
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 18, 3, pp. 257-278, Warszawa 1976 

Generalized continuum theories for directionally 
reinforced solids 

J. D. ACHENBACH (EVANSTON) 

A THEORY of elasticity with microstructure for fiber reinforced composites with a rectangular 
array of the fibers is outlined. The theory is based on expansions of the displacements across 
representative cells. The transition from the actually inhomogeneous composite to a homo
geneous continuum is achieved by introducing continuous fields for gross displacements and 
local deformations. The elastic constants are expressed explicitly in terms of the constants 
defining the mechanical behavior of the fibers and the matrix material, and the parameters 
describing the geometrical layout of the composite. A number of specific examples involving 
the dispersive behavior of time-harmonic waves propagating in directions parallel and normal 
to the fibers are discussed. These cases are relevant to available data of ultrasonic tests on 
composite materials. Analytical results are compared with test data, and with some results 
obtained by the finite element technique. 

Naszkicowano teori~ spr~zystosci z mikrostruktur(\ dla kompozyt6w wzmocnionych wl6knami 
przy rozmieszczeniu wl6kien w ksztalcie prostok'ltnej tablicy. Teoria bazuje na rozwini~iach 
przemieszczen wzgl~dem reprezentatywnych kom6rek. Przejscie od niejednorodnego do jedno
rodnego kompozytu osi'lgni~to dzi~ki wprowadzeniu ci'lglych p6l dla dl!Zych przemieszczen 
i lokalnych odksztalc~n. Stale spr~zyste wyrazono jawnie przez stale okreslaj(\ce mechaniczne 
wlasnosci materialu wl6kien i matrycy oraz parametry opisuj'lce geometryczn(\ strukturc; kom
pozytu. Frzedyskutowano kilka odpowiednich przyklad6w opisuj(\cych dyspersyjne zachowanie 
si~ fal harmonicznych rozprzestrzeniaj'lcych si~ w kierunku r6wnoleglym i prostopadlym do 
wl6kien. Wybrano takie przypadki, dla kt6rych istniej'l dost~pne dane doswiadczalne uzyskane 
w badaniach ultradzwic;kowych, przeprowadzonych na pr6bkach wykonanych z rnaterialu 
kompozytowego. Wyniki numeryczne por6wnano z danymi doswiadczalnymi oraz z niekt6-
rymi wynikami otrzymanymi metod'l element6w skonczonych. 

Ha6pocaHa TeOpiDI ynpyrOCTH C MHKpoCTpYJ<TypoH Ami KOMn03HTOB ynpOliJleHIU>IX BOJIOI<llaMH 
npH pacnpeAeJielUIH BOJIOKOll B $opMe npmmyrOJibllOH Ta6.JIHQbl. 3Ta TeOpHH 6aaHpyeT aa 
pa3JIO>KeHHHX nepeMei.QeHHH no OTHOWellHIO K npeACTaBHTeJibllbiM HlleHKaM. IlepexOA OT 
HeOAHOPOAHOro K OAHOPOAHOMy KOMn03HTY AOCTHrllYT 6naroAapH BBeAeruno HenpepbiBIU>IX 
noneM: AJIH 6oJibWHX nepeMel.QeHHH H JIOKaJiblU>IX Ae<PopMax.urlf. YnpyrHe nocromntbie Bbi
pameHbi HBHO qepe3 OOCTOHHHble, onpeAeJUIIOl.QHe MeXaJlHt{eCKHe CBOHCTBa MaTepHana BO
JIOKOH H MaTpHQbi, a TaKme napaMeTpbi, onHCbiBaiOl.QHe reoMeTpHlleCJ<YlO CTPYI<TYPY KOMno
ama. 06CymAellO HeCKOJibKO COOTBeTCTByroi.QHX npHMepoB, OOHCbiBaiOl.QHX AHCIIepCHOHHOe 
OOBeAeHHe rapMOHHlleCKHX BOJill, pacnpocrpaamol.QHXCH B HanpaBJiellHH napaJIJieJibHOM 
H nepneH;AHKYJIHpllOM K BOJIOKHaM. lf36paH;bl TaKHe cnyqaH, AJIH KOTOpbiX cyl.QeCTBYIOT 
AOCTynH;bie 3KcnepHMeHTaJibHbie AaHllbie, nonyqeaahie B Y11bTpa3BYJ<OBbiX HCCJieAOBaHHHX, 
npoBeAeH;HbiX Ha o6pa3QaX, H3rOTOBJieH;HbiX H3 KOMn03HTHOrO MaTepHaJia. qHCJieHIU>Ie pe-
3YJibTaTbl cpaBH;eHbi c 3KcnepHMeHTaJibHbiMH AaHHhiMH, a TaKme c aeKOTOpbiMH pe3yJibTaTaMH 
OOJiyllellH;biMH MeTOAOM KOHeliHbiX 3JieMeHTOB. 

1. Introduction 

FoR many practical purposes the mechanical response of a directionally reinforced com
posite can be analyzed adequately on the basis of a theory which accounts for the gross 
mechanical behavior of the composite material. Gross mechanical behavior is described 
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by averages of field variables over representative elements. In the simplest theory the 
averaged stresses are related to averaged strains by means of effective elastic constants. 
In this theory, which is termed the "effective modulus theory", the mechanical response 
of the composite medium is equivalent to the response of a homogeneous but generally 
anisotropic medium whose "effective moduli" are determined in terms of the elastic 
moduli of the constituents and the parameters describing the geometrical layout of the 
composite. The computation of effective moduli has been a research topic of long-stand
ing interest. 

The effective modulus theory is useful if a pertinent length parameter characterizing 
the structuring of the composite is sufficiently smaller than a characteristic length of the 
deformation. Consequently it is conceivable that a number of interesting problems, mainly 
of a dynamic nature, cannot be analyzed adequately on the basis of the effective modulus 
theory. It should be noted, for example, that the effective modulus theory cannot account 
for dispersion of free harmonic waves in an unbounded body, i.e., the dependence of 
the phase velocity and the group velocity on the wavelength. It has, however, been verified 
experimentally that dispersion is pronounced if the wavelength is of the same order of 
magnitude as a characteristing length of the structuring. Wave propagation experiments 
on composite materials have also revealed higher modes of wave propagation, some
times called optical modes, in addition to the two lowest modes (which are usually called 
the acoustical modes). Only the acoustical modes, and then without dispersion, can be 
described by the effective modulus theory. 

The propagation of harmonic waves in a layered composite consisting of alternating 
layers of two elastic materials can be analyzed rigorously, see e.g. Refs. [1, 2 and 3]. It 
is also quite simple to construct an effective modulus theory for a laminated medium, as 
shown in Ref. [4]. Thus, a laminated composite provides a very suitable model to display 
the limitations of the effective modulus theory. This was done in Ref. [5]. 

The exact results for a laminated medium presented in Ref. [3] exhibit the different 
nature of the dispersive behavior for harmonic waves propagating in the direction of 
the layering, and normal to the layering. For waves propagating along the layering, the 
layers act as waveguides, and there are no stop-bands, i.e., frequency ranges in which 
propagating harmonic waves are not possible. For waves propagating normal to the 
layering, the dynamic interaction between neighboring layers does generate stop-bands, 
which are very similar to those found in elastic lattices (see e.g. Ref. [6]). 

Exact solutions within the context of classical elasticity theory are not available for 
fiber-reinforced composites. It is, however, to be expected that qualitatively an analogous 
difference should exist for dispersion of waves propagating in the direction of the fibers, 
and normal to the fiber-direction. This expectation has been confirmed by experimental 
results presented in Refs. [7 and 8]. 

For a laminated medium the restrictions of the effective modulus theory have motiv
ated the formulation of an extension of that theory, see [5]. The extended theory, which 
is known as the effective stiffness theory, can describe typical dynamic effects due to the 
structuring. The displacement equations of the effective stiffness theory which were derived 
in [5] were used to investigate the propagation of plane harmonic waves in the directions 
parallel to the layering and normal to the layering. The limiting phase velocities at vanish-
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ing wavenumbers agreed with the constant phase velocities according to the effective 
modulus theory, as well as with the limiting phase velocities obtained from an exact treat
ment. For the lowest modes and for waves propagating parallel to the layering the dis
persion curves according to the theory of Ref. [5] agreed over a significant range of wave
numbers with the exact dispersion curves. It was subsequently shown in [9] that the theory 
can be refined to increase the accuracy. Higher order theories were reviewed in Ref. [10]. 
For waves propagating normal to the layering, the theories that have been worked out 
thus far remain, however, unsatisfactory, even with higher order terms. A more accurate 
representation of the interaction between neighboring layers should produce the desirable 
improvements. 

It is a legitimate question whether the relatively small wavelengths, with frequencies 
in the megahertz range, at which dispersion effects and higher modes occur, are of practical 
significance from the point of view of technological applications. In a few examples of 
pulse propagation that have been worked out, see Refs. [11 and 12], it has been shown 
that the contribution of the lowest mode often predominates. It has also been shown, 
however, that the curvature of the phase velocity versus wavenumber curve at zero value 
of the wavenumber governs the shape of the pulse at larger values of time. On the other 
hand, there are several other potential sources of dispersion, such as the overall boundaries 
of the body and inelastic behavior of the constituents, which may produce dispersion 
predominating that due to the structuring of the composite. 

An important motivation for a detailed study of the propagation of harmonic waves 
in fiber reinforced composites is that effective elastic constants can conveniently be 
measured by ultrasonic testing techniques. These techniques have the advantage that 
small specimens can be used, and that good control and reproducibility can be achieved. 
Typically one measures phase velocity or group velocity for a number of frequencies. 
The extrapolation to zero frequency then provides the velocities for very long waves, 
from which the effective elastic constants can be determined. Clearly, these testing pro
cedures require a good understanding of the dynamic behavior of composite materials. 
The major part of this paper is, therefore, concerned with wave motions that are relevant 
to ultrasonic testing techniques. 

A continuum theory which models more accurately the structuring of a fiber-rein
forced composite can, of course, be expected to yield better results for smaller character
istic lengths of deformation. In recent years several attempts have been made towards 
the development of such more accurate theories. On the basis of kinematical considera
tions within a typical cell of the directionally reinforced composite, a hierarchy of theories 
can be developed, which shows a close resemblance to the generalized continuum theories 
which were apparently first introduced in the literature towards the end of the nineteenth 
century. 

As a research topic in theoretical and applied mechanics, generalized continuum 
theories enjoyed a renewed interest and a brief period of glory in the fifties and the sixties. 
Much of this interest was from an abstract theoretical mechanics point of view. Several 
theories were formulated and several specific problems were solved. The enthusiasm 
waned, however, when few practical applications could be found. In particular, it turned 
out to be difficult to relate the multitude of material constants appearing in these generalized 
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continuum theories to the structuring of real materials, either by theoretical considera
tions or on the basis of experimental results. 

In this paper the applicability of generalized continuum theories to the mechanics of 
directionally reinforced solids with periodic structuring is discussed. A theory of elasticity 
with microstructure is outlined for fiber reinforced composites with a rectangular array 
of the fibers. The theory is based on expansions of the displacements across representa
tive cells. The transition from the actually inhomogeneous composite to a homogeneous 
continuum is achieved by introducing continuous fields for gross displacements and 
local deformations. The elastic constants of this theory of elasticity with microstructure 
are expressed explicitly in terms of the constants defining the mechanical behavior of the 
fibers and the matrix material, and the parameters describing the geometrical layout 
of the composite. The potential applicability of generalized continuum theories to des
cribe the mechanical behavior of composite materials was earlier discussed by RIVLIN 
[13, 14) and IIERJwANN and ACHENBACH [15). 

A number of specific examples involving the dispersive behavior of time-harmonic 
waves propagating in directions parallel and normal to the fibers are discussed in this 
paper. The results are compared with some recent experimental results, and with results 
from other theories, including some obtained by finite element techniques. 

Alternative approaches to the one discussed here, have been presented by other authors. 
Among these we mention mixture theories [16, 17], and variational methods [18, 19]. 

2. A homogeneous continuum model 

In this section the basic ideas for the construction of generalized continuum theories 
for fiber-reinforced composites are presented with reference to a specific model. The 
equations governing a general state of deformation, according to this particular model, 
are lengthly. These equations have already been presented in some detail in Ref. [20] 
and they are, therefore, not listed once again in this paper. 

We consider a fiber-reinforced composite consisting of uni-directional fibers embedded 
in a matrix material. It is assumed that the fibers are cylindrical rods of radius a arranged 
in rectangular arrays. The distances between the center lines of the fibers are d2 and d3 , 

in the x2- and x3-directions, respectively, as shown in Fig. 1. Each fiber is identified by 
two indices: the first index identifies the row and the second index identifies the column 
in which the fiber is located. The position of the center line of fiber (k, /) is defined by 
x2 = x~ and x3 = x:. The elastic constants of the high-modulus reinforcing fibers and 
the low-modulus matrix material are denoted by A1 , #J and Am, ftm, respectively. 

To describe the displacement field the fiber-reinforced medium is divided into strips 
by the planes of structural symmetry of the composite, see Fig. 1. Each strip is of width 
d2 and of height d3 , and each strip contains one fiber. We focus attention on the strip 
which contains fiber (k, /). An element of unit length of this strip is labeled cell (k, /). 
Next, we define a system of local cylindrical coordinates r, (), x 1 , as well as a system of 
local Cartesian coordinates x1 , x2 , x3 , see Fig. 2. Now, provided that the characteristic 
length of the deformation is sufficiently larger than either d2 or d3 , the displacements 
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FIG. 1. Fiber-reinforced composite. 

FIG. 2. Cell (k, /) of the fiber-reinforced composite. 

in the cell can be approximated by expansions in terms of quantities which are defined 
at the center line of the fiber, which is also the center line of the cell. These expansions 
are analogous to the expansions used in rod theories. For the particular model con
sidered here, we consider linear expansions of the forms (in indicia! notation i = I , 2, 3): 
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in fiber (k, /), (r < a): 

(2.1) u{<"·'> = u~"·'> + rcosOVJ{i"·'> + rsin01J'{i"·'>; 

in the matrix material of cell (k, /), (r > a): 

(2.2) ui"<k,l> = u~"·'> +a COS01p{~"·'> +a sin O'IJ'{~"·'> + (r- a) COS01p~~k,l> + (r- a) sin81p;'~t.l). 

Thus, the displacement in the matrix is expressed as the displacement at the fiber-matrix 
interface plus additional terms which increase linearly with the distance from the inter
face. By expressing zr,<"·'> in the form (2.2) the displacement satisfies the condition of 
continuity at the fiber-matrix interface. Equation (2.2) can also be written in the form 

(2.3) ui'<k,l> = ui"·'> +a cosO(tp{~t.z> -1p~~"·'>) +a sin 0( v{~t,t>- ~ft·'>) + x 2 1p~~"·'> + x 3 1p;'["·'>. 

The field quantities and their dependence on the coordinates are summarized as 

gross displacements 

local fiber deformations 

u~"·'>(x1, xL ~, t); 

1fJ~~·'>(x1 , x~, ~, t), 

local matrix deformations 1p;'["·'>(x1, xL ~' t), 1J';'f"·'>(x1, xL ~' t). 

Note that within the actual fiber-reinforced composite the gross displacements and the 
local deformations are defined at discrete values of x 2 and x3 , but they are continuous 
functions of x1 and t. 

The displacements should be continuous at the interfaces between cell (k, /) and the 
neighboring cells. It is, however, not possible to require point by point continuity. What 
can be done is to impose the condition that the average displacement is continuous at 
the interfaces of the cells. Thus, at the interface between cells (k, /) and (k, I+ I) we 
require 

(2.4) 

}d3 

J {[ui"<"·'+ 0]~2=-!d2 - [ui'<"·'>];z=!dJdxJ = 0. 
-!d3 

Substituting Eq. (2.3) into (2.4) we obtain upon working out the integrals 

(2.5) u~k.l+l> _ u~"·'> _ 0:.2 In [C +(I+ C2)1'2](1J'{~k.z+ 1> -"P~fk.t+o 

I 
+'P{~"·'>-1p~["·'>)- 2 d2('P~1"·'+1>+1J'~[k,l>) = 0. 

In Eq. (2.5) the ratio C is defined as 

(2.6) r = d3 
1:. d2. 

The displacement expansions (2.I) and (2.3) can be used to compute the correspond
ing strains. Substituting Eq. (2.1) into the expression for the components of the small 
strain tensor, 

(2.7) 
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in which 

(2.8) OjUi = autfoxj, 
and where the differentiation in the x2 - and x 3-directions should be with respect to the 
local coordinates x2 and x3 , we find 

(2.9) e;?·'> = "P?~"·'> (no summation), 

(2.10) 
1 

ef(k,l) _ (mf<k,l> + tllf(k,l) 
23 - 2 r23 r32 ' 

(2.11) ef<k.l) - a u-<"·'>+x a •. J<"·'>+x a •. J(k,l) 
, 11 - 1 1 2 1 Y21 3 tY31 , 

(2.12) el<"·'> - el<"·'> = __!_ (a u<"·'> + x a •. J<"·'> + x a •. J<"·'> + ,nl<"·'>) 1y - y1 2 1 y 2 1Y2y 3 1 Y-'3y ry1 • 

In Eqs. (2.9)-(2.12) the Greek index y can assume the values 2 or 3 only. An analogous 
set of strains can be obtained from the displacement distributions in the matrix material. 
These strains are listed in Ref. [20]. 

In an isotropic linearly elastic body the strain energy density can be written as 

(2.13) W = ~ (A+ 2,u) (e~ 1 + e~2 + e~ 3)+ A.( ell e22 + e11 e33 + e22 e33)+ 2,u(e~2 +e~3 + e~3), 

where A. and ,u are Lame's elastic constants, and eu are the components of the strain 
tensor. 

Substitution of the strains (2.9)-(2.12) into W, and integration over A1 , where 

(2.14) A1 = no2 

is the cross-sectional area of the fiber, yields the strain energy Wl<"·'> stored in the fiber 
element of cell (k, /). Substitution of the expressions for the strains in the matrix material 
over Am, where 

(2.15) Am= d2 d3 -na2
, 

yields the strain energy wm<"·'> stored in the matrix material of the cell (k, /). The total 
strain energy averaged over the volume of cell (k, /) is 

(2.16) w.<"·'> =_I_ (WI<"·'>+ wm<"·'>) 
ave d2d3 . 

The displacement expansions (2.1)-(2.3) can also be used to compute particle veloc
ities. For the kinetic energy stored in the fiber element of cell (k, /) we have 

3 

(2.17) Tl<"·'> = + (!J f f 2 (u{<"·'>)2dA,. 
Ar i = l 

By employing Eq. (2.1) we find 

3 

(2.18) Tl<"·'> _ 1 
n \' {A (u,:,<"·'>)2 +fl(n~J<"·'>)2 +fi(:.J<"·'>)2} 

-2<::1~ I i 3'1'2i 2'1'3i , 

i = l 
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where 

(2.19) I{ = J J x~dAh 
AJ 

(2.20) I{= J jx~dAf. 
AI 

The kinetic energy stored in the matrix material of cell {k, I), rm<k·'>, can be computed 
in the same manner. The total kinetic energy stored in cell {k, I) is the sum of Eq. (2.18) 
and rm<k·'>. The average over the volume of the cell is 

(2.21) r.<k·'> = _1_ (Tf<k.l> + rm<k·'>) 
ave d2d3 . 

The displacement distribution in the fiber-reinforced composite is now described by 
the field variables u~k.z>, v{~k.l>, -rp{~k,z>, 1p';~k,l> and "P':~k,l>. These variables are defined 
only on discrete lines x2 = x~ and x3 = x~. To obtain a continuum model we now in
troduce fields that are continuous in x2 and x 3 , and whose values at x2 = x~ and x 3 = .x1 
coincide with the values of the actual field variables at the center lines of the cells. The 
step is indicated by writing u;(xb t) rather than u1k,l>(x1 , xL x~, t), etc. In this manner 
five continuous fields are introduced: 

gross displacements ui(xi, t), 

local deformations v{1(xi, t) and -rp{, (xi, t), 

VJ';;(xb t) and 1p';1(xb t). 

As a direct implication of the foregoing step we can also state a strain energy density 
W(x;, t) and a kinetic energy density T(x;, t), which are continuous functions of x, and 
t, and whose values at x2 = ~ and x 3 = x~ agree with W!~·~> and T~!~'>. The explicit 
expressions for W(x;, t) and T(x;, t) are stated in Ref. [20]. 

It remains to examine what happens to the continuity conditions in the transition 
from the system of variables defined in discrete planes to the system of continuous variables. 
Considering u1, etc., as continuous functions of x2 and x 3 , Eq. (2.5) is a difference relation 
of the form 

(2.22) L12ii;-
0
:.2 ln[C + (1 + C2)112](2VJ{,+L12 VJ!i- 2VJ';i -L121p';,) 

- ~ d2(2VJr;i+L12"Pr;i) = 0. 

In Eq. (2.22) the field variables are considered at x2 = xL x3 = x~. The difference L12ui 
is defined as 

(2.23) 

with analogous definitions for L1 2-rp{i and L1 2VJTi· Noting that x~+l = x~+d2 , we see 
that in the limit d3 ~ 0, d2 ~ 0, but keeping C = d3/d2 and afd3 constant, the difference 
relation (2.22) can be replaced by the differential relation 

(2.24) S2; = o2ii;- ~: In[C+(l+C2
)
1' 2l (VJ{i-"Pr;i)-'1/lr;i = o. 
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Similarly we obtain for displacement continuity between cells (k, I) and (k + 1 , /) 

- 2a [ 1 + (1 + C2)1/2] m 
(2.25) S31 = a3ui- d

2 
In C (1Jl{i-"P3i)-v/:i = 0. 

It is now assumed that (2.24) and (2.25) are also valid for finite values of d2 and d3 • The 
continuity conditions in the system of discrete cells have thus been turned into constraint 
conditions between the continuous field variables. 

At this stage we have constructed a strain energy density as an expression in terms 
of local deformations and the gradients of the local deformations and the gross displace
ments. A kinetic energy density has been obtained in terms of the first-order time de
rivatives of the gross displacements and the local deformations. Considering a fixed re
gular region V of the medium, the displacement equations of motion can then be obtained 
by invoking Hamilton's principle for independent variations of the dependent field quan
tities in V and in a specified time interval t0 ~ t ~ t 1 • For the region V, Hamilton's 
principle states that 

lt - lt 

(2.26) ~ j j (T- W)dtdV+ j ~W1 dt = 0, 
to V ro 

where ~ W 1 is the variation of the work done by external forces and dV is the scalar 
volume element. Here we are interested only in the displacement equations of motion 
and we restrict the admissible variations to ones that vanish identically on the bounding 
surface of V. In the absence of body forceds the variational problem then reduces to find
ing the Euler equations for 

(2.27) ~ j j F dt dV = 0, 
to V 

where the functional F is defined as 

(2.28) F= T-W. 

An elegant and convenient method of taking the continuity conditions (2.24) and (2.25) 
into account is to introduce them as subsidiary conditions through the use of Lagrangian 
multipliers. The variational problem may then be redefined by using the functional 

(2.29) 
3 

F = T- W- _2; (F2iS2i+F3iS3i), 
i=l 

in Eq. (2.27), where the Lagrangian multipliers r2i and r3i are functions of Xj and t. 
Since the functional F as given by Eq. (2.29) depends only on the dependent field variables 
and their first-order derivatives, the system of Euler equations may be written as 

4 

\' ~ r aF ] _ 8F = O 
.L.J aqr 8(8fsf8qr) 8/s . 
r=l 

(2.30) 

In Eq. (2.30), Is represents the dependent variables u" vlyh 1p~1 and r,h and qr are 
the spatial variables x1 and time t. A system of 21 governing equations follows from the 
Euler equation (2.30) and from the constraint conditions (2.24) and (2.25). 
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3. Particular examples: theory and experiment 

The model described in the previous section can represent the effects of the discrete 
structuring of a fiber-reinforced composite on the mechanical field variables. It may be 
expected that the model is superior to the effective modulus theory, especially for dynamic 
problems. 

One check on the accuracy of the model is a comparison with experimental results 
of the phase velocity at various frequencies, for specific harmonic wave motions. This 
comparison shows that linear expansions within a cell give good results, over a sub
stantial range of frequencies, for transverse waves propagating in the direction of the 
fibers. The analytical results are valid over a smaller range of frequencies for longitudinal 
waves propagating in the direction of the fibers, and over a still smaller range for longi
tudinal waves propagating normal to the fibers. 

In this section it is shown that the homogeneous continuum model can be improved 
by using more accurate displacement distributions, and by improving the representation 
of the interaction between neighboring cells. We will consider a number of special cases 
for which experimental results are available. 

3.1. Transverse waves propagating in the direction of the fibers 

For a number of frequencies, measurements of what is thought to be the group ve
locity, have been presented by TAUCHERT and GuzELSU [7]. 

A simple theory for transverse waves can be based on the following assumed displace .. 
ment representations in cell (k, /), see Fig. 2: 

in fiber (k, /), (r < o): 

(3.1) u{<"·'> = X2 1p~)"·'>, 

(3.2) 

in the matrix material of cell (k, /) 

(3.3) u~<"·'> = u~"·'>; 

x2 ~ o, lx31 ~ o: uT<"·'> = (a 2 -x~)112'1'{\"·'> + [x2 - (a 2 -x~)1 '211J'~i"·'>, 

(3.4) a ~ lx- I ~ _!._ d . um(k,l) - X- tllm(k,l) 
~ 3 ~ 2 3 • 1 - 2 T21 ' 

x2 ~ o, 1x31 ~a: ur:<"·'> = -(a2 -xD112'1'~1"·'>+£x2+(a 2 -x~)1121~i"·'>. 

The corresponding strains are 

(3.5)1,2 
"''"·'> _ 1 ( ~ -u<"·'> + .. J<"·'>) 
"12 - 2 C/1 2. 'r21 ' 

ef<"·'> _ x ~ .. J<"·'>· 11 - 2(/l'f/21' 
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or 

(3.6h cT1k,r> = ±(a2-x~)1t2a1tp{\k·'>+[x2±(a2-xn1'2]a1'P~ik·'>. 

The strains ET~k,l> are neglected. 
Next, we will consider the conditions at the interface between cell (k, /)and cell (k +I,/). 

Since periodicity with respect to x implies •. .f<k.l> = .. .f<k+ 1•1> and tl,m<k.l> = t/Jm<k+ 1•1> we 2 Y21 'f21 ' T21 T21 " ' 
obtain by virtue of Eq. (2.4): 

(3.7) 'Pm(k,l _ . 'YJ VJ!<k,l) 
21 - - i -'Y] 21 ' 

where 'YJ is the volume density of the fibers, i.e., 

Af 
(3.8) 'YJ = -~-

Af+Am 

The strains given by Eqs. (3.5)1,2 and (3.6)1_3 are now substituted in Eq. (2.13), and 
the resulting expressions are integrated over the appropriate regions of cell (k, /). The 
computation of the total strain energy averaged over the volume of cell (k, /), as defined 
by Eq. (2.16), and the subsequent transition to the continuum model, as described follow
ing Eq. (2.21), then yield the following strain energy density 

(3.9) w = ~ al(alu2)2 +a2(alu2)'1'{1 + ~ a3('P{t)2+ ~ a4(al tp{1)2. 

Here we have used the relation between VJ'i1 and '1'{1 given by Eq. (3.7). The constants 
are: 

(3.10)1-4 

where 

(3.10)s 

at = 'Y]P,1 + (l-'Y])ftm, 

a2 = (p,f- p,m)'YJ' 
2 

a3 = 'YJ/1-1 + _'YJ_ p,m, 
l-f] 

a4 = 0.25fJ{A.f+ 2p,f)a2 +(Am +2/1-m) C, 

C ( 4 o
3 

3 2) ( 'YJ )
2 

2 ( 1 d2 3 2) = ----'Y]O 1+-- - -'Y] 2 --'Y]O 
3 d3 4 1-'Y] 8 8 

x(l+-'Y/ )-'YJ +(-1 
di-_!_fJ02)(-'YJ )

2

• 
1-'Y] 1-'Y] 12 4 1-'Y] 

The kinetic energy density is obtained as 

(3.11) 

where 

(3.12) 

and C is defined by Eq. (3.10)5 • 
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Application of the Euler-Poisson equation (2.30), where F = T- W (the interface 
conditions have already been taken into account via Eq. (3.7)), yields 

(3.13) 

(3.14) 

-~ - I 
QU2 -a1 o1 o1u2 -a2 o1 1p21 = 0, 

bip{1-a4a1a1V'!1 +a2o1il2+a31J'!1 = o. 
We will consider harmonic waves of the forms 

(3.15) 

where k = 2n/A is the wavenumber, A being the wavelength, and c is the phase velocity. 
Substitution of Eqs. (3.15) into (3.13) and (3.14) yields 

(3.16) - 2 a~ 
QC = al- (a4 -bc2)k2 +a3 

This is a quadratic equation for the phase velocity. 
We will simplify the computation of c, by observing that fork--+ oo, we have f?c2 = a 1 • 

Since this upper limit is reached quickly, we substitute this result in the denominator, 
to obtain the explicit but approximate result: 

(3.17) - 2 a~ 
QC = a1- (a4-ba1/Q)k2 +a3) · 

The group velocity c,, is related to the phase velocity by 

(3.18) 
de 

c, = c+k dk. 

Table 1. Mechanical and geometric parameters of the boron-epoxy composite [7] 

Mechanical parameters Boron 

Young's modulus in :fiber direction, 106 psi, (E) 55.0 
lb sec2 

Mass density, t0- 6 -. -
4
-, (e) 251 

m 
Poisson's ratio, (v) (estimated) 0.2 

Geometric parameters 

:fiber radius, in, (a) 
volume density, (rj) 
:fiber radius/:fiber spacing, (ajd) 

Epoxy (PR-279 resin) 

0.002 
0.54 
0.41 

0.73 

118 

0.4 

Numerical results are presented for a boron-epoxy composite, for which experimental 
results were presented by TAUCHERT and GuzELSU [7]. The mechanical and geometrical 
parameters are summarized in Table 1. We use the same system of units as in Ref. [7]. 
The values of the relevant ratios are 
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while 

(cT)m = flm = 0.0469~. 
( )

1/2 • 

(!m flSeC 

0.2 + + 

0.1 + experiment 

2 3 4 5 6 7 8 9 10 11 

f(mhz) 

FIG. 3. Analytical and experimental results for transverse waves propagating in the direction of the fi.bers; 
see Table 1 for mechanical and geometric parameters. 

The results computed from Eqs. (3.17) and (3.18) are plotted in Fig. 3. Experimental 
results from [7], Fig. 6, are also plotted in Fig. 3. It is noted that there are some devia
tions at small and relatively large frequencies, but the agreement is not altogether un
satisfactory. 

3.2. Longitudinal waves propagating normal to the fibers 

Measurements of the phase velocity for various frequencies have been presented by, 
among others, SUTHERLAND and LINGLE [8]. 

To construct a useful model for this more difficult case, it is necessary to include 
quadratic terms in the expansions inside cell (k, /) and to provide an accurate representa
tion of the interaction between neighboring cells. 

Let us start off with expressions for the strains which are consistent with longitudinal 
motions in the x2-direction. We consider 

(3.19)1,2 "j(k,l) - ~.J(k,l) "f(k,l) - ~.J(k,l). 
<>22 - '/'22 , <>33 - 'f33 , 

(3.20h,t 
X 

e~~k,l> = "P~~k,l> + 2 d: (/)22, e':i"·'> = "P':i"·'>. 

Corresponding displacements in the fiber of cell (k, /) are 

(3.21)1,2 U
f(k,l) _ X- ~.J<k,l l 
3 - 3 'f33 , 

2 Arch. Mech. Stos. nr 3/76 
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while in the matrix material we have 

x2 ~ 0, li31 ~ a: 

J. D. ACHENBACH 

(3.22)1 u~<"·'> = u2 + (a2 -x~)112tp{~"·'>+ [x z- (a2 -xD112]'P~1"·'>+ [x~- (a2 -xDl ~~; 

X 2 ~ 0, I :X 2l ~ a: 

(3.22)2 u~<"·'> = u2- (a2-:XD1'2tp{~k,l> + [x2 + (a2 -x~)lf2]'P~1k.o +[:X~- (az -xD] ~z; 

1 
a~ lx31 ~ 2d3: 

(3.22)3 

(3.22)4 

(3.22)s 

- 1 
a~ lx2l ~ 2d2: 

(3.22)6 

Um(k,l) - -u +x- '"m(k.l) +x-2 fP22 . 
2 - 2 2 r22 2 d

2 
, 

These displacement distributions also give rise to shear strains e';~"·'>, which are easily 
computed. It is evident that e';~"·'> assumes different values in different regions of the 
matrix material of cell (k, /), and that the expressions for e~1"· 1 depend on the local co
ordinates. The averages, E';~"·'>, over these regions are, however, easily computed. For 

example, for the region a ~ :X3 ~ ~ d3 , -a ~ x2 ~ 0 we find 

(3.23) -;;m(k,l) _ 1 (tnl<k,l) '"m(k,l>) 
"'23 -2 r33 -r33 ' 

while for 0 ~ x2 ~ a, (a 2 -xD112 < :X3 < a, we have 

(3.24) -em<k,l) - 1 ( AoJ(k,l) + f/Jm(k,l) aoJ(k l) + ,11m(k,l>) 23 - 4 _n -yru r22 -lf33 r33 · 

These expressions can be further simplified, since tp{~"·'> and tp{~"·'> may be neglected as 
compared to tjl;.~"·'> and 'P':1"·'>, respectively. 

Just as discussed in Sect. 2, and exemplified in the first part of the present section, 
the strains in the discrete cells lead us to the construction of a strain energy density. We 
find 

(3 25) W 1 
I ( I )2 1 I (··f )2 I .. J I 1 m ( m )2 · = 2 a22 'P22 + 2 a33 'f33 + a23 'f~2 'P33 + 2 a22 'P22 

1 m ( m )2 + m m m + 1 bm ( 2 ) + 2 a33 tp33 a23 'P22 'P33 2 22 (/)22 , 
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where 

(3.26) 

a{2 = a{3 = YJ(Af+2pf) , 

a{3 = YJAb 

a~2 = (1- YJ) (Am+ 2pm) + _3_ 
4
--

1
- 'lflm + ( d2 

- 2) _!_ 'lflm, 
n -n a n 

m 2 1 ( d3 ) 1 a33 = (1-n) (). +2p )+ --- '711 + --2 - 'YJII m m 1& 4 - 1& m a 1& rm ' 

b'f2 = (+ -1) ~; ) (Am+ 2flm). 

In these expressions, 'YJ is defined by Eq. (3.8). 

271 

In the computation of the kinetic energy we only take into account the gross displace
ments, and we find 

(3.27) 

where e is defined by Eq. (3.12)1 • 

The conditions at the interfaces of neighboring cells require careful consideration. 
Substituting the displacement expressions in Eq. (2.14) we find 

(3.28) L12u2-p3a1f'{2--}p3aL121f'{2-(d2-p3a)1f'~2- ~ (d2-p3a)LJ21f'~2 

+d2 (! - ~ d~~. ) Ll2q>22 = 0, 

where 

(3.29)1,2 

In a similar manner we find 

(3.30) 

To place Eq. (3.28) within the context of the transition to the continuum model, we 
introduce Taylor expansions for the differences LJ 2 u, etc. Defining the operator P[ ] as 

00 

(3.31) 

we find that Eq. (3.28) can be replaced by 

(3.32) S2 = P[u2)-p3a1p{2- -} p3aP[1p{2]- (d2 -p3a)1p~2 

- ~ (d2-p,a)P[vf,'2]+d2 (! - ; d;:,)P[q>22) = 0. 

2* 
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The functional to be used in Hamilton's principle is now defined as 

(3.33) 

where A.2 and A.3 are Lagrangian multipliers. To obtain the appropriate Euler-Poisson 
equation which follows from Eq. (2.27) with F defined by Eq. (3.33), we employ a well
known result which states that the Euler-Poisson equation for the integral 

is given by 

(3.34) 

The system of equations resulting from the application of (3.34) to (2.27) and (3.33) is 

-e~2-Q[A.21 := o, 
If If ~I ~ -a221J'22-a231J'33+p3a~~.2+2p3aQ[~~.2] = 0, 

(3.35) 
-a~21J'~2-a~31J'3'3+(d2-p3a)A.2+ ~ (d2-p3a)Q[A.2] = 0, 

-a{3 v{3 -a~31p{2 +p2aA.3 = 0, 

-a3'31J'~3-a~31J'~2+(d3-p2a)A.2 = 0, 

-b~2f/J22- ! d2Q[A.2] = 0. 

In these equations the operator Q [ ] is defined as 

(3.36) 

We will again consider expressions for the field variables representing harmonic waves, 
in this case propagating in the x2-direction: 

(U2, A.2, ;.3, qy) = (U2, A2, A3, f/J)eik(x2-ct>, 

('IJ'{2' 'J'{3' 1p';2' "1'':3) = ('P{2, 'P{3, 'P';2, 'PT3)eik(x2-ct>. 

Substitution of these expressions into Eqs. (3.35) and (3.30), (3.32) yields a system of 
eight homogeneous equations for the eight amplitudes: U2 ••• 'PT3 • The condition that 
the determinant must vanish yields an explicit expression for the frequency in terms of 
the wavenumber. We find 

(3.37) 

where () = e1/em, and the dimensionless frequency Q is defined as 

(3.38) 
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and 'YJ is defined by Eq. (3.8). The function F( ), which is a function of the dimensionless 
wavenumber d2 k, is defined as 

(3.39) F(d k) _ 1-cos(d2 k) 
2 

- [1 +cos(d2 k)]M + [(1-cos(d2 k)]N' 

where 

M= 0.25rJ[rJD-(I-rJ)B]+0.25(l-rJ)[(l-rJ)A-rJC] 
AD-BC ' 

and 

The function F(d2 k) given by Eq. (3.39) implies a typical feature of wave propagation 
normal to the direction of the fibers, namely a maximum for !J, with a corresponding 
stop band, and a value d2 k = n, i.e. A = wavelength = 2d2 , at which the phase velocity 
vanishes. 

Table 2. Mechanical and geometric parameters of the tungsten-aluminum composite [8] 

Mechanical parameters Tungsten Aluminum 

Longitudinal modulus, dyne/cm2
, o.+2p) 5.15 X 1012 

Shear modulus, dyne/cm2
, (jt) 2.65 X 1011 

Poisson's ratio, (v) 0.28 0.34 
Density, gmjcm3 19.19 2.44 (22.1 %) 

2.7 (2.2%) 

Geometric parameters 2.2% 22.1% 

volume density, (f}) 0.022 0.221 
fiber radius, mm, (a) 0.127 0.127 
fiber radius/fiber spacing 

ajd2 0.098 0.20 
a{d3 0.071 0.353 

Experimental results for a tungsten-aluminum composite are presented in Ref. [8]. 
The mechanical and geometrical parameters of this composite are summarized in Table 2. 
We use the same system of units as in Ref. [8]. The phase velocity c = wfk was computed 
from Eq. (3.37), and the results are compared to the experimentally obtained values in 
Fig. 4. Satisfactory agreement between theory and experiment was obtained. 
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FIG. 4. Analytical and experimental results for longitudinal waves propagating normal to the fibers; 
see Table 2 for mechanical and geometric parameters. 

3.3. Longitudinal waves propagating along the fibers 

For longitudinal motions in the x 1-direction, the displacement distributions are sym
metric with respect to the planes of structural symmetry of the fiber-reinforced composite. 
The case d2 = d3 = d, for which experimental information is available, has the additional 
simplifying feature that the dependence of the field variables on x 2 is just the same as 
the dependence on x3 • 

Consistent with the foregoing observations we consider the following displacement 
distributions in the fiber of cell (k, 1). 

(3.40)1 _ 3 u{<k.l> .= u1(x1, t), ui<k·'> = x21JJJ<k·'>(x1, t), u{<k·'> = x3r<k·'>(x1, t). 

The corresponding strains are 

Ef<k.l> _ ef<k.l> _ '"f<k,l> 
22 - 33 - T ' 

(3.41) .,f(k.l> _ 1 -x a ... rck.l> 
"12 -2 2 1 r , .,J<k·'> _ 1 x- a '"J<k·'> 

"13 -2 3 1 T • 

For the displacements in the matrix material we choose 

(3 42) mck I> - ( ) d . ( n r- a ) ( ) • U 1 ' = U 1 X 1 , t + SID 2 b _a p X 1 , t , 

where b is a radius such that 

(3.43) 

Note that the displacements in the x1-direction are continuous at r .= a, and that 
the slope vanishes at r = b. The latter approximates the condition of displacement sym-

metry at the boundaries x2 = ± ~ d and .X3 = ± ~ d of cell (k, 1). The displacements 
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of the matrix material in the x2- and x3-directions are neglected. The strains in the matrix 
material follow as: 

m<A: '> '::) - d . ( n r-a ) '::) Eu. = u1u1 + sm 2 b-a u1 cp, 

(3.45)1-3 llt(k l) n d ( n r-a ) x2 
E l2 • = 4 b- 0 COS 2 b-a r cp, 

m< A: '> n d ( n r- a ) x 3 
El3, .= 4 b-a COS 2 b-a r cp. 

The usual steps lead to the following strain energy density 

(3.46) w = ~ a1(o1u1)2+ ~ a2(1f'1) 2 +a3o1u1vl 

++a4(o11f'1)2+aso1u1o1cp+ ~ a6(o1cp)2+ ~ a,cp2, 

where 

(3.47) a, = [ : 2 (l-q1'2)2+ ; q1'2(1-q1'2) ]d(A .. +2!' .. ), 

a. = [ :2 (l-q"2)2 ( 7~ + ! ) +'11'2 (1-'11'2) k{) ... +2!' .. ). 

a, = [ ~ ( ~
2 

-I)+ : '1112(1-q1/2)-1] I'm· 

For the computation of a kinetic energy density we consider the following particle 
velocities 

(3.48)1,2 

We find 

(3.49) 

-z,.l<k.l) - -u· -u'-m<k,l> -u· + dst'n ( n r- a ) • 1 - 1, 1 = 1 2 b-a cp. 

where e is defined by Eq. (3.12)h and 

(3.50)1,2 h1 = [ : 2 (I _ '1112>2 + ~ '11'2(!- 71112)] de ... 

b2 = [ : 2 (1- '/1'2>2 ( .;'~ + ! ) + '11'2(1- '11'2>] de ... 

A straightforward application of Eq. (2.30) to F = T- W yields the following set of 
governing equations 

(3.51) ·"{fi1+b1;p-ala1alu1-a3olvl-asalalcp = o, 
(3.52) 

(3.53) 

a2 'Y'1+a3o1u1-a4o1 o1 1pl = 0, 

b1~1 +b2lf;-as 01 al u1- a6 01 01 qJ+a7 cp = 0. 
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Substituting harmonic wave solutions of the forms 

(Ul, 1pl, qJ) = (U, lJII, <!J)eik(x1-ct) 

J. D. ACHENBACH 

in Eqs. (3.51)-(3.53) yields a relation between the phase velocity and the wavenumber as 

(3.54) 

This is a quadratic equation for c2
, which can easily be solved. 

Table 3. Mechanical and geometric parameters of a fiber-reinforced composite of silica fibers and 
polystyrene matrix material [21] 

Mechanical parameters 

Shear modulus, dyne/cm2, (Jt) 
Poisson's ratio, (v) 
Density, gmjcm3 

Geometric parameters 

fiber radius, cm, (a) 
fiber spacing, cm, (d) 
volume density= na2 jd2

, ('YJ) 

Silica 

3.12 X 1011 

0.17 
2.2 

0.051 
0.236 
0.147 

Polystyrene 

0.1323 X 1011 

0.353 
1.056 

In a recent article, Ref. [21], the finite element method was employed to investigate 
the dispersive characteristics of a fiber-reinforced composite, for longitudinal motions 
propagating in the direction of the fibers. The computations were carried out for a com
posite whose mechanical and geometric parameters are summarized in Table 3. The 
results are shown in Fig. 5 by the solid line. The circles indicate experimental results 

c 
(cr>t 

·1.4 

1.0 

0.6 

0.5 1.0 

1. kd 
2 

fin. el. sol. 
a experiment 

1.5 2.0 

FIG. 5. Analytical, experimental, and numerical results for longitudinal waves propagating in the direction 
of the fibers; see Table 3 for mechanical and geometric results. 
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presented in Ref. [21]. For this composite the dimensionless phase velocity cf(p1fe1) 112 

1 
was computed from Eq. (3.54) versus 2 kd, and the results have also been plotted in 

Fig. 5, by the dashed line. 

4. Concluding remarks 

In this paper we have outlined a procedure to construct a generalized continuum 
theory for fiber-reinforced composites. For certain special wave motions, which are rel
evant to available data of ultrasonic tests on composite materials, equations governing 
the mechanical behavior were presented in detail, and analytical and experimental results 
were compared. 

Within the framework of the theory presented here, the mechanical parameters of the 
constituents, and the geometric parameters describing the structuring of the composite, 
enter into coefficients in the set of governing partial differential equations. Thus the govern
ing equations can be determined if relevant information on the constituents and the 
structuring of the composite is available. No unknown correction factors or other fudge 
devices, introduced for curve fitting purposes, enter in the theory presented here. 

It should be realized, of course, that the mechanical behavior of the constituents is 
not always known to the accuracy desired by theoreticians. In fact, due to manufacturing 
processes, the mechanical properties of the constituents may be somewhat different when 
part of a composite, as compared to the solitary state. In this light it seems to this writer 
that it is hardly necessary to require agreement on three digits accurate with "exact 
results". The agreement with experimental results presented here, which is in the five to 
ten percent range, is very satisfactory. 
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