which M. Dupin has given, in
his excellent Développements de Géométrie, of the indicating curves and conjugate tangents of a
surface, may be extended from curvatures to deflexures. For if we consider the deflexion
(38% =4 f3I?) in the given arbitrary direction of 2z as equal to any given infinitesimal quantity
of the second order, that is, if we cut the given surface by a plane

z — px — qy = % 6% = deflewion = const., (A®)

parallel and infinitely near to the given tangent plane (F?), we obtain in general a plane curve
of section which may be considered as of the second degree, namely, the indicating curve con-
sidered by M. Dupin, of which the axes by their directions and values indicate the shape of the
given surface near the given point, by indicating its curvatures and planes of curvature. This
indicating curve is on the following cylinder of the second degree, which has for its indefinite
axis the axis of deflexion, and which we shall call the indicating cylinder of deflexion,

ra® + 2sxy + ty? = 8% = const.; : (B®)

and it is easy to see that the two principal planes of deflexure, ¢;, ¢s, are the principal diametral
planes of this indicating cylinder, and that the two principal deflexures f;, f3, positive or negative,
are equal respectively to the given double deflexion &% divided by the squares of the real or
imaginary principal semidiameters or semiaxes of the cylinder, perpendicular to its indefinite
axis. In general, the positive or negative deflexure f, corresponding to any plane of deflexure ¢,
is equal to the given double deflexion 8%z divided by the square of the real or imaginary semi-
diameter of the cylinder, contained in this plane of deflexure, and perpendicular to the axis of
deflexion, that is, to the indefinite axis of the cylinder. Hence it follows, that if we consider any
two conjugate diametral planes ¢, ¢,, which we shall call conjugate planes of deflexure, and which
are connected by the relation

0 =17+ s(tan. ¢ + tan. ¢,) + . tan. ¢ tan. ¢,, [ied

the sum of the two corresponding conjugate radiv of deflexure, }c + .}17 , 18 constant, and equal to the
!
sum of the two extreme or principal radii: that is, we have

L Al gl @

G+ =7+,

S duda
a relation which might also have been deduced from the general expression for the deflexure,
without its being necessary to employ the indicating cylinder. We may remark that any two

conjugate planes of deflexure, connected by the relation (C*), intersect the tangent plane of the
surface in two conjugate tangents of the kind considered by M. Dupin.

(D¥)

Let us now resume the system of ray-lines (C*2), of which the equations may be put by (E2)

under the form
=08z —z(rdx+ s8y) — zndy, l

y =8y —z(sdz +t8y) + 2nda, J

_ . (%8 b 88  da\
”—%(gg—g:"q'l'}"s;—q&)- (F*2)

(E®)

if we make
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and let us compare these ray-lines with the deflected lines from the auxiliary paraboloid (D),
which have for equations

w=208x—2z(rdx+sdy), y=238y—z(sdz+1tdy). (W)

We easily see, by this comparison, that the infinitesimal angle of deviation d» of a ray-line (E'*)
from the corresponding deflected line (W*2), is still determined by the same formula (M)

Sv = ndl,

as in the simpler theory of the guiding paraboloid explained in the fifteenth number; that is,
this angular deviation 8» is still equal to the perpendicular distance 8/ of the near final point
from the given final ray-line, multiplied by a constant of deviation n. The plane of this angle &»,
that is, the plane containing the ray-line (E**) and the deflected line (W*2), has for equation

@8z + y8y = 8 — z (rda® + 25 dwdy + t 8y?), (G13)

and therefore contains the right line having for equations
@ o 8a* + &y* e
iioh bl 2T 18 + 250w dy + Loy’ bid

that is, the axis of deflexure (N*2): results which are analogous to those of the fifteenth number,
expressed by the equations (N*) (O%). And we may construct the final ray-line (E*) by a
process of rotation analogous to that already employed, namely, by making the deflected line
(W), which passes through the two rectangular axes of deflexure of the auxiliary paraboloid
(D®), revolve round the perpendicular 8/, through the infinitesimal angle 8v, proportional to
that perpendicular. The theory, therefore, of the guiding paraboloid and constant of deviation,
which was given in the fifteenth number, for the ray-lines from the near points B; on the final
perpendicular plane, extends with little modification to the ray-lines from the points B’ on any
final oblique plane locus passing through the given final point: namely, by employing a more
general auxiliary paraboloid, and by considering deflexures and deflected lines, instead of
curvatures and normals. And we may transfer to this more general auxiliary paraboloid, and to
its connected constant of deviation, the reasonings of the sixteenth number, respecting the
system of final ray-lines; for example, the reasonings respecting the foci by projection, and
those respecting the condition of intersection of such ray-lines. And since for any given values
of p, g, that is, for any given position of the oblique plane (B'?), we can construct the new
auxiliary paraboloid (D®), and its new constant of deviation (F%), by ihe coefficients

S« 88 da 58 ba 3
Sz’ &’ &y’ &’ &’ &’
that is, by means of the former guiding paraboloid (Z°) and the former constant of deviation (B'),
and by the magnitude and plane of curvature (T%) of the final ray, we may be considered as
having reduced the theory of the geometrical arrangement and relations of the system of final

ray-lines (C'2), from an oblique plane (B®), to the theory of the elements of arrangement, which -
was given in the fifteenth number.
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Construction of the New Auxiliary Paraboloid, (or of an Osculating Hyperboloid,)
and of the New Constant of Deviation, for Ray-lines from an Oblique Plane,
by the former Elements of Arrangement.

18. To construct the new auxiliary paraboloid (D'2) by the former elements of arrangement,
we may observe that this new paraboloid not only touches the given oblique plane (B') at the
given final point B of the original luminous path, but osculates in all directions at that given
point to a certain hyperboloid, represented by the following equa,tion

2 =po+ gy + §708" + Sowy + loy* ~ %z 32 “+y B) 1*)
in which 7y, s, %, are the particular values
i)y e b 8¢ 8B _ B 13
n=—5 w=—i(gts) b=-5 (K)
of the coefficients 7, s, ¢, deduced from the general expressions (E*) by making
p=0, ¢=0, (L)

that is, by passing to the case of no obliquity; so that the equation (Z°) of the guiding
paraboloid may be put under the form
z=}r0a® + somy + 303, (M)

which includes the form (G¥). Reciprocally, the sought paraboloid (D) is the only paraboloid
which has its indefinite axis parallel to the given final ray-line, and osculates in all directions at
the given final point to the hyperboloid (I'3): it is therefore sufficient to construct this osculating
hyperboloid, in order to deduce the sought paraboloid (D*?). We might even employ the hyper-
boloid as a new guiding surface for the ray-lines from the oblique plane, instead of employing
the paraboloid, since these two osculating surfaces have the same deflexures and deflected lines,
near their given point of osculation.

Now to construct the osculating hyperboloid (I'®), by the oblique plane (B®) or (F2), and by
the former elements of arrangement, that is, by the guiding paraboloid (M%), and by the
coefficients g—z, 88—5 , which determine the magnitude and plane of curvature of the final ray, we
may compare the sought hyperboloid (I**) with the following new paraboloid

z2=px+ qy + $roa® + ssxy + oy, (Nyf

which may be called the guiding paraboloid removed, since it is equal and similar to the guiding
paraboloid (M*®), and may be obtained by transporting that guiding paraboloid without rotation
to a new position such that it touches the given oblique plane at the given point. The inter-
section of the hyperboloid (I**) and paraboloid (N*®) consists in general of an ellipse or hyperbola
in the given plane

z2=0, (0%)
perpendicular to the given final ray, and of a parabola in the plane
Sa b
w5t =0 (59
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which contains the given final ray-line or ray-tangent, and is perpendicular to the final plane of
curvature of the ray. If then, we make this final plane of curvature the plane of @z, so that its
equation shall be

y=0, (Ql&)
and so that, by (T?), g
B0, (R1%)

we shall have the following equations for the two curves of intersection; first, for the ellipse

or hyperbola,
2=0, pa+qy+§rea®+say +3hoy*=0; (5%

and secondly, for the parabola,
2=0, z=qy+3ty?: (T*)

and these two curves may be considered as known, since they are the intersections of two known
planes with the known guiding paraboloid removed to a known position. To examine now how
far a surface of the second degree is restricted by the condition of containing these two known
curves, and what other conditions are necessary, in order to oblige this surface to be the
hyperboloid sought, let us employ the following general form for the equation of a surface of the
second degree,

Az® + By + C2* + Day + Eyz + Fzw + Ga + Hy + Iz + K =0, (U

and let us seek the relations which restrict the coefficients of this equation when the surface is
obliged to contain the two known curves. The condition of containing the parabola (T**) gives

KE=0, H=—1Iq E=0, 0=0, B=-3}It; (V1)
so that, by this condition alone, the general equation (U') is reduced to the following form,
2=y + 4§ty — 7(G+ F2+ Dy + Aa). _ (W)
In order that this less general surface of the second degree, (W'®), should contain the ellipse or
hyperbola (S'), it is necessary and sufficient that we should have the relations,
G=-1Ip, D=—-1Is,, A=—%Iry: (X1%)

the general equation, therefore, of all those surfaces of the second degree which contain at once
the two known curves (S'®) (T'®), involves ouly one arbitrary coefficient, and may be put under
the form '

z=pz+qy+Erea® + soxy + Yty + Az, (Y

This general equation, with the arbitrary coefficient A, belongs to the guiding paraboloid
removed, that is, to the surface (N*®), when we suppose

j A=0; (Z)
and the same general equation belongs by (R®) to the sought hyperboloid (I'*), when

A=—i5. (A1)

HMP : 32
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To put this last condition under a geometrical form, let us, as we have already considered
the intersections of the hyperboloid with the two rectangular coordinate planes of zy and yz,
consider now its intersection with the third coordinate plane of wz, that is, with the plane
of curvature (Q®) of the given final ray. This intersection is the following hyperbola,

y=0, z=pm+1}rozc2—1}g—zmz, (BY)
and the corresponding intersection for the surface (Y*?) is

y=0, z=pa+iryz®+raz; (Cw

the condition (A) is therefore equivalent to an expression of the coincidence of these two
intersections; and if we oblige the surface of the second degree (U®) to contain the three curves
(S®) (T1%) (B¥), in the three rectangular coordinate planes, we shall thereby oblige it to become
the sought hyperboloid (I*®). It is not necessary, however, though it is sufficient, to assign the
hyperbola (BY), as a third curve upon this hyperboloid. For, in general, if we know the inter-
sections of a surface of the second degree with two known planes, there remains only one
unknown quantity in the equation of that surface, and the intersection with a third known plane
is more than sufficient to determine it. Thus, in the present question, if the intersection (C*) be
distinet from the following parabola
y=0, z=pz+ }rya? (D)

that is, if the surface (Y3, containing the two known curves (S*3) (T*%), be distinct from the
known guiding paraboloid removed, which also contains the same two curves, the intersection
(C%) with the plane of curvature of the ray is in general a hyperbola, which touches the known
parabola (D) at the known origin of coordinates, and meets this parabola again in another
known point on the axis of #, that is, on the radius of curvature of the known final ray, namely,
in the point

&X=— = y=0, z=0; (EM)

the hyperbola (C') has also one asymptote parallel to the known final ray-line or axis of z,
namely, the asymptote having for equations

1
L b (14
and it will be entirely determined, if, in addition to the foregoing properties, we know also a line

parallel to its other asymptote, namely, to that which has for equations

A T2
w=—2(7())z—x—7i), y=0: (GM)
it will therefore be obliged to coincide with the hyperbola (B), if only we oblige its second
asymptote (G'*) to be parallel to the following known right line,
z oo
m=7:;8—z’ =0, (H14)
in which the coefficient
18a_ curvature of final ray T
ro 8z  deflewure of guiding paraboloid’ =D
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the plane of the deflexure 7 being the plane of curvature of the ray. We see, then, that this
last condition, respecting the direction of the second asymptote (G4) of the hyperbolic section
(C"), is sufficient, when combined with the conditions of containing the two known curves (S*)
(T®), to determine completely the sought hyperboloid (I'*). Even the conditions of containing
the two curves (S%) (T%®) are not perfectly distinct and independent; nor would their coexistence
be possible, in the determination of a surface of the second degree, if the two points in which the
parabola (T%3) is intersected by the axis of y, that is, by the intersection-line of the planes of the
two curves, namely, the origin and the point

=0, y=—g1, =0, ? (K
b

were not also contained on the ellipse or hyperbola (S'). But we may confine ourselves to the
last chosen conditions, of having these two known curves as the intersections of the hyperboloid
with two known planes, and of having known directions for the asymptotes of its hyperbolic curve
of intersection with a third known plane, as adequate and sufficiently simple conditions for the
construction of the sought hyperboloid, and thereby of the auxiliary paraboloid (D), to which
that hyperboloid osculates. And with respect to the new constant of deviation n, connected with
this auxiliary paraboloid, we may put its general value (F'®) under the form

8 8
=+ ip e gy, (L)
np being the particular value

=i (3~ 5;) ()

for the plane of no obliquity, that is, the value (B') connected with the guiding paraboloid (Z°)
in the theory of the elements of arrangement which was given in a former number: we may
therefore construct the new constant n, as the ordinate z of a plane

z2=pz+ qy +no, { (N™)
which is parallel to the given oblique plane (B'), and contains the point
=0, y=0, Z=1n,; (014) ;

so that it intersects the axis of z at a distance from the origin = the old constant of deviation ny.
The other coordinates #, , to which the ordinate z =n corresponds, are

o=b i y=—dg (P

so that the corresponding line ¥/a? + 32 is equal to half the curvature of the ray, and is perpen-

dicular to the radius of that curvature.

The details of the present number have been given, in order to illustrate the subject, by
* combining it more closely with geometrical conceptions; but the new auxiliary paraboloid, and
the new constant of deviation, might have been considered as sufficiently defined by their former
algebraical expressions.

32-2
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Condation of Intersection of Two Near Final Ray-lines. Conical Locus of the Near
Final Points in a variable medium which satisfy thus condition. Investiga-
teons of Malus. Illustration of the Condition of Intersection, by the Theory of
the Auxilvary Paraboloid, for Ray-lines from an Oblique Plane.

19. Returning now to the system of final ray-lines (C**) from an oblique plane (B™), let us
consider the condition necessary in order that one of these near final ray-lines (C*?) may intersect

the given final ray-line or axis of z. This condition may be at once obtained by making # and y
vanish in the equations (C®2), and then eliminating z; it may therefore be thus expressed,

(s D)o+ (G-t (2o (o ra)i). @0

8y
or more concisely thus, on account of the equation of the oblique plane (B'?),
B e bYe; Sa Sa da o4
8w.($3w+8 8y + 5o a) 8y. (38+3—3 Y+ 5 Sz) (RM)
that is,
dx8pB =8y da; (Ch)

it s therefore necessary and sufficient, for the intersection sought, that the mear final point B’
should be on a certain conical locus of the second degree, determined by the equation (R™), between
the coordinates 8z, 8y, 8z. A conical locus of this kind appears to have been first discovered by
Malus. That excellent mathematician and observer had occasion, in his Traité D’ Optique* to
make some remarks on the general properties of a system of right-lines in space, represented by

equations of the form
4

z—a y—y z—
m R g

>

in which m, n, o, are any given functions of the coordinates a’, y', 2/, of a point through which
the line is supposed to pass, and by which it is supposed to be determined; and he remarked that
the condition of intersection of a line thus determined, with the corresponding near line from a
point infinitely near, was expressed by an equation of the second degree between the differentials
of the coordinates #’, %/, 2/, which might be considered as the equation of a conical locus of the
second degree for the infinitely near point. The theory of systems of rays which was given by Malus,
differs much, in form and in extent, from that proposedin the present Supplement; especially because,
in the former theory, the coefficients which mark the direction of a ray were left as independent
and unconnected functions, whereas, in the latter, they are shown to be connected with each other,
and to be deducible by uniform methods from one characteristic function. But the mere con-
sideration of the existence of some functional laws, whether connected or arbitrary, of dependence
of the coefficients m, n, o, on the coordinates #’, ¥/, 2/, or of , B, vy, on @, ¥, z, conducts easily, as
we have seen, to a conical locus of the kind (R*). This result may however be illustrated by the
theory which we have given of the geometrical relations of the near final ray-lines from an
oblique plane with the deflected lines of a certain auxiliary paraboloid, and with a certain law
and constant of deviation.

For, according to the theory of these relations, the ray-line from a near final point B’ on a
given oblique plane drawn through the given point B, will or will not intersect the given final

* [Mémoires présentés a UInstitut par divers sawans, Sciences math. et phys., 2 (1811), pp. 214-302.]
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ray-line from B, according as its deviation 8 from its own deflected line does or does not com-
pensate for the deviation 8y of that deflected line from the corresponding plane of deflexure, by
these two deviations being equal in magnitude but opposite in direction; the condition of inter-
section may therefore be thus expressed,

8+ 8y =0; (T
or, by the values of the deviations 8v, 8y, established in the seventeenth number,
= {;_r .8in. 2¢ + 5. cos. 2¢, (U
that is,
n(8a® + 8y®) = (t — r) dwdy + s (8a® — 8y?): (V%)

and the condition of intersection thus obtained, by the consideration of two equal and opposite
deviations, is, on account of the meanings (E®) (F'%) of n, », s, t, equivalent to (Q), and therefore
to the equation (R™) of the cone of the second degree. In this manner, then, as well as by the
former less geometrical process, we might perceive that the two planes of vergency for the ray-
lines from an oblique plane, (determined by (U) or (V*), and analogous to the two less general
planes of vergency considered in the sixteenth number,) intersect the oblique plane in the same
two lines in which that plane intersects a certain cone of the second degree, through the centre
of which cone it passes; and that the planes of vergency are imaginary when the oblique plane
does not intersect this cone. We may remark that the intersection of the oblique plane with the
cone, or of a near final ray-line from the oblique plane with the given final ray-line, is impossible,
when the constant of deviation corresponding to the oblique plane is greater (abstracting from
its sign) than the semidifference of the extreme deflexures of the auxiliary paraboloid: for then
the compensation of the two deviations 8v, 84, is impossible, the near ray-line always deviating
more from the corresponding deflected liné of the auxiliary paraboloid, than this deflected line
from the corresponding plane of deflexure. And when the compensation and therefore the inter-
section becomes possible, by the constant of deviation being less than the semidifference of the
two extreme deflexures, then the two real planes of vergency of the near final ray-lines from the
oblique plane are symmetrically situated with respect to the two rectangular planes of extreme
deflexure: which latter planes may also, for a reason already alluded to, be called the planes of
extreme projection of the final ray-lines.

Other Geometrical Illustrations of the Condition of Intersection, and of the Elements
of Arramgement. Composition of Partial Deviations. Rotation round the Awxis
of Curvature of a Final Ray.

20. The condition of intersection of two near final ray-lines may also be illustrated, and
might have obtained, by other geometrical considerations, on which we shall dwell a little,
because they will help to illustrate and improve the theory of the elements of arrangement.

It was remarked, in the fourteenth number, that the general comparison of a given luminous
path (4, B), with a near path (4', B'),,s, might be decomposed into several particular
comparisons, such as the comparisons with the less general near paths (4, By),, (4, Bs),, and
others, on account of the linear form of the expressions (D?) for the variations &, 88, 8¢, 68’, of
the extreme small cosines of direction, which form permits us to consider separately and
successively the influence of the variations of the extreme coordinates and colour, or the influence
of any groupes of these variations. Accordingly, by an Analysis founded on this remark, we
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decomposed the general discussion of the geometrical relations of infinitely near rays into four
less general problems, which were treated of, in the fifteenth number. The applications, in the
sixteenth number, to questions respecting the mutual intersections of the final ray-lines from
the final perpendicular plane, may be considered as only illustrations and corollaries of the third
of those four problems: but the questions since discussed, respecting the ray-lines from an
oblique plane, require a combination of the solutions of the second and third of the four problems,
and furnish, therefore, an example of the Synthesis of those elements of arrangement of near rays,
to which the former Analysis had conducted. This synthesis, however, has in the foregoing
numbers been itself algebraically performed, (namely, by the algebraical addition of certain
partial variations,) although many of the results were enunciated geometrically, and combined
with geometrical conceptions: but a geometrical idea and method, of the Synthesis of the
Elements of Arrangement, may be obtained by considering, in a general manner, the geometrical
composition of partial deviations.

To understand more fully the occasion of such composition, let us remember that our theory
of the Elements of Arrangement enables us to pass from the extreme directions of a given
luminous path (4, B),, to the four following sets of near extreme directions, by the solution of
the four problems considered in the fifteenth number.

First. The extreme directions of the near path (4, B),+s,, which has the same extreme points
4, B, but differs by chromatic dispersion.

Second. The final direction of (4, By),, that is, of the original path prolonged at the end,
and the initial direction of (44, B),, that is, of the same path prolonged at the beginning ; these
near extreme directions being in general affected by curvature.

Third. The ﬁgai direction of the path (4, B;),, and the initial direction of (4s, B),; the
small lines A A;s, BBs, being perpendicular to the given path at its extremities.

Fourth. The initial direction of (4, Bs),, and the final direction of (45, B),.

We saw also that the initial direction of (4, By), and the final direction of (A4, B), do not
differ from the corresponding extreme directions of the original luminous path.

If then we would apply this theory to determine the final direction of an arbitrary near path
(4', B'),4s,, we have to consider and compound, algebraically or geometrically, the following
partial deviations from the given final direction of the given path (4, B),: first, the chromatic
deviation of the final direction of the near path (4, B), s, from that given final direction ; second,
the deviation of curvature of the final direction of (4, Bg),; third, the final deviation of the path
(4, Bs),, to be determined by the theory of the final guiding paraboloid; and fourth, the
deviation of the final direction of (4;, B),, to be found by the theory of the guiding planes and
conjugate guiding axes. A similar composition of four partial deviations is required for the
determination of the initial direction of the same arbitrary near path (4', B'), s,.

Now to compound in a geometrical manner the four preceding partial deviations of the final
ray-line, we may proceed as follows. We may construct each partial deviation, by drawing the
deviated final ray-line corresponding, or a line parallel thereto, through the given final point B;
the line thus drawn will differ little in direction from the given final ray-line or axis of z, and if
we take its length equal to unity, then its small projection on the given final plane of @y, to
which it is nearly perpendicular, will measure the magnitude and will indicate the direction of
the deviation : and if we compound all these projections according to the usual geometrical rule
of composition of forces, the result will be the projection of the equal line which represents in
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direction the resultant or total deviation. And similarly we may compound the four partial
deviations of a near initial ray-line.

The geometrical synthesis of the partial deviations may also be performed in other ways. For
example, we may consider each partial deviation as arising from a partial or component rotation,
and we may compound these several rotations by the geometrical methods proper for such
composition.

In particular, we may compound the final deviation of curvature with any of the other partial
deviations, by making the deviated ray-line, obtained without considering the final curvature of
the ray, revolve through an infinitely small angle round the axis of final curvature, that is, round
the axis of the final osculating circle of the given final ray. By this rotation, the projection Bs
of a near final point B’ on the final perpendicular plane, will be brought into the position B’; and,
by the same rotation, the near final ray-line, which had been obtained by abstracting from the final
curvature, and by considering B; as the final point, will be brought, at the same time, into the
position of the sought ray-line, which corresponds to a final point at B’.

Applying now these general principles to the particular question respecting the condition of
intersection of two near final ray-lines, from two near final points B, B’, (the colour x and the initial
point 4 being considered as common and given,) we see that if the projection B; of B’ be given,
the small projecting perpendicular B'B; or 8z and therefore also the near point B’ itself may in
general be determined so as to satisfy the condition of intersection: for the final ray-line from
B; may in general be brought to intersect the given final ray-line, by revolving through an
infinitesimal angle round the axis of curvature of the given final ray. We see also that the
angular quantity of rotation and therefore the length 8z = B;B’ depends on the position of the
projection Bj, that is, on the coordinates 8z, 8y; and therefore that there must be some
determined surface as the locus of the near final point B’, when the final ray-line from that point
is supposed to intersect the given final ray-line.

To investigate the form of this locus, by the help of the foregoing geometrical conceptions,
we may observe that the only point, on the near ray-line from B;, which is brought by the
supposed rotation to meet the given final ray-line, is the point contained in the final plane of
curvature of the given final ray; and that if we call this point, where the ray-line from Bj
intersects the given plane of curvature, the point P, the angle of rotation required is the angle
between the line BP and the given final ray-line ; because the same infinitesimal rotation which
brings the near ray-line from Bj, that is, the line B;P, into a new position in which it intersects
the given final ray-line, brings also the line BP into the position of the given final ray-line itself.
Translating now these geometrical results into algebraical language, and taking the given final
plane of curvature for the plane of zz, so as to satisfy the condition (R*), we find the following
coordinates of the point P of intersection of this plane of curvature with the ray-line (V?) from Bj,

Sy.(ga8w+§a8y>

3 y=0; 2=
%8 8 +5ody '88:0+8ﬁ8y

— 8y

z=0x—

(W)

so that the angle between the line BP which connects this point with the origin of coordinates,
and the given final ray-line or axis of 2, is

56 = (—;—)%.Sw (2’88 +gﬁs) (g‘”s +g;8y)' (X)
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and this being equal to the infinitesimal angle of rotation, that is, to the small line &z or B;B’

multiplied by g—‘: or by the final curvature of the given ray taken with its proper sign, we have the

following equation for the locus of the near point B’, when the condition of intersection is to be

satisfied,
0G5 B B Sa o X i
58z—®8w(%8x+@8y)—<&8w+&/8y). (X
which is, accordingly, the equation of the former conical locus (R'), only simplified by the
condition (R®), arising from a choice of coordinates. Without making that choice, we might

easily have deduced in a similar manner the equation (R*), under the form

88 88 ey bk
) _Sw(%8w+§-y3y)—8y<gx8x+—8:—y$y) hN
o 8“8 838 :
5 Y T8

in which each member is an expression for the infinitesimal angle of rotation divided by the
curvature of the ray.

Another way of applying the foregoing geometrical principles to investigate the condition of
intersection of two near final ray-lines, is to consider the infinitesimal angle by which the ray-line
from B; deviates from the plane containing the given final ray-line and the near point Bs. This
angular deviation is expressed by the numerator of the fraction (Z1), divided by &I, that is,
divided by the small line BB;; and the denominator of the same fraction (Z!4), divided also by &,
is equal to the final curvature of the ray multiplied by the sine of the inclination of the line &I
to the radius of this final curvature: and hence it is easy to see, by geometrical considerations,
that the fraction in the second member of (Z) is equal to the infinitesimal angle of rotation
required for destroying the last mentioned deviation, divided by the curvature of the ray, and
therefore equal to the ordinate 8z of the sought locus of the near point B’, as expressed by the
first member. We might therefore easily have obtained, by calculations founded on this other
geometrical view, the same condition of intersection as before, and the same conical locus.

Relations between the Elements of Arrangement, depending only on the Extreme
Pouints, Directions, and Colour of a Given Luminous Path, and on the Extreme
Media. In o Final Uniform Medium, Ordinary or Extraordinary, the two
Planes of Vergency are Conjugate Planes of Deflexure of any Surface of o
certain class determined by the Final Medium; and also of a certarn Analogous
Surfoce determined by the whole combination. Relations between the Visible
Magmitudes and Distortions of any two small objects viewed from each other
through any Optical Combination. Interchangeable Eye-axes and Object-axes
of Distortion. Planes of No Distortion.

21. It was shown in the fourteenth number, and the result has since been developed in detail,
that the general geometrical relations between the extreme directions of infinitely near rays are
determined by the coefficients of the linear variations &e, 88, &y, 8¢, 68’, &y', of the six marks
of extreme direction, considered as functions of the six extreme co-ordinates and of the colour;
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and that, between the forty-two general coefficients of these six linear variations, there exist
eighteen general relations, leaving only twenty-four coefficients arbitrary, if we suppose for sim-
plicity that the final and initial coordinates are referred to rectangular axes. But besides these
eighteen general relations which are common to all optical combinations, there arise certain other
relations between the coefficients, when the extreme media are considered as given, and when
the extreme points, directions, and colour, of any one luminous path, are also supposed to be
known. For, if we then employ the general equations (A®), we may consider the extreme medium
functions v, v, and their partial differentials, as known, and may deduce general expressions for
the coefficients before mentioned of the linear variations of the extreme cosines of direction,
involving only, as unknown quantities, twenty-seven partial differentials of the second order of
the characteristic function V, namely, all of this order, which are not relative to the variation of
colour only; but these twenty-seven are connected by the fourteen general relations (Q) (U) (X)
(Y), deduced in the third number, of which however only thirteen are distinct, because the two
systems (U) (Y) conduct both to one common equation (D); there remain, therefore, as indepen-
dent quantities, only fourteen of the partial differentials of V,in the general expressions of those
twenty-four coefficients of the linear variations of the extreme direction-cosines, which had before
been considered as independent, when the extreme medium-functions v, v" were supposed unknown
and arbitrary: and if we eliminate the fourteen independent differentials of V" between the
expressions of these twenty-four coefficients, we shall obtain ten general relations, between the
elements of arrangement of infinitely near rays, involving only the extreme points, directions, and
colour, of the given luminous path, and the properties of the extreme media.

The simplest manner of obtaining these ten general relations is to eliminate the fourteen
differentials of ¥V which enter into the twenty-four expressions, deducible from (C?), from the
twenty-four coefficients (D°). The ten relations thus obtained, may be arranged in three different
groupes: the first groupe containing the two following

& Sa & 88 O v
8 & " 8a8B 8  ubs ~ ba’
% 8 &% 8B W dv
58852 53 8 T 585 8y’
and two others similar to these, but with accented or initial symbols; the second groupe con-
taining the final relation '

wda & 88 W % Sa SwER S

(A®)

_&?-8;+8a8,8@+8a8y=8a8,8870+8?’8_w +8/38w’ &5
and a similar initial relation; and the third groupe comprising the four following,
wda , O B MW K W 88 )
sa8s + 8adB 8 T 8 80 T 85 50 =
Busa S 88 W B S _
5025y t sasp sy T 65 5w TSR 55
> 156
B da v Eg WAl W M ©
5a88 87 T5F 57 T 5 Sy T SISR Sy ~
L AR AL BN R AL A
Sasp 8y T2y Teasp oy Yoy T )
HMP 3 33
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The two first relations of the first groupe, namely, the equations (A%), are equivalent to the
two first differential equations (O) of a curved ray, and express that the magnitude and plane of
final curvature of a luminous path, in a final variable medium, are determined, in general, by the
properties of that medium, the colour of the light, the position of the final point, and the direction
of the final tangent. And the two other relations of the same groupe express, in like manner, a
dependence of the initial magnitude and plane of curvature of a luminous path, on the initial
medium, colour, point, and tangent.

The equation (B%), belonging to the second groupe, is a relation between the four coefficients
g% ; ?S% ; gg, 2—2 , and therefore a relation between the guiding paraboloid and constant of deviation
for the final ray-lines, depending on the final medium, colour, point, and tangent. And similarly
the other equation of the second groupe expresses an analogous relation for the initial medium.

In the extensive case of a final uniform medium, the equation (B') reduces itself to the
following,

S 0% da o (3/3 8a> % 88 . (D)

8a25y T 8288 \&y " 8z) T SR8’
and, in the same case, the general conical locus of the second degree (R), connected with the
condition of intersection of the final ray-lines, reduces itself to two real or imaginary planes of
vergency, represented by the quadratic
_8ay ., (Sa 8B 3B 15

0=y +(8—w—§y>8a:8y—8;8m3, (E5)
and coinciding with the two planes of vergency considered in the sixteenth number: attending
therefore to (C'®), the relation (D) may be geometrically enunciated by saying, that in a final
uniform medium the two planes of vergency are conjugate planes of deflexure of any surface of a
certain class determined by the nature of the medium, namely, that class for which, at the origin
of coordinates,

8% 0% 8% o 8%z &%
5 M5 Tady M5aBE S 5RY o

and therefore nearly, for points near to this origin,

A A 5% &% o 0%V 5

Z=pa+ qy+§(w St 2 sa5gtY W)’ ' (G®)
the given final ray or axis of z being taken as the axis of deflexion, and the constants p, ¢, A, being
arbitrary. This relation may be still farther simplified, by choosing the arbitrary constants as

follows,
18 1 6v 1 (H)

Al e e

Z being any constant ordinate; for then, (by the theory of the characteristic function ¥V for a
single uniform medium, which was given in the tenth number,) the surface (G*) acquires a simple
optical property, and becomes, in the final uniform medium, the approximate locus of the points

@, ¥, 2, for which
17, =f'vds = ’l)p = CODStu., (115)
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the integral ¥, = [vds being taken here, in the positive direction, along the variable line p, from
the fixed point 0, 0, Z, to the variable point , ¥, 2, or from the latter to the former, according as
Z is negative or positive. And though the equation (G¥*) is only an approximate representation
of the medium-surface (I*¥), which was called in the First Supplement a spheroid of constant
action, and which is in the undulatory theory a curved wave propagated from or to a point in the final
medium, yet since the equation (G'*) gives a correct development of the ordinate z of this surface
as far as terms of the second dimension inclusive, when the constants are determined by (H™),
the conclusion respecting the deflexures applies rigorously to the surface (I**); and the two planes
of vergency (E), in a final uniform medium, are conjugate planes of deflewure of the spheroid or
wave (%), We shall soon resume this result, and endeavour to illustrate and extend it. In the
mean time we may remark that the same planes of vergency (E%) are also conjugate planes of
deflexure of a certain analogous surface, determined by the whole combination,* and not merely
by the final uniform medium, namely, the surface (D¥), for which

f vds (= V)= const., (K1)

the integral being here extended to the whole luminous path, and being therefore equal to the
characteristic function V of the whole optical combination; an additional property of the planes
of vergency, which is proved by the following relation, analogous to (D*), and deducible from
(C°) or (G),

0=

®V 8 | 8V (s,e Ba) 2V 88 oD

82 8y T Swdy \Sy ~ 8w) T Byt Su”

Finally, with respect to the four remaining equations, of the third groupe (C'®), it is evident
that they express certain general relations depending on the extreme media, between the coeffi-
cients which determine the guiding planes and conjugate guiding axes, for the final and initial
ray-lines, - In the extensive case of extreme ordinary media, they reduce themselves to the four
following, which may also be deduced from (¥?),

Sa 8 _ , 88
i Rl e O By' bt b Jo
SB i sg ;

u, i’ being the indices of the media; and they conduct to some simple conclusions, respecting the
general relations between the visible magnitudes and distortions of a small plane object, placed
alternately at each end of any given luminous path, and viewed from the other end, through any
ordinary or extraordinary combination: at least so far as we suppose these distortions and magni-
tudes to be measured by the shape and size of the initial and final ray-cones.t For then the
conjugate guiding axes, initial and final, perpendicular to the given path at its extremities, and
determined in the fifteenth number, may be calied the eye-axes and object-axes of distortion, for

* [The initial point being supposed given.]

t [The optical theory here developed is a first-order theory, and the “distortion” described has nothing to do
with the modern use of the word “distortion ” in the theory of aberrations. We may here suppose the pupil of
the eye reduced to a point, so that only one ray from each object point can enter.]

33-2
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a small object placed in the final perpendicular plane, and viewed from the initial point; and if
we take these for the axes of initial and final coordinates, so as to have, by (X°) (Y1),
S& Y00 BEE RN S’ 8B
@—0, 8;__0’ g:;>0, g“z—>§:&‘,
we shall then have also, by (M%), (the extreme media being supposed ordinary, and their indices
K, p' positive,) ) . §
Lt 3B _ 3B o 08 15
S_yI"O; 8?_0’ '—8_3/7>0: —850’> 8:’/,, (N )
that is, in this case, the guiding axes for the initial ray-lines are also the guiding azes of the same
kind for the final ray-lines measured backward ; which is already a remarkable relation, and may
be enunciated by saying that the eye-awes and object-axes of distortion are interchangeable, when
the extreme media are ordinary: that is, for such extreme media, the eye-azes of distortion become
object-axes, and the object-axes become eye-axes, when the object is removed from the final to the
wnitial perpendicular plane, and is viewed from the final instead of the initial point. And while
the equations of the fifteenth number,
o =2 .8 Sz, y' =2 %, 8y ‘ (A™)
17 S Oy
represent the initial visual ray-line corresponding to a final visible point B’ which has for co-
ordinates &z, 8y, 8z, the following other equations,

’ 8 ’
=z BT 8, y=-2. B 5y, 0w
x z i 2, |y z W Vi (0%)
will represent by (M*) the final visual ray-line corresponding to an initial visible point 4’ which
has for coordinates dx', 8y’, 82’; the initial visual ray-cone corresponding to any small object
8y=r (8x) (G7)

in the final perpendicular plane is therefore represented by the equation

7)), (=

and the final visual ray-cone corresponding to any small object

o' =1 (&) (P)

in the initial perpendicular plane is represented by the following analogous equation
e & o ESE)_I_ '<_‘fﬁ(§ﬁ,>_l)- 15
zu <8y 4 zp \8x i Q%)

if therefore these two small objects, (G*) (P¥), at the ends of a given luminous path, be equal
and similar and similarly placed with respect to the conjugate axes of distortion, that is, if the
final and initial functions £, /' be the same, and if we cut the two ray-cones (H™) (Q) respectively
by perpendicular planes having for equations
Z=uR, z=-—puR, (R™)
in which R is any constant length, while u, u’ are the same constant indices as before of the
extreme ordinary media, the two perpendicular sections thus obtained will be equal and similar
to each other; and if, besides, we put, by (Y),
8B &d

= cos. @, Ly
oy Oz
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(@ being by (F1) the inclination of an initial guiding plane to the plane perpendicular to the
given initial ray-line,) and determine also the arbitrary quantity R as follows,

1 (8a’\™? 1/8a\™?

-2 () =-ale) - L

the perpendicular sections of the initial and final ray-cones may then be represented as follows,
"\~1
y=cos.@.f(d), &= (g%) p (U)
and
AN -
y=cos. G. f(2), z=($,) : (V%)

the visible distortions therefore, depending on the inclination @, are the same for any two small
equal objects, thus perpendicularly and similarly placed at the ends of any given luminoue path,
and viewed from each other along that path, through any optical combination.

The distortion here considered will in general change, if the object at either end of the given
luminous path be made to revolve in the perpendicular plane at that end, so as to change its
position with respect to the axes of distortion. For example, if the object be a small right-angled
triangle in the final perpendicular plane, having the summit of the right angle at the given final
point B of the path, we know, by the theory given in the fifteenth number, that the right angle
will appear right to an eye placed at the initial point 4, when the rectangular directions of its
sides ¢y, ¢y’, coincide with those of the final guiding axes, or object-axes of distortion; but that
otherwise the right angle ¢’ — ¢," will appear acute or obtuse, its apparent magnitude ¢s— 1

being determined by the formula* sa\: (88

~ tan. (¢a— 1= s sin. 2 (W)
e
: oz Oy
which may, by (S*), be reduced to the following,
— tan. (¢, i ik ’—2’) =}sin. G . tan. G .sin. 24" (X15)

The law of change of the distortion, corresponding to a rotation in the final perpendicular plane,
may also be deduced from the theory of the guiding planes, explained in the fifteenth number.

The distortion will also change if the small plane object be removed into an oblique instead
of a perpendicular plane. In this case we may still employ the equations {A™) (O%) for the initial
and final ray-lines, and may still represent the initial and final ray-cones by the equations (H)
(Q®); but we are now to consider the equations (G*) (P®), for the final and initial objects, us
representing the projections of those objects on the extreme perpendicular planes; or rather the
projecting cylinders, which contain the objects, and which determine their visible magnitudes
and distortions, by determining the connected ray-cones. For example, the equation (C) may
be considered as representing a final elliptic cylinder, of which any section near the final point
‘B of the given luminous path will correspond to an initial circular ray-cone (B™), and will there-
fore appear a circle to an eye placed at the initial point 4; while on the other hand we may

* [y, P2 here correspond to the final system, which is not in accordance with Hamilton’s usual convention.
To bring this work into accord with that convention, in this paragraph for ¢, ¢g, ¢1, Po read ¢y, by, by, ¢s
respectively, and delete the initial minus signs in (W) and (X5), Equation (T') is to be employed. ]
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regard the equation (D) as representing a final circular cylinder, such that any section of this
cylinder, near the final point B, will give an initial elliptic ray-cone (EY), and will appear an
ellipse at 4. And as the elliptic ray-cone (E) conducted, by its circular sections, to the guiding
planes (F) for the initial ray-lines, so, for small plane final objects, the planes
z=+ztan. G, (X%

namely, by (S¥), the planes of circular section of the elliptic cylinder (CY), are planes of no
distortion; in such a manner that not only, by what has been said, the circular sections themselves
in these two planes appear each circular, but every other small final object in either of the same
two planes appears with its proper shape to an eye placed at the initial point A of the given
luminous path; the angular magnitude of the final object thus placed, being the same as if it
were viewed perpendicularly by straight rays, without any refracting or reflecting surface or

’\ —1
medium interposed, from a final distance = (gg) . In like manner, the planes

2 =+ a' tan. G, (Z%)

which are the planes of circular section of an analogous initial elliptic eylinder, are inatial planes
of mo distortion, of the same kind as the final planes (Y*); since any small initial object, placed
in either of these two initial planes (Z*®), and viewed from the final point B of the given luminous
path, will appear with its proper shape, and with the same angular magnitude as if it were viewed
directly from an initial distance = — (8—B,> i o (§é> 1.
oy w \Oy

This theory of the planes of no distortion gives a simple determination of the visible shape
and size of any small object placed in any manner near either end of a given luminous path; since
we have only to project the object on one of the two planes of no distortion at that end, by lines
parallel to the corresponding extreme direction of the path, and then to suppose this projection
viewed directly from a final or initial distance determined as above. We might, for example,
deduce from this theory the property of the guiding planes, the circular and elliptic appearances
(BY) (EM) of the ellipse and circle (C*) (D*), and the acute or obtuse appearance (X*) of a right
angle in the final perpendicular plane, when the directions of the sides of this angle are different
from those of the object-axes of distortion. And the relations (M) for extreme ordinary media
may be expressed by the following theorems: first, that the angle (2G') between the final pair of
planes of no dustortion (Y*°), is equal to that between the imitial pasr (Z*); second, the visible
angular magnitudes of any small and equal linear objects in final and initial planes of no distor-
tion, are proportional to the indices of the final and initial media, when the objects are viewed
along a given luminous path, from the initial and final points; and third, the two intersection-lines
of the two pairs of planes of no distortion coincide each with the visible direction of the other, when
viewed along the path.

Caleulation of the Elements of Arrangement, for Arbitrary Awxes of Coordinates.

22. In the foregoing formula for the elements of arrangement of near rays, we have chosen
for simplicity the final and initial points of a given luminous path, as the respective origins of
two sets of rectangular coordinates, final and initial, and we have made the final and initial ray-
lines, or tangents to the given path, the axes of z and 2’; a choice of coordinates which had the
convenience of reducing to zero eighteen of the forty-two general coefficients in the expressions
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of da, 88, 8y, 8a’, 8B', 8y, as linear functions of &z, 8y, 8z, 8a', 8y’, 82', 8x. The twenty-four
remaining coefficients (D°) may however be easily deduced, by the methods already established,
and by the partial differential coefficients of the characteristic and related functions, from other
systems of final and initial coordinates, for example, from any other rectangular sets of final and
initial axes.

In effecting this deduction, it will be useful to distinguish by lower accents the particular
coordinates and cosines of direction, which enter into the expressions (D), and are referred to
particular axes of the kind already described; and then we may connect these particular coordinates
and cosines with the more general analogous quantities @, ¥, 2, 2, ', 2/, &, B, v, &', B', &', by the
formule of transformation given in the thirteenth number, which may easily be shown to extend
to the case of two distinet rectangular sets of given or unaccented coordinates. In this manner
the axes of z, and 2z, considered in the thirtéenth number, become the final and initial ray-lines,
and we have, by (AS8),

3\

Sw =, 0w, + xy 8y, + @ 82,,
8y =Y, 82, + yy,8y, + B2,
8z =2z, 8z, + 2,8y, + v 0z,

\ A6
8 =afy, 80 + 'y, 8y +d 82/, (A49)
8 =y u:8a' +y'y 8y + B 82/,
87 =2y, 8/ +2'y, 8y +¢ 82/,
because
"’"z, - a: .%, - ﬁ: zz, s 'Y: } (Blﬂ)
w’z,' b id a') y’z,"= B’) z'z,' - 'YI ;
we have also
e ki L =O’} ()
@, =0: BI =0; % =1: 87' =0)

and therefore, by (E8),

8a =, 8, + 2, 8B,; 8 =o'y 80/ +4a',,8B/;

8B =yz,80,+yy,8B,; OB =y's8¢/ +y' 3B/ ; (D)
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