XVIII.

THE AUXILIARY FUNCTION T FOR TWO THIN LENSES CLOSE TOGETHER IN VACUO, AND FOR A SINGLE THIN LENS IN VACUO

July, 1833.
[Note Book 28, pp. 29-39 (back).]
For a small spheric cap at origin, with curvature $=r_{i}$,

$$
z_{i}=\frac{1}{2} r_{i}\left(x_{i}^{2}+y_{i}^{2}\right)+\left(\frac{1}{2} r_{i}\right)^{3}\left(x_{i}^{2}+y_{i}^{2}\right)^{2}
$$

and

$$
\begin{aligned}
z_{i}-p_{i} x_{i}-q_{i} y_{i} & =r_{i}^{-1}\left\{1-\sqrt{1+p_{i}^{2}+q_{i}^{2}}\right\} \\
& =-\frac{p_{i}^{2}+q_{i}^{2}}{2 r_{i}}+\frac{\left(p_{i}^{2}+q_{i}^{2}\right)^{2}}{8 r_{i}}
\end{aligned}
$$

Therefore for a series of n spheric refracting or reflecting surfaces close together at origin,*

$$
\begin{aligned}
T= & -\frac{1}{2} \sum_{(i) 1}^{n} \frac{\left(\mu_{i} \alpha_{i}-\mu_{i-1} \alpha_{i-1}\right)^{2}+\left(\mu_{i} \beta_{i}-\mu_{i-1} \beta_{i-1}\right)^{2}}{r_{i}\left(\mu_{i} \gamma_{i}-\mu_{i-1} \gamma_{i-1}\right)} \\
& +\frac{1}{8} \sum_{(i) 1} \frac{\left\{\left(\mu_{i} \alpha_{i}-\mu_{i-1} \alpha_{i-1}\right)^{2}+\left(\mu_{i} \beta_{i}-\mu_{i-1} \beta_{i-1}\right)^{2}\right\}^{2}}{r_{i}\left(\mu_{i} \gamma_{i}-\mu_{i-1} \gamma_{i-1}\right)^{3}}
\end{aligned}
$$

and

$$
V=\mu_{n}\left(x_{n} \alpha_{n}+y_{n} \beta_{n}+z_{n} \gamma_{n}\right)-\mu_{0}\left(x_{0} \alpha_{0}+y_{0} \beta_{0}+z_{0} \gamma_{0}\right)-T
$$

For two thin refracting lenses close together in vacuo, with four curved surfaces, \dagger

$$
\begin{aligned}
& V=x_{5} \alpha_{4}+y_{5} \beta_{4}+z_{5} \gamma_{4}-\left(x_{0} \alpha_{0}+y_{0} \beta_{0}+z_{0} \gamma_{0}\right) \\
&+\frac{\left(\mu_{1} \alpha_{1}-\alpha_{0}\right)^{2}+\left(\mu_{1} \beta_{1}-\beta_{0}\right)^{2}}{2 r_{1}\left(\mu_{1} \gamma_{1}-\gamma_{0}\right)}+\frac{\left(\mu_{3} \alpha_{3}-\alpha_{2}\right)^{2}+\left(\mu_{3} \beta_{3}-\beta_{2}\right)^{2}}{2 r_{3}\left(\mu_{3} \gamma_{3}-\gamma_{2}\right)} \\
&+\frac{\left(\alpha_{2}-\mu_{1} \alpha_{1}\right)^{2}+\left(\beta_{2}-\mu_{1} \beta_{1}\right)^{2}}{2 r_{2}\left(\gamma_{2}-\mu_{1} \gamma_{1}\right)}+\frac{\left(\alpha_{4}-\mu_{3} \alpha_{3}\right)^{2}+\left(\beta_{4}-\mu_{3} \beta_{3}\right)^{2}}{2 r_{4}\left(\gamma_{4}-\mu_{3} \gamma_{3}\right)} \\
&-\frac{\left\{\left(\mu_{1} \alpha_{1}-\alpha_{0}\right)^{2}+\left(\mu_{1} \beta_{1}-\beta_{0}\right)^{2}\right\}^{2}}{8 r_{1}\left(\mu_{1} \gamma_{1}-\gamma_{0}\right)^{3}}-\frac{\left\{\left(\mu_{3} \alpha_{3}-\alpha_{2}\right)^{2}+\left(\mu_{3} \beta_{3}-\beta_{2}\right)^{2}\right\}^{2}}{8 r_{3}\left(\mu_{3} \gamma_{3}-\gamma_{2}\right)^{3}} \\
&-\frac{\left\{\left(\alpha_{2}-\mu_{1} \alpha_{1}\right)^{2}+\left(\beta_{2}-\mu_{1} \beta_{1}\right)^{2}\right\}^{2}}{8 r_{2}\left(\gamma_{2}-\mu_{1} \gamma_{1}\right)^{3}}-\frac{\left\{\left(\alpha_{4}-\mu_{3} \alpha_{3}\right)^{2}+\left(\beta_{4}-\mu_{3} \beta_{3}\right)^{2}\right\}^{2}}{8 r_{4}\left(\gamma_{4}-\mu_{3} \gamma_{3}\right)^{3}} \\
& \gamma_{0}=\sqrt{1-\alpha_{0}^{2}-\beta_{0}^{2}=1-\frac{1}{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-\frac{1}{8}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)^{2}} \\
& \gamma_{1}=\& c \cdot ; \quad \mu_{1} \gamma_{1}-\gamma_{0}=\mu_{1}-1-\frac{1}{2} \mu_{1}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)+\frac{1}{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right) \\
&\left(\mu_{1} \gamma_{1}-\gamma_{0}\right)^{-1}=\left(\mu_{1}-1\right)^{-1}+\frac{\mu_{1}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)-\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)}{2\left(\mu_{1}-1\right)^{2}}
\end{aligned}
$$

[^0](July 22, 1833) the approximate conditions of the stationary value* with respect to $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are
$$
\frac{\mu_{1} \alpha_{1}-\alpha_{0}}{r_{1}}+\frac{\alpha_{2}-\mu_{1} \alpha_{1}}{r_{2}}=0, \quad \frac{\alpha_{2}-\mu_{1} \alpha_{1}}{r_{2}\left(\mu_{1}-1\right)}+\frac{\mu_{3} \alpha_{3}-\alpha_{2}}{r_{3}\left(\mu_{3}-1\right)}=0, \quad \frac{\mu_{3} \alpha_{3}-\alpha_{2}}{r_{3}}+\frac{\alpha_{4}-\mu_{3} \alpha_{3}}{r_{4}}=0
$$
that is,
\[

\left.$$
\begin{array}{l}
\mu_{1}\left(r_{1}-r_{2}\right) \alpha_{1}=r_{1} \alpha_{2}-r_{2} \alpha_{0} \\
\mu_{3}\left(r_{3}-r_{4}\right) \alpha_{3}=r_{3} \alpha_{4}-r_{4} \alpha_{2}
\end{array}
$$\right\}
\]

and

$$
\begin{gathered}
\alpha_{2}\left\{r_{2}\left(\mu_{1}-1\right)-r_{3}\left(\mu_{3}-1\right)\right\}=\frac{r_{2}\left(\mu_{1}-1\right)\left(r_{3} \alpha_{4}-r_{4} \alpha_{2}\right)}{r_{3}-r_{4}}-\frac{r_{3}\left(\mu_{3}-1\right)\left(r_{1} \alpha_{2}-r_{2} \alpha_{0}\right)}{r_{1}-r_{2}} \\
\because+\alpha_{2}\left\{r_{2}\left(\mu_{1}-1\right)-r_{3}\left(\mu_{3}-1\right)+\frac{r_{2} r_{4}\left(\mu_{1}-1\right)}{r_{3}-r_{4}}+\frac{r_{1} r_{3}\left(\mu_{3}-1\right)}{r_{1}-r_{2}}\right\}=r_{2} r_{3}\left\{\frac{\alpha_{4}\left(\mu_{1}-1\right)}{r_{3}-r_{4}}+\frac{\alpha_{0}\left(\mu_{3}-1\right)}{r_{1}-r_{2}}\right\} \\
\because \alpha_{2}\left\{\frac{\mu_{1}-1}{r_{3}-r_{4}}+\frac{\mu_{3}-1}{r_{1}-r_{2}}\right\}=\frac{\alpha_{4}\left(\mu_{1}-1\right)}{r_{3}-r_{4}}+\frac{\alpha_{0}\left(\mu_{3}-1\right)}{r_{1}-r_{2}} \\
\because \alpha_{2}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)\right\}=\alpha_{0}\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)+\alpha_{4}\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right),
\end{gathered}
$$

\because finally ${ }_{\ddagger}{ }^{+}$

$$
\alpha_{2}=\frac{\alpha_{0} P_{1}+\alpha_{4} P}{P+P}=\frac{\alpha^{\prime} P+\alpha P}{P+P} ; \quad \beta_{2}=\frac{\beta P+\beta^{\prime} P}{P+P}:
$$

using P, P_{1}, to denote the powers of the 1 st and 2 nd lens. That is,

$$
P\left(\alpha_{4}-\alpha_{2}\right)=P_{1}\left(\alpha_{2}-\alpha_{0}\right):
$$

an equation which probably admits of some simple geometrical enunciation.

$$
\begin{aligned}
\mu_{1} \alpha_{1} & =\alpha_{2}+\frac{r_{2}\left(\alpha_{2}-\alpha_{0}\right)}{r_{1}-r_{2}}=\alpha_{2}+\frac{\left(\mu_{1}-1\right) r_{2}\left(\alpha_{2}-\alpha_{0}\right)}{P}=\alpha_{2}+\frac{\left(\mu_{1}-1\right) r_{2}\left(\alpha_{4}-\alpha_{0}\right)}{P+P} \\
& =\alpha_{0}+\frac{r_{1}\left(\alpha_{2}-\alpha_{0}\right)}{r_{1}-r_{2}}=\alpha_{0}+\frac{\left(\mu_{1}-1\right) r_{1}\left(\alpha_{2}-\alpha_{0}\right)}{P}=\alpha_{0}+\frac{\left(\mu_{1}-1\right) r_{1}\left(\alpha_{4}-\alpha_{0}\right)}{P+P} \\
\mu_{3} \alpha_{3} & =\alpha_{4}+\frac{r_{4}\left(\alpha_{4}-\alpha_{2}\right)}{r_{3}-r_{4}}=\alpha_{4}+\frac{\left(\mu_{3}-1\right) r_{4}\left(\alpha_{4}-\alpha_{2}\right)}{P}=\alpha_{4}+\frac{\left(\mu_{3}-1\right) r_{4}\left(\alpha_{4}-\alpha_{0}\right)}{P+P} \\
& =\alpha_{2}+\frac{r_{3}\left(\alpha_{4}-\alpha_{2}\right)}{r_{3}-r_{4}}=\alpha_{2}+\frac{\left(\mu_{3}-1\right) r_{3}\left(\alpha_{4}-\alpha_{2}\right)}{P}=\alpha_{2}+\frac{\left(\mu_{3}-1\right) r_{3}\left(\alpha_{4}-\alpha_{0}\right)}{P+P} \\
& =\frac{\alpha_{4} P+\alpha_{0} P+\left(\mu_{3}-1\right) r_{3}\left(\alpha_{4}-\alpha_{0}\right)}{P+P}=\alpha_{4}+\frac{\left(\mu_{3}-1\right) r_{4}\left(\alpha_{4}-\alpha_{0}\right)}{P+P}, \text { as before }
\end{aligned}
$$

and similarly

$$
\mu_{1} \beta_{1}=\beta_{0}+\frac{\left(\mu_{1}-1\right) r_{1}\left(\beta_{4}-\beta_{0}\right)}{P+P} ; \quad \mu_{3} \beta_{3}=\beta_{4}+\frac{\left(\mu_{3}-1\right) r_{4}\left(\beta_{4}-\beta_{0}\right)}{P+P}
$$

* [That is, of T; the function V plays no essential part in this investigation.]
+ [In the manuscripts of this period, Hamilton used this symbol \because consistently in the sense of "therefore." The symbol was used in this sense in the seventeenth century by W. Oughtred and J. H. Rahn; see F. Cajori, History of Mathematical Notations, vol. I (Chicago, 1928), pp. 190, 211.]
\ddagger [Hamilton here reverts to his customary notation, in which $a^{\prime}, \beta^{\prime}, \gamma^{\prime}$ refer to the incident ray, a, β, γ to the emergent ray.]

These values of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ are to be substituted in V or T. Thus,*

$$
\begin{aligned}
-T^{(2)}= & \frac{\left(\mu_{1} \alpha_{1}-\alpha_{0}\right)^{2}}{2 r_{1}\left(\mu_{1}-1\right)}-\frac{\left(\alpha_{2}-\mu_{1} \alpha_{1}\right)^{2}}{2 r_{2}\left(\mu_{1}-1\right)}+\frac{\left(\mu_{3} \alpha_{3}-\alpha_{2}\right)^{2}}{2 r_{3}\left(\mu_{3}-1\right)}-\frac{\left(\alpha_{4}-\mu_{3} \alpha_{3}\right)^{2}}{2 r_{4}\left(\mu_{3}-1\right)} \\
& + \text { same function of the } \beta^{\prime} \mathrm{s} \\
= & \frac{\frac{1}{2} P\left\{\left(\alpha_{4}-\alpha_{0}\right)^{2}+\left(\beta_{4}-\beta_{0}\right)^{2}\right\}}{\left(P+P_{l}\right)^{2}}+\frac{\frac{1}{2} P_{,}\left\{\left(\alpha_{4}-\alpha_{0}\right)^{2}+\left(\beta_{4}-\beta_{0}\right)^{2}\right\}}{\left(P+P_{\prime}\right)^{2}} \\
= & \frac{\left(\alpha-\alpha^{\prime}\right)^{2}+\left(\beta-\beta^{\prime}\right)^{2}}{2\left(P+P_{,}\right)}
\end{aligned}
$$

Also

$$
\begin{array}{lll}
\Delta \sigma_{0}=\mu_{1} \alpha_{1}-\alpha_{0}=\lambda_{0}\left(\alpha-\alpha^{\prime}\right), & \Delta \tau_{0}=\lambda_{0}\left(\beta-\beta^{\prime}\right), & \lambda_{0}=\frac{\left(\mu_{1}-1\right) r_{1}}{P+P} \\
\Delta \sigma_{1}=\alpha_{2}-\mu_{1} \alpha_{1}=\lambda_{1}\left(\alpha-\alpha^{\prime}\right), & \Delta \tau_{1}=\lambda_{1}\left(\beta-\beta^{\prime}\right), & \lambda_{1}=-\frac{\left(\mu_{1}-1\right) r_{2}}{P+P} \\
\Delta \sigma_{2}=\mu_{3} \alpha_{3}-\alpha_{2}=\lambda_{2}\left(\alpha-\alpha^{\prime}\right), & \Delta \tau_{2}=\lambda_{2}\left(\beta-\beta^{\prime}\right), & \lambda_{2}=\frac{\left(\mu_{3}-1\right) r_{3}}{P+P_{1}} \\
\Delta \sigma_{3}=\alpha_{4}-\mu_{3} \alpha_{3}=\lambda_{3}\left(\alpha-\alpha^{\prime}\right), & \Delta \tau_{3}=\lambda_{3}\left(\beta-\beta^{\prime}\right), & \lambda_{3}=-\frac{\left(\mu_{3}-1\right) r_{4}}{P+P}
\end{array}
$$

and

$$
\begin{aligned}
\Delta v_{0} & =\mu_{1} \gamma_{1}-\gamma_{0}=\mu_{1}-1-\frac{1}{2} \mu_{1}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)+\frac{1}{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right) \\
& =\mu_{1}-1-\frac{\left(\alpha_{0}+\Delta \sigma_{0}\right)^{2}+\left(\beta_{0}+\Delta \tau_{0}\right)^{2}}{2 \mu_{1}}+\frac{\alpha_{0}^{2}+\beta_{0}^{2}}{2} \\
& =\left(\mu_{1}-1\right)\left\{1+\frac{\alpha_{0}^{2}+\beta_{0}^{2}}{2 \mu_{1}}-\frac{\alpha_{0} \Delta \sigma_{0}+\beta_{0} \Delta \tau_{0}}{\mu_{1}\left(\mu_{1}-1\right)}-\frac{\left(\Delta \sigma_{0}\right)^{2}+\left(\Delta \tau_{0}\right)^{2}}{2 \mu_{1}\left(\mu_{1}-1\right)}\right\} \\
\Delta v_{1} & =\gamma_{2}-\mu_{1} \gamma_{1}=1-\mu_{1}-\frac{1}{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)+\frac{1}{2} \mu_{1}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right) \\
& =-\left(\mu_{1}-1\right)\left\{1+\frac{\alpha_{2}^{2}+\beta_{2}^{2}}{2\left(\mu_{1}-1\right)}-\frac{\mu_{1}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)}{2\left(\mu_{1}-1\right)}\right\} \\
\Delta v_{2} & =\mu_{3} \gamma_{3}-\gamma_{2}=\left(\mu_{3}-1\right)\left\{1-\frac{\mu_{3}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)}{2\left(\mu_{3}-1\right)}+\frac{\alpha_{2}^{2}+\beta_{2}^{2}}{2\left(\mu_{3}-1\right)}\right\} \\
\Delta v_{3} & =\gamma_{4}-\mu_{3} \gamma_{3}=-\left(\mu_{3}-1\right)\left\{1-\frac{\mu_{3}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)}{2\left(\mu_{3}-1\right)}+\frac{\alpha_{4}^{2}+\beta_{4}^{2}}{2\left(\mu_{3}-1\right)}\right\}:
\end{aligned}
$$

or better thus: change μ_{1}, μ_{3} to μ, μ_{1}; and put
then

$$
\alpha_{4}^{2}+\beta_{4}^{2}=\epsilon, \quad \alpha_{0}^{2}+\beta_{0}^{2}=\epsilon^{\prime}, \quad \alpha_{4} \alpha_{0}+\beta_{4} \beta_{0}=\epsilon
$$

$$
\begin{array}{cl}
\left(\alpha_{4}-\alpha_{0}\right)^{2}+\left(\beta_{4}-\beta_{0}\right)^{2}=\epsilon-2 \epsilon,+\epsilon^{\prime} \\
\Delta \sigma_{0}^{2}+\Delta \tau_{0}^{2}=\lambda_{0}^{2}\left(\epsilon-2 \epsilon+\epsilon^{\prime}\right) ; & \Delta \sigma_{2}^{2}+\Delta \tau_{2}^{2}=\lambda_{2}^{2}\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right) \\
\Delta \sigma_{1}^{2}+\Delta \tau_{1}^{2}=\lambda_{1}^{2}(\quad) ; & \Delta \sigma_{3}^{2}+\Delta \tau_{3}^{2}=\lambda_{3}^{2}(\\
\gamma_{0}=1-\frac{1}{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)=1-\frac{1}{2} \epsilon^{\prime} ; & \gamma_{4}=1-\frac{1}{2}\left(\alpha_{4}^{2}+\beta_{4}^{2}\right)=1-\frac{1}{2} \epsilon
\end{array}
$$

* [$T^{(2)}$ denotes the part of the expansion of T^{\prime} which is of the second order in $a, \beta, a^{\prime}, \beta^{\prime}$.]

$$
\begin{aligned}
& \mu_{1} \gamma_{1}=\mu-\frac{\mu}{2}\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)=\mu-\frac{1}{2 \mu}\left\{\overline{\alpha^{\prime}+\lambda_{0}\left(\alpha-\alpha^{\prime}\right)^{2}}+\overline{\beta^{\prime}+\lambda_{0}\left(\beta-\beta^{\prime}\right)^{2}}\right\} \\
& =\mu-\frac{1}{2 \mu}\left\{\epsilon^{\prime}+2 \lambda_{0}\left(\epsilon,-\epsilon^{\prime}\right)+\lambda_{0}^{2}\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)\right\} ; \\
& \gamma_{2}=1-\frac{1}{2}\left(a_{2}^{2}+\beta_{2}^{2}\right)=1-\frac{P^{2} \epsilon+2 P P_{1} \epsilon_{1}+P_{1}^{2} \epsilon^{\prime}}{2\left(P+P_{t}\right)^{2}} ; \\
& \mu_{3} \gamma_{3}=\mu_{1}-\frac{\mu_{1}}{2}\left(\alpha_{3}^{2}+\beta_{3}^{2}\right)=\mu_{1}-\frac{1}{2 \mu_{1}}\left\{\left(\alpha-\lambda_{3} \overline{\alpha-\alpha^{\prime}}\right)^{2}+\left(\beta-\lambda_{3} \overline{\beta-\beta^{\prime}}\right)^{2}\right\} \\
& =\mu_{1}-\frac{1}{2 \mu_{1}}\left\{\epsilon-2 \lambda_{3}\left(\epsilon-\epsilon_{1}\right)+\lambda_{3}^{2}\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)\right\}: \\
& \because\left\{\Delta v_{0}=\mu_{1} \gamma_{1}-\gamma_{0}=(\mu-1)\left\{1+\frac{\epsilon^{\prime}}{2 \mu}-\frac{\lambda_{0}\left(\epsilon,-\epsilon^{\prime}\right)}{\mu(\mu-1)}-\frac{\lambda_{0}^{2}\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)}{2 \mu(\mu-1)}\right\} ;\right. \\
& \Delta v_{1}=\gamma_{2}-\mu_{1} \gamma_{1}=-(\mu-1)\left\{1+\frac{P^{2} \epsilon+2 P P_{,} \epsilon+P_{,}^{2} \epsilon^{\prime}}{2(\mu-1)\left(P+P_{1}\right)^{2}}\right. \\
& \left.-\frac{\epsilon^{\prime}+2 \lambda_{0}\left(\epsilon,-\epsilon^{\prime}\right)+\lambda_{0}^{2}\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)}{2 \mu(\mu-1)}\right\} ; \\
& \Delta v_{2}=\mu_{3} \gamma_{3}-\gamma_{2}=\left(\mu_{1}-1\right)\left\{1+\frac{P^{2} \epsilon+2 P P_{,} \epsilon+P_{1}^{2} \epsilon^{\prime}}{2\left(\mu_{1}-1\right)\left(P+P_{,}\right)^{2}}\right. \\
& \left.-\frac{\epsilon-2 \lambda_{3}\left(\epsilon-\epsilon_{,}\right)+\lambda_{3}^{2}\left(\epsilon-2 \epsilon_{,}+\epsilon^{\prime}\right)}{2 \mu,\left(\mu_{,}-1\right)}\right\} ; \\
& \Delta v_{3}=\gamma_{4}-\mu_{3} \gamma_{3}=-\left(\mu_{1}-1\right)\left\{1+\frac{\epsilon}{2 \mu_{1}}+\frac{\lambda_{3}\left(\epsilon-\epsilon_{1}\right)}{\mu_{1}(\mu,-1)}-\frac{\lambda_{3}^{2}\left(\epsilon-2 \epsilon_{,}+\epsilon^{\prime}\right)}{2 \mu_{,}\left(\mu_{1}-1\right)}\right\}: \\
& T=-\frac{1}{2} \sum_{(i) 1} \frac{4\left(\Delta \sigma_{i-1}\right)^{2}+\left(\Delta \tau_{i-1}\right)^{2}}{r_{i} \Delta v_{i-1}}+\frac{1}{8} \Sigma_{(i) 1}{ }^{4} \frac{\left\{\left(\Delta \sigma_{i-1}\right)^{2}+\left(\Delta \tau_{i-1}\right)^{2}\right\}^{2}}{r_{i}\left(\Delta v_{i-1}\right)^{3}} ; \\
& r_{1}(\mu-1)=\lambda_{0}\left(P+P_{1}\right) ; \quad-r_{4}(\mu,-1)=\lambda_{3}\left(P+P_{1}\right) ; \\
& -r_{2}(\mu-1)=\lambda_{1}\left(P+P_{1}\right) ; \quad r_{3}\left(\mu_{,}-1\right)=\lambda_{2}\left(P+P_{1}\right) ; \\
& \Delta v_{0}=(\mu-1)\left(1-\xi_{0}\right) ; \quad \Delta v_{1}=-(\mu-1)\left(1-\xi_{1}\right) ; \\
& \Delta v_{2}=(\mu,-1)\left(1-\xi_{2}\right) ; \Delta v_{3}=-(\mu,-1)\left(1-\xi_{3}\right) ; \\
& r_{1} \Delta v_{0}=\lambda_{0}\left(P+P_{1}\right)\left(1-\xi_{0}\right) ; \quad r_{2} \Delta v_{1}=\lambda_{1}\left(P+P_{1}\right)\left(1-\xi_{1}\right) ; \\
& r_{3} \Delta v_{2}=\lambda_{2}\left(P+P_{t}\right)\left(1-\xi_{2}\right) ; \quad r_{4} \Delta v_{3}=\lambda_{3}\left(P+P_{1}\right)\left(1-\xi_{3}\right):
\end{aligned}
$$

therefore observing that $\lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, we get as before *
and

$$
\begin{gathered}
T^{(2)}=-\frac{\left(\epsilon-2 \epsilon+\epsilon^{\prime}\right)}{2\left(P+P_{l}\right)} \\
T^{(4)}=-\frac{\left(\lambda_{0} \xi_{0}+\lambda_{1} \xi_{1}+\lambda_{2} \xi_{2}+\lambda_{3} \xi_{3}\right)\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{2\left(P+P_{l}\right)} \\
+\frac{\left(\epsilon-2 \epsilon+\epsilon^{\prime}\right)^{2}}{8\left(P+P_{\jmath}\right)}\left\{\frac{\lambda_{0}^{3}+\lambda_{1}^{3}}{(\mu-1)^{2}}+\frac{\lambda_{2}^{3}+\lambda_{3}^{3}}{\left(\mu_{1}-1\right)^{2}}\right\}
\end{gathered}
$$

* [For a justification of the method of approximation employed, see Appendix, Note 24, p. 507.]
in which

$$
\begin{aligned}
& \frac{\lambda_{0}^{3}+\lambda_{1}^{3}}{(\mu-1)^{2}}=\frac{(\mu-1)\left(r_{1}^{3}-r_{2}^{3}\right)}{\left(P+P_{l}\right)^{3}}=\frac{P\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)}{\left(P+P_{1}\right)^{3}}, \\
& \frac{\lambda_{2}^{3}+\lambda_{3}^{3}}{\left(\mu_{1}-1\right)^{2}}=\frac{(\mu,-1)\left(r_{3}^{3}-r_{4}^{3}\right)}{(P+P)^{3}}=\frac{P,\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)}{\left(P+P_{1}\right)^{3}} ; \\
-\lambda_{0} \xi_{0}= & \frac{\lambda_{0} \epsilon^{\prime}}{2 \mu}-\frac{\lambda_{0}^{2}\left(\epsilon_{,}-\epsilon^{\prime}\right)}{\mu(\mu-1)}-\frac{\lambda_{0}^{3}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{2 \mu(\mu-1)}, \\
-\lambda_{1} \xi_{1}= & -\frac{\lambda_{1} \epsilon^{\prime}}{2 \mu(\mu-1)}-\frac{\lambda_{1} \lambda_{0}\left(\epsilon_{1}-\epsilon^{\prime}\right)}{\mu(\mu-1)}-\frac{\lambda_{1} \lambda_{0}^{2}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{2 \mu(\mu-1)} \\
& +\frac{\lambda_{1}}{2(\mu-1)}\left\{\left(\lambda_{1}+\lambda_{0}\right)^{2} \epsilon+2\left(\lambda_{1}+\lambda_{0}\right)\left(\lambda_{3}+\lambda_{2}\right) \epsilon+\left(\lambda_{3}+\lambda_{2}\right)^{2} \epsilon^{\prime}\right\}, \\
-\lambda_{2} \xi_{2}= & \frac{\lambda_{2}}{2\left(\mu_{1}-1\right)}\left\{\left(\lambda_{1}+\lambda_{0}\right)^{2} \epsilon+\right. \\
& -\frac{\lambda_{2} \epsilon}{2 \mu_{1}\left(\mu_{1}-1\right)}+\frac{\lambda_{2} \lambda_{3}\left(\epsilon-\epsilon_{,}\right)}{\mu_{1}\left(\mu_{1}-1\right)}-\frac{\lambda_{2} \lambda_{3}^{2}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{2 \mu_{1}\left(\mu_{1}-1\right)}, \\
-\lambda_{3} \xi_{3}= & \frac{\lambda_{3} \epsilon}{2 \mu_{1}}+\frac{\lambda_{3}^{2}\left(\epsilon-\epsilon_{1}\right)}{\mu_{1}\left(\mu_{1}-1\right)}-\frac{\lambda_{3}^{3}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{2 \mu_{1}\left(\mu_{1}-1\right)} ;
\end{aligned}
$$

therefore since $\lambda_{1}=-\lambda_{0}+\frac{P}{P+P}$, and $\lambda_{2}=-\lambda_{3}+\frac{P_{1}}{P+P}$, we have

$$
\begin{aligned}
& -2\left(\lambda_{0} \xi_{0}+\lambda_{1} \xi_{1}+\lambda_{2} \xi_{2}+\lambda_{3} \xi_{3}\right)=\frac{\lambda_{0} \epsilon^{\prime}}{\mu-1}-\frac{2 \lambda_{0} P\left(\epsilon_{1}-\epsilon^{\prime}\right)}{\mu(\mu-1)\left(P+P_{1}\right)}-\frac{\lambda_{0}^{2} P\left(\epsilon-2 \epsilon_{,}+\epsilon^{\prime}\right)}{\mu(\mu-1)\left(P+P_{1}\right)} \\
& -\frac{P \epsilon^{\prime}}{\mu(\mu-1)\left(P+P_{1}\right)}+\left\{\frac{1}{\mu-1}\left(\frac{P}{P+P_{1}}-\lambda_{0}\right)+\frac{1}{\mu_{1}-1}\left(\frac{P P_{1}}{P+P_{1}}-\lambda_{3}\right)\right\} \frac{P^{2} \epsilon+2 P P_{,} \epsilon_{,}+P_{1}^{2} \epsilon^{\prime}}{\left(P+P_{t}\right)^{2}} \\
& \quad-\frac{P, \epsilon}{\mu_{1}\left(\mu_{1}-1\right)\left(P+P_{1}\right)}+\frac{\lambda_{3} \epsilon}{\mu_{1}-1}+\frac{2 \lambda_{3} P_{1}\left(\epsilon-\epsilon_{1}\right)}{\mu_{1}\left(\mu_{1}-1\right)\left(P+P_{1}\right)}-\frac{\lambda_{3}^{2} P,\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{\mu_{1}\left(\mu_{1}-1\right)\left(P+P_{1}\right)} .
\end{aligned}
$$

If we put
then

$$
\begin{aligned}
Q= & \frac{P\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)+P_{1}\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)}{8(P+P)^{4}} \\
& -\frac{1}{2\left(P+P_{1}\right)}\left\{\lambda_{0} \frac{\delta \xi_{0}}{\delta \epsilon}+\lambda_{1} \frac{\delta \xi_{1}}{\delta \epsilon}+\lambda_{2} \frac{\delta \xi_{2}}{\delta e}+\lambda_{3} \frac{\delta \xi_{3}}{\delta \epsilon}\right\} \\
Q_{1}= & -\frac{P\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)+P_{1}\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)}{2\left(P+P_{4}\right)^{4}} \\
& +\frac{1}{P+P_{1}}\left\{\lambda_{0} \frac{\delta \xi_{0}}{\delta \epsilon}++\right\} \\
& -\frac{1}{2\left(P+P_{1}\right)}\left\{\lambda_{0} \frac{\delta \xi_{0}}{\delta \epsilon_{1}}++\right\} ; \& c .
\end{aligned}
$$

HMP

July 23d.) Passing to a singie lens, $r_{3}=0, r_{4}=0$, therefore $\lambda_{2}=0, \lambda_{3}=0, \lambda_{0}+\lambda_{1}=1, P$,

$$
\begin{aligned}
-2\left(\lambda_{0} \xi_{0}+\lambda_{1} \xi_{1}\right) & =\frac{\lambda_{0} \epsilon^{\prime}}{\mu-1}-\frac{2 \lambda_{0}\left(\epsilon-\epsilon^{\prime}\right)}{\mu(\mu-1)}-\frac{\lambda_{0}^{2}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{\mu(\mu-1)}-\frac{\epsilon^{\prime}}{\mu(\mu-1)}+\frac{\epsilon \lambda_{1}}{\mu-1} \\
& =\frac{r_{1}}{P \mu}\left\{\mu \epsilon^{\prime}-2\left(\epsilon,-\epsilon^{\prime}\right)-\frac{(\mu-1) r_{1}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{P}-\frac{\epsilon^{\prime} P}{(\mu-1) r_{1}}-\frac{\epsilon r_{2} \mu}{r_{1}}\right\} \\
Q & =\frac{r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}}{8 P^{3}}-\frac{(\mu-1) r_{1}^{2}}{4 \mu P^{3}}-\frac{r_{2}}{4 P^{2}} \\
Q_{1} & =-\frac{r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}}{2 P^{3}}+\frac{(\mu-1) r_{1}^{2}}{2 \mu P^{3}}+\frac{r_{2}}{2 P^{2}}-\frac{r_{1}}{2 \mu P^{2}}+\frac{(\mu-1) r_{1}^{2}}{2 \mu P^{3}}
\end{aligned}
$$

and at the same time $r_{2}=r_{1}-\frac{P}{\mu-1}$, therefore*

$$
\begin{aligned}
Q & =\frac{r_{1}^{2}}{4 P^{3}}\left(\frac{1}{2}+\frac{1}{\mu}\right)-\frac{r_{1}}{4 P^{2}}\left(1+\frac{\frac{3}{2}}{\mu-1}\right)+\frac{1+2(\mu-1)}{8 P(\mu-1)^{2}} \\
& =\frac{(\mu+2) r_{1}^{2}}{8 \mu P^{3}}-\frac{r_{1}(2 \mu+1)}{8 P^{2}(\mu-1)}+\frac{2 \mu-1}{8 P(\mu-1)^{2}} \\
Q_{1} & =\frac{r_{1}^{2}}{P^{3}}\left(-\frac{3}{2}+\frac{\mu-1}{\mu}\right)+\frac{r_{1}}{2 P^{2}}\left(\frac{3}{\mu-1}+1-\frac{1}{\mu}\right)-\frac{\mu}{2 P(\mu-1)^{2}} \\
& =-\frac{(\mu+2) r_{1}^{2}}{2 \mu P^{3}}+\frac{r_{1}\left(\mu^{2}+\mu+1\right)}{2 P^{2} \mu(\mu-1)}-\frac{\mu}{2 P(\mu-1)^{2}} ; \& c
\end{aligned}
$$

July 27 th.) For this case of a SINGLE THIN LENS μ, in VACUO, at origin,

$$
\begin{gathered}
V=x \alpha+y \beta+z \gamma-x^{\prime} \alpha^{\prime}-y^{\prime} \beta^{\prime}-z^{\prime} \gamma^{\prime}-T^{(2)}-T^{(4)} \\
T^{(2)}+T^{(4)}=-\frac{\left(\mu \alpha_{1}-\alpha^{\prime}\right)^{2}+\left(\mu \beta_{1}-\beta^{\prime}\right)^{2}}{2 r_{1}\left(\mu \gamma_{1}-\gamma^{\prime}\right)}+\frac{\left(\mu \alpha_{1}-\alpha\right)^{2}+\left(\mu \beta_{1}-\beta\right)^{2}}{2 r_{2}\left(\mu \gamma_{1}-\gamma\right)} \\
+\frac{\left\{\left(\mu \alpha_{1}-\alpha^{\prime}\right)^{2}+\left(\mu \beta_{1}-\beta^{\prime}\right)^{2}\right\}^{2}}{8 r_{1}(\mu-1)^{3}}-\frac{\left\{\left(\mu \alpha_{1}-\alpha\right)^{2}+\left(\mu \beta_{1}-\beta\right)^{2}\right\}^{2}}{8 r_{2}(\mu-1)^{3}} \\
\frac{-\mu \alpha_{1}+\alpha^{\prime}}{r_{1}}+\frac{\mu \alpha_{1}-\alpha}{r_{2}}=0, \quad \alpha=\frac{\frac{\alpha}{r_{2}}-\frac{\alpha^{\prime}}{r_{1}}}{\mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)}=\frac{\alpha r_{1}-\alpha^{\prime} r_{2}}{\mu\left(r_{1}-r_{2}\right)} \\
\\
\mu \alpha_{1}-\alpha^{\prime}=\frac{\left(\alpha-\alpha^{\prime}\right) r_{1}}{r_{1}-r_{2}}, \quad \mu \alpha_{1}-\alpha=\frac{\left(\alpha-\alpha^{\prime}\right) r_{2}}{r_{1}-r_{2}}
\end{gathered}
$$

similarly for the β 's; therefore putting as before

$$
\epsilon=\alpha^{2}+\beta^{2}, \quad \epsilon=\alpha \alpha^{\prime}+\beta \beta^{\prime}, \quad \epsilon^{\prime}=\alpha^{\prime 2}+\beta^{\prime 2}
$$

* [These expressions have been corrected: in the first line, the MS. reads $-\frac{\frac{3}{2}}{\mu-1}$ instead of $+\frac{\frac{3}{2}}{\mu-1}$, and, in the second, $(2 \mu-5)$ instead of $(2 \mu+1)$. The compact method which follows is independent of these results.]
we have

$$
\begin{aligned}
& \left(\mu \alpha_{1}-\alpha^{\prime}\right)^{2}+\left(\mu \beta_{1}-\beta^{\prime}\right)^{2}=\frac{r_{1}^{2}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{\left(r_{1}-r_{2}\right)^{2}} \\
& \left.\begin{array}{rl}
\left.\left(\mu \alpha_{1}-\alpha\right)^{2}+\left(\mu \beta_{1}-\beta\right)^{2}=\frac{r_{2}^{2}\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)}{\left(r_{1}-r_{2}\right)^{2}}\right\}
\end{array}\right\} \because T^{(2)}=\frac{-\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)}{2(\mu-1)\left(r_{1}-r_{2}\right)}: \\
& \begin{aligned}
&\left\{T^{(4)}-\frac{\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)\left(\epsilon-2 \epsilon_{1}+\epsilon^{\prime}\right)^{2}}{8(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}}\right\} \div \frac{\epsilon-2 \epsilon_{1}+\epsilon^{\prime}}{4(\mu-1)^{2}\left(r_{1}-r_{2}\right)^{2}} \\
&=2 r_{1}\left(\overline{\mu \gamma_{1}-\gamma^{\prime}}-\overline{\mu-1}\right)-2 r_{2}\left(\overline{\mu \gamma_{1}-\gamma}-\overline{\mu-1}\right) \\
&=r_{1}\left\{\epsilon^{\prime}-\mu\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)\right\}-r_{2}\left\{\epsilon-\mu\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)\right\} \\
&=r_{1} \epsilon^{\prime}-r_{2} \epsilon-\mu\left(r_{1}-r_{2}\right)\left(\alpha_{1}^{2}+\beta_{1}^{2}\right) \\
&=r_{1} \epsilon^{\prime}-r_{2} \epsilon-\frac{\epsilon r_{1}^{2}-2 \epsilon, r_{1} r_{2}+\epsilon^{\prime} r_{2}^{2}}{\mu\left(r_{1}-r_{2}\right)} ;
\end{aligned}
\end{aligned}
$$

$$
\because \frac{8(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3} T^{(4)}}{\epsilon-2 \epsilon,+\epsilon^{\prime}}
$$

$$
\begin{aligned}
& \begin{aligned}
&=\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)\left(\epsilon-2 \epsilon,+\epsilon^{\prime}\right)+2(\mu-1)\left(r_{1}-r_{2}\right)\left(r_{1} \epsilon^{\prime}-r_{2} \epsilon\right) \\
& \quad 2\left(1-\mu^{-1}\right)\left(\epsilon r_{1}^{2}-2 \epsilon_{1} r_{1} r_{2}+\epsilon^{\prime} r_{2}^{2}\right) \\
&=\epsilon\left\{r_{1}^{2}\left(-1+2 \mu^{-1}\right)+\right.\left.+r_{1} r_{2}(-2 \mu+3)+r_{2}^{2}(2 \mu-1)\right\}-2 \epsilon_{1}\left\{r_{1}^{2}+r_{1} r_{2}\left(-1+2 \mu^{-1}\right)+r_{2}^{2}\right\} \\
& \quad+\epsilon^{\prime}\left\{r_{1}^{2}(2 \mu-1)+r_{1} r_{2}(-2 \mu+3)+r_{2}^{2}\left(-1+2 \mu^{-1}\right)\right\} ;
\end{aligned}
\end{aligned}
$$

therefore putting we have*

$$
T^{(4)}=\epsilon^{2} Q+\epsilon \epsilon, Q_{1}+\epsilon \epsilon^{\prime} Q^{\prime}+e_{1}^{2} Q_{\prime \prime}+e, e^{\prime} Q_{\prime}^{\prime}+\epsilon^{\prime 2} Q^{\prime \prime},
$$

$$
\begin{aligned}
& Q=\frac{r_{1}^{2}(-\mu+2)+r_{1} r_{2}\left(-2 \mu^{2}+3 \mu\right)+r_{2}^{2}\left(2 \mu^{2}-\mu\right)}{8 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}} ; \\
& Q_{1}=\frac{r_{1}^{2}+r_{1} r_{2}\left(-\mu^{2}+\mu+1\right)+r_{2}^{2} \mu^{2}}{-2 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{2}} ; \\
& Q^{\prime}=\frac{r_{1}^{2}\left(\mu^{2}-\mu+1\right)+r_{1} r_{2}\left(-2 \mu^{2}+3 \mu\right)+r_{2}^{2}\left(\mu^{2}-\mu+1\right)}{4 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}} ; \\
& Q_{\prime \prime}=\frac{r_{1}^{2} \mu+r_{1} r_{2}(-\mu+2)+r_{2}^{2} \mu}{2 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}} ; \\
& Q_{1}^{\prime}=\frac{r_{1}^{2} \mu^{2}+r_{1} r_{2}\left(-\mu^{2}+\mu+1\right)+r_{2}^{2}}{-2 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}} ; \\
& Q^{\prime \prime}=\frac{r_{1}^{2}\left(2 \mu^{2}-\mu\right)+r_{1} r_{2}\left(-2 \mu^{2}+3 \mu\right)+r_{2}^{2}(-\mu+2)}{8 \mu(\mu-1)^{3}\left(r_{1}-r_{2}\right)^{3}}
\end{aligned}
$$

Single thin lens in vacuo.

Let p be power ; $p=(\mu-1)\left(r_{1}-r_{2}\right)$: then

$$
T^{(2)}=-\frac{1}{2 p}\left(\epsilon-2 \epsilon+\epsilon^{\prime}\right)
$$

[The manuscript ends at this point.]

[^1]
[^0]: * [The thickness of the lenses, although in general of the order of $a_{0}^{2}+\beta_{0}^{2}$, is here neglected. The argument used here is that of (K^{7}) of the Third Supplement (p. 216).]
 + [The point x_{5}, y_{5}, z_{5}, is any point on the final ray.]

[^1]: * [The expression for $Q^{\prime \prime}$ has been corrected ; the MS. reads " 3 " instead of " 3μ."]

