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The nonlocal theory of elasticity and its application to interaction
of point defects

B. K. D. GAIROLA (STUTTGART)

THE lattice theory from the very beginning takes into account the finite range of internal forces
and the discreteness of the crystals. The conventional theory of elasticity is too narrow to ac-
comodate these conczpts. In this paper we discuss the basic mathematical concepts of a non-
local theory of elasticity which has been developed in the last few years as an alternative to
the lattice theory. As a typical example of the application of this theory we consider the inter-
action between defects which takes placz through the displacement fields produced by them
when the lattice is allowed to relax. The results obtained by means of the nonlocal theory of
elasticity are quite different from those of the conventional theory. In particular, we find that
the energy of interaction between two spherically symmetric defects in an isotropic medium
does not vanish, as it does according to the conventional theory.

Teoria sieci strukturalnych od samego poczatku uwzglednia skoriczony zakres sil wewnetrznych
i dyskretnoéé krysztaldow. Konwencjonalna teoria sprezystoéci jest zbyt waska, aby z niej wy-
nikaly te koncepcje. W niniejszsj pracy przedyskutowano podstawowe koncepcje matematycz-
ne nielokalnej teorii sprezystosci, ktora byta rozwijana w ciagu ostatnich paru lat jako teoria
alternatywna do teorii sieci strukturalnych. Jako typowy przyklad zastosowania tej teorii roz-
wazono oddzialywanie migdzy defektami, jakie ma miejsce przez pola przemieszczen, wywo-
lane defektami, gdy dopusci sie relaksacj¢ sieci. Wyniki otrzymane za pomoca niclokalnej
teorii sprezystosci sa zupelnie inne niz rezultaty otrzymane z teorii konwencjonalnej. W szcze-
gblnosci wykazano, ze energia oddzialtywania miedzy dwoma sferycznie symetrycznymi defek-
tami w izotropowym osérodku nie znika, jak to wynika z teorii konwencjonalnej.

Teopua CTPYKTYDHBIX DELIETOK C CAMOTO HAYaja YUWTHIBAET KOHEUHBIH pagmyc JelficTBHA
BHYTPEHHHX CHJI M JUCKPETHOCTh KpHcTa/noB. KoHBeHIMOHABHAA TEOPHA YNPYTOCTH CJIMII-
KOM y3Ka, uTo0bI C Hell BeITEKaIM 3TH KoHuenuuu. B Hacrosiueli paore o6Cy»KaeHBI OCHOB-
HbIE MaTeMaTHYeCKHEe KOHLEMIMH HEJIOKaJbHOH TEOPMHM YNPYTOCTH, KOTOPaf pasBHBAJIACh
B TE4YeHHE MOCJEJTHHX HECKONBKO JIET KaK TEOPHA AILTEPHATHBHAA K TEOPHMH CTPYKTYPHLIX
pemterok. Kak THOHYHBIA NpuMep NpHMeHeHHs 3TOH TEOPHH, PacCMOTPEHO B3aHMOMEHCTBHE
Mexny nedeKTaMH, YTO MMEeT MECTO depe3 MoJA mepemellleHuii, BbISBaHHBIE JedeKTam,
KOT/Ia JONYCKAETCA peaKcalusa peleTKy. Pe3ynbTaThl MONYUYEHHbIE C TIOMONIBI0 HEJIOKAIBHOK
TEOPHH YIPYLOCTH COBCEM [pYrue, uUeM pe3yjbTaThbl NOJY4YeHHbIE M3 KOHBEHIHOHAIbHOH
TeopuH. B 4acTHOCTH MOKa3aHO, UTO IHEPrUs B3aUMOAEHCTBHA MEXAY ABYMA chepHyecKH
CHMMETPHYHBIMH fedeKTaMH B H3OTPONHOH Cpele He MCUe3aeT, KaK 3TO CJEAYyeT H3 KOH-
BEHUHOHAJIBHOH TEOPHH.

1. Introduction

A soLID body is in fact an assembly of discrete particles which are held together by forces
of a finite range and are, at least in ideal crystals, arranged in a regular lattice structure.
Therefore, in any problem dealing with such bodies the two characteristic parameters
which play a role are the range of interaction L and the discreteness length a. Obviously,
L can never be less than a, ie., L > a.

However, in any experimental investigation of the properties of crystal we use such
an apparatus for observation which has a finite resolution. Thus, there is always a lower
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limit to the length we can observe through the apparatus. We therefore have a third
characteristic length which plays a role, namely the observable length A. While the other
two parameters make the theory nonlocal, it is this parameter which determines whether
the theory is local or nonlocal. For instance, if 2 is so large that it fulfills the condition
A » L > a, we obtain a local theory. Naturally, its application is limited to gross phenom-
ena and a number of known effects elude it altogether.

The nonlocal theory which has been proposed independently by various authors
[KruMHANSL (1963), RoGULA (1965), KRONER (1965), KRONER and DATTA (1966), KUNIN
(1966)] incorporates the essential properties of the lattice theory. The purpose of this
paper is twofold. First, we discuss briefly the underlying mathematical concepts of the
nonlocal theory. All the relevant mathematical results are given with brief explanations
so that the reader may follow the arguments without much difficulty. Second, as an
example of the application of the nonlocal theory, we consider the problem of inter-
action of point defects. Our aim is to illustrate that the nonlocal theory yields results
quite different from those of the classical theory and are in better agreement with the
lattice theory.

2. Nonlocality due to long range interaction

The nonlocal elasticity theory is a field theory in the sense that all properties of solid
bodies appear as fields, i.e., as functions of continuous variables, space coordinates. In
other words, the continuum here is actually a mathematical continuum. It follows that
nonlocality can arise in this continuum theory not only from the long range of interaction
but also from the discreteness. This is clear since, in the extreme case, L = a, which is
a finite quantity.

However, let us first consider only the long range of interaction without referring to
the discreteness. In this case the strain energy W is a generating functional which, for
small strains, can be expanded in a functional series. For the sake of simplicity let us
assume that the initial state is stress-free and the strains € are so small that the terms
of order higher than second can be neglected. Then, we can write

@.1) Wle] = % f €(x) .. C(x,X) .. €(x)dvdv’ = %(ine),

where |€) is a vector in the function space and C an integral operator. The stress |o)
is then defined as a variational derivative:

174
dley
If the medium is homogeneous, the kernel of C will depend only on the difference x—x'.
Hence, in this case (2.2) is a convolutions equation which, in the usual notation, reads

(2.2) [6) =~ = C|€).

(2.3) o(x) = [ Cx—x) .. e(x)dv’,
or
o = C¥e.
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In the above derivation we have used the idealization that a field variable such as
the strain tensor e can be defined at every point of space. In reality the field at a point
cannot be measured; only its averages are observable as this may be inferred from the
analyses of BoHR and ROSENFELD (1933, 1950). Measurements are made by operating
with a testing body. As a result of interaction between the field and the testing body the
averaging process depends on both. Therefore, we obtain averages or “smeared fields”
such as
24) e(@) = [ €(x) p(®)dv = (el
where ¢(x) are smooth functions called averaging functions or test functions. They may
be thought of as a weight function representing the influence of the testing body. The
continuous linear functional e(¢p) is called a distribution or a generalized function.

There are several types of test function spaces and accordingly one can define a variety
of distributions (see, e.g., SCHWARTZ 1966 or GELFAND-SCHILOW 1964-1968). The choice
of the proper space of distributions should be dictated by the physical requirements of
the theory. There are a number of ways in which we could approach this problem but
the simplest method by far is to say that, since there is no discreteness, there is also no
restriction on the Fourier spectrum of the field variables. In other words, the support
of the distributions in Fourier space can be as small or as large as we please. (The support
of a distribution € is the smallest closed set of points outside of which € vanishes.) It is,
therefore, desirable to choose the narrowest space of test functions so that we have the
widest space of distributions. This is the space of test functions of compact support usually
denoted by D. The corresponding dual space of distributions is denoted by D’. An example
of such distributions is the function el

The convolution of the two distributions € and C is defined by the rule

2.5) (eXxClp) = (elCx ),

where ¢ is a test function and

(2.6) C(x—x') = C(x'—x).
However, as a result of the symmetry properties of C we have
2.7 C(x—x') = C(x'—Xx).

Hence, (5) may be written

(2.8) (exClep) = (elCxepd.

If ¢ € D, then C--<p should also belong to D. Hence, if a sequence {¢p,} of the functions
@ (x)eD (m=1,2,..) converges to zero in the sense of D, then C-¥<p, should also
converge to zero in D. This is possible if, and only if, the supports of the functions C-¥¢,,
all lie within a certain bounded region. Therefore, it is not possible to define, in general,
a convolution for two arbitrary distributions. We have to impose some condition on the
distribution C so that it can form a convolution with the distribution €. This condition
is that C be a distribution with compact support. (A closed and bounded set is called
compact.) Thus, the convolution, the Eq. (2.3) has a meaning if this condition is fulfilled.
Here, it should be added, a solution of this equation exists which may be put in the form

2.9) e=Clye,
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where C~! is the inverse of C defined by
(2.10) CxC1'=16.

Here, | is the unit tensor of the fourth rank and § is the Dirac distribution. This follows
from the fact that the space of distributions with compact support is a commutative
convolution algebra with & as the unit element.

It seems logical that the support of C should be compact because, after all, it is deter-
mined by the range of interaction which is finite. If it were not finite, the convolution
integral (2.3) might diverge. Of course, divergent concolution integrals do occur in the
quantum field theory. There have been many attempts to give a finite and well-defined
meaning to these integrals (see, for instance, BoGOLIUBOV and PARASIUK, 1957; AKHIEZER
and BEREZTEZKI, 1965). Such a situation may also occur in a stellar body reaching a cri-
tical mass.

However, a sharp cut-off in the range of interaction does not seem to be very reason-
able from the physical point of view. The known interactions which are of relevance here
attenuate only gradually and not suddenly. In this case the distribution C with compact
support is not satisfactory. This undesirable feature of the continuum theory could be
removed if we considered some suitably larger space of test functions. From the mathe-
matical point of view, however, there does not seem to be any logical necessity for this.
The necessity arises, as we shall see in the next section, in the case of a discrete medium.

3. Nonlocality in a discrete medium

A discrete medium is most simply characterized by the fact that all the variables in
the problem have their Fourier spectrum truncated at a certain value of the wave vector.
This means that the corresponding distributions have a compact support in the Fourier
space. This support, in fact, is the Brillouin zone. Such distributions can also be written
in the form of a product of a distribution with arbitrary large support and a function
dp defined by

3.1 2 { 1 for k € Brillouin zone,

' s(k) = 0 for k ¢ Brillouin zone.

For instance,

3.2) e®) = €'(k) 65(k).

The multiplication of a distribution €’(k) with a function (k) is defined by the rule
(3.3) €' (k) dp(k)[ep(ky = {€'(k)|dp(k)p(k)).

If we put (k) = dz(k)ep(k), we can write this equation as

(3.4) €' (pK) = {e' &P k).

Now, the following question arises: what is the nature of the test function (x) and
the distribution e({). Clearly enough Y(k) € D and its inverse Fourier transform is

(3.5) @) = [ PR do.
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If we replace x by a complex variable z = x+1is, we get

(3.6) \I)(Z) = f‘l’(k)efk"df},‘ i J‘ '-I)(k)e'm'x_k"d'vk'

The function {»(z) is an entire function in the complex hyperplane. The holomorphy of
Y (z) follows from the fact that Y (k) has a compact support. Such functions satisfy the
inequality

&) 4@ = | [ DR e o, | < A, el

Here, A, and a are constants which may depend on y; z°, and D"¢ (k) are short notations
for the expressions
zP = zfrz5220s
and
PP (k)
Py = ——
D) Ok%r 0kb2 0k§?
with
|p| = py+p2+ps-

One can show (see GELFAND ScHiLow, vol. II, p. 154) that function {(z) satisfies
the more general inequality

(3.8) 2" DY ()| < A

p.qelui-
The left-hand side of this inequality is called the Schwartz norm.

We shall now consider the function ¢(z) only for the real argument x. By putting
s = 0 in the inequality (3.8) we find that the Schwartz-norm of the test function ¢ (r)

satisfies the condition
(3.9) [x* D (x)| < Ap.q.

This means that Y(x) is a rapidly decreasing function. More exactly, (x) is a smooth
function which, together with its derivatives, approaches zero more rapidly than any
power of % as [x| — oo. The space of these test functions is usually denoted by S and
the distributions which are defined as the linear functionals on this space are called tem-
pered distributions; the space of these distributions is denoted by S’. With the help of
Riesz’s theorem in functional analysis (see, e.g., KANTOROWITSCH and AKILOW, 1964,
p. 168) one can easily show that the tempered distributions have the form
(3.10) @) = D [ 1+ x50 DY (x)do,
m=n

where m < n means m, < n,, etc. m,, n,, etc. are whole numbers and f,,(x) are measur-
able and essentially bounded functions.

Since Y (x) is rapidly decreasing it can easily be seen that the functions ,(x) defined by

@G.1D) a(x) = (1+[x])"p(x)

also belong to S. Therefore, by means of Hahn-Banach theorem one can show that tem-
pered distributions can be represented as a finite sum of derivatives of continuous func-

10 Arch. Mech. Stos. nr 3/76
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tions growing at infinity not faster than some polynomial. (The term tempered is used
because of this slow growth).

Referring back to (3.3) we may note that this multiplication rule is meaningful only
if d5(k)ep(k) and (k) belong to the same space of test functions. Hence, the test function
@(x) is an element of S. It follows that distribution € = €' ¥ dp is again a tempered one.
From (3.1) it can easily be shown that

(3.12) 65'*‘ &3 - 63
and
(3.13) €X0p = €KX =€Xdg=c¢€

so that d5 acts as a unit element in the convolution algebra. Although the support of
dp(x) is the whole space one could define an effective support with the dimensions of
not more than double the lattice spacings. This is obvious from the following two examples.
For a spherical Brillouin zone

1 sinkg|x| kgcoskg|x|
3.14 = e DEC R
( ) 68(x) 2?;2 [ Exl; |X{2 3
where kp is the radius of the B.z. sphere, and for a cubic Brillouin zone
2 sinkpx
. BiXi
(3.15) dp(x) = H T

Thus, we have proved the following theorem:

THEOREM. If the Fourier transform of a distribution has a compact support in Fourier
space, it is a tempered distribution of finite algebraic growth for |x| — co.

The space of these distributions is a commutative convolution algebra with dp defined
by (3.1) as the unit element.

Our discussion is a highly simplified version of a more complicated mathematical
situation. The above theorem is actually a converse of the one known as the Paley-
Wiener-Schwartz theorem (see, e.g., HORMANDER, 1963, p. 22 or YosIDA, 1971, p. 162).

After this discussion we can see that, according to the convolution rule, both C
(= C'%6dp) and € in (2.3) should be considered as tempered distributions. However, to
give a meaning to this convolution integral the growth at infinity of €’ should be “matched”
by the decay of C’. As the growth of €’ is slow at infinity, it should be sufficient to require
that the decay of C’ at infinity be faster than any power of % , i.e., it should decrease
rapidly enough as |x| — co.

In physics a “rapidly enough” decrease is usually considered to be an exponential
decrease. For instance, we can put C' = Cg,, where

(3.16) gu(x) = exp(—|x[2/L?)/(V/aL)>.
Hence,
(3.17) C = Cg¥%85.

Obviously, the sphere of radius L is the effective support of this function. (Note that
despite its appearance the function g, does not belong to S because the sequence {g.}



THE NONLOCAL THEORY OF ELASTICITY AND ITS APPLICATION 399

does not converge to a function ¢ € S which is a necessary condition for the space S to
be closed.) However, a serious difficulty arises with this distribution. Its inverse C-!
does not belong to S’. Hence, some additional condition must be specified so that a so-
lution of the form (2.9) can exist.

This condition can be found through mathematical reasoning if we consider the distri-
bution on the space of test functions ¢(z) as defined earlier and use the theory of analytic
functions. However, we shall opt here for the shorter way of physical reasoning. The
interaction between the particles forming a solid body are, in reality, of two kinds: short
range repulsive interaction and long range attractive interaction. Here, by the term range
we mean effective range without a sharp cut-off. Since the repulsive interaction is much
stronger than the attractive one we can assume that

(3.18) C = Codp+C18L% 5,

where C, > C, and L is the effective range of attractive interaction. The inverse of C
is easily calculated and is given by the convergent series

(3.19) C ' =0C5"6p—C5'..C, .. Clgp %0+ ... .
It belongs to §’. On the other hand, it would be incorrect to put
(3.20) C = (Cog1+Cy80)% 05

where [ is the effective range of repulsive interaction, because then C~! ¢ §".
In the extreme case when the interaction range L is of the order of the lattice spacing
a we have

(3.21) C = Cod3+Cy 8, % 0p.

Both terms on the right-hand side of (3.21) are nonlocal. Therefore, in an absolute sense,
there is no local law in a discrete medium.

Let us now use the observable length A as the measuring unit. This means that we
introduce the dimensionless variable y = x/ or x = 4y or, in Fourier space, the dimen-
sionless variable k' = Ak. Then, in accordance with the rule of similarity transformation
of the distributions, we have

(3.22) SONle) = SWIA2p(y/ ),
or
S D))y = (fEK)APp(AK)).
It can be seen that as 1 — oo, the support of dz(k") becomes infinite, i.e., 45 - . On

the other hand, g, becomes g,, defining a delta sequence {g.,;} which converges to &
function. Hence, in the limit A — oo we have

(3.23) C = (Co+C,)d

which yields a local material law. If 2 > a but L is comparable to 4, we obtain the non-
local material law of the previous section but without a sharp cut-off, under the form of

(3.29) C=Cod+C,g;.

We may thus see that the most general correct form is given by (3.18). It is also clear
that such a medium is not, in general, isotropic.

10*
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4. Equation of equilibrium and its solution in terms of Green’s function

If a body force per unit mass is also present we can introduce another quantity w
which is a functional of the displacement u. Its variation is then given by

(4.1) 5w = (F|éu),

where

4.2 IF) = o
Ofud

Then, according to Hamilton’s principle,
Sw+ dw = {o|de)+{F|éu) = 0.

Since the operation d commutes with the partial differentiation, we can write

“4.3) de = Defdu,

where

(44 el = Su o+ S
Y 3x_,- f 3x,-

Then, using partial integration and the nonlocal material law, we finally obtain the
following inhomogeneous convolution equation

4.5 Dxu+F =0,
where
(4.6) D=V, C-Vyp= —Vy-C-Vy.

Thus, D is a self-adjoint operator.
We define Green’s function G by

4.7) DX G = 19,

where 1 is the usual unit tensor of second rank. As a boundary condition we assume
that G vanishes at infinity. Then G is given by

4.8) G = |D| ' ¥y,
where |D| is the determinant of D defined by

4.9) |p]=%p>< %D.-D

and y is the cofactor
Y= —;—-Drx b4 DT.

However, it would be difficult to calculate G in this way. The nonlocal form (3.18)
of C on the other hand makes it possible for us to use a perturbation method. The opera-
tor D can be put in the form
(4.10) D =D,+D,,
where

Dy, = Vi Gy Vi 05.

Dy = Vx: €, Vg, ¥ 05.

(4.11)
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We imtroduce Green’s tensor G, which satisfies the equation
(4.12) DQ%GO = 163.

Naturally, it is much simpler to calculate G,.
We can then write (4.7) either in the form

(4.13) G =G,—G,xTXxG,,
where the “T-matrix” is given by

(4.14) T =D, (05+G,%D;)?
or in the form of Dyson’s equation

(4.15) G =0,—Gy¥D, ¥G.

Any of these expressions may readily be expanded so that
(4.16) G =Gy—Gy %D, %Gp+Go¥D; %Go¥D; %¥Go— ... .

This is the usual Neumann series. The simplest Green’s function that we can calculate is
that for an isotropic medium though, this is not realistic. Considering only the first two
terms of the perturbation series (4.16), G can be written as G = G'-%dp with

4.17) G'(x—x)= — #‘uo [1Vy - Vix—x'| —aV4 Vi |x—x'|
+p1 g—’-(" X) o~ fgL(x—x WVl
|x” — x7=x]
r Aotpo _ M
@.18) Aot2u0’ to’
1 #1 Bo(Ar+ 1) Pl(‘lo‘*‘ﬂu)]
== (Ag+po)— + ;
Ao+2u, [N (Ro+ o) Ao+2p0 Ao+2p0

where 1o, po and 4,, 4, are Lamé’s constants corresponding to C, and C,.

5. Imteraction between point defects

In the lattice theory the term point defect is generally applied to vacancies, interstitials
and substitutional atoms. When two point defects are introduced into a crystal they can
interact in various ways. However, the interaction which takes place through the displace-
ment fields produced by defects when the lattice is allowed to relax is always present.
It is this very interaction which we are now considering. The knowledge of this interaction
is important in determining, for instance, the formation energy and also for the discussion
of X-ray scattering. We shall exclude interstitials from our consideration because the
displacements they produce are so large that a linear theory is not permissible. Besides,
they have a much more complicated structure.

In the classical continuum theory these defects are characterized by a dipole type of
force distributions (size effect) or d-type inhomogeneities (modulus effect). In the most
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general continuum theory as exposed above, the defects cannot be represented in either
of these ways because a strictly localized model is not feasible unless 4 is very large in com-
parison with the lattice spacing and the defect interacts only with a few neighbours. Here,
we shall characterize the defect by a nonlocal force distribution because it is general enough
to include most of the effects. The inhomogeneity model has already been considered by
KosiLova, KUNIN and SosNINA (1968).

Let the force density distribution representing a defect at x be F(x—x’). It should sat-
isfy the equilibrium conditions

(5.1) [Fax-x)do' =0, [Fx-x)xx'do’ =0.
From the above it follows that
(5.2) F =V, P,

where P is a symmetric tensor distribution of second rank. Obviously, it plays the role
of a potential function. The form of P and hence of F is determined by the interaction be-
tween the impurity atom and the atoms of the host lattice or, in the case of a vacancy, by
the interaction berween the atoms themselves. The support of P, in the case of an impurity
atom, may be of an order different from the range of interaction between the atoms of the
host lattice, but for a vacancy it will be of the same order. Therefore, we shall represent P
in the form

(5.3) P = Agi% s,
where A is a constant tensor and g; is a rapidly decreasing function with an effective support
of the order /. It is not too much of a restriction to assume that {g;} is a delta sequence
so that P reduces to Ad in the long wave limit (1 — oo0).

Consider now two defects at x and x’, respectively, which are represented by the force
density distributions

(54) F, = Vs P,, F,=Vy Py,

where

(5.5) P, = A,;g,%0 P,=A,;g,%0s.
The interaction energy of the two defects can be written as
(5.6) U= —F,%nu,,

where u, is the displacement due to the second defect. It is given by
(5.7) u, = —GXF,.

Hence, we obtain

(5.8) U=F,¥GxF,.

Using the perturbation series (4.16) for G we get

(5.9 U=F;%Go¥F,—F %¥GoD; xGo¥F,+....

Let us now turn to the simplest case when the medium is isotropic and the defect is
spherically symmetric. However, as we have already pointed out, this is an unrealistic
case. First of all, even in the long wave approximation there are only a few lattices which
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are isotropic or nearly isotropic (W, diamond and Al). Secondly, the spherical symmetric
model of the defect does not correspond very well to actual lattice defects because the highest
symmetry a lattice defect can have is cubic symmetry. But this case is still instructive be-
cause the results reflect qualitative differences between the classical theory and the non-
local theory. More realistic models will be considered in another paper.

Therefore, we put

(5.10) P, = A1g, %05, P, = A1g,% 0.
The distributions g, and g, are of the same type of exponential functions as g, in (3.16),

and /,, /, define the effective extensions of the defects. These functions have the simple
property that

81,581, = 81,415+
In view of (5.9) the interaction energy of the two defects is now given by

(5.11) U= Mg 1,%08—Ngi 41,4 %05+ ...,
where
_ Al Az
s Ao+2uo ’
N= A4 (v.‘f‘_‘i}.
Ho Ho

In real crystals the Brillouin zone is a polyhedron. However, because of our simplifying
assumption we can take it here as a sphere of the radius k. Carrying out the convolution
over this sphere we obtain

- , kp(3+13)'2  ilx—x|
(5.12) U(x—x)-Mng(x-")&“"f[ 2 GG+ By

; k IZ+[2+L2 1/2 I'ix___x"l
—Ngi 1,41 (X—X )R,erf[ LG Z ) + C+E+L*?
sinkg|x—x’| g s Nexp(—k3L?/4) M
T afx—x lexp[—ks (i +12)/4] BB+ L2 2+ |

At large distances |[x—x’| U exhibits an oscillatory behaviour.

In the expression (5.11) we may notice an interesting fact. The interaction potential U
of the two defects is of the same form as the potential P of the defects. This is not unusual.
In the electron theory of metals, as it is well known, such a behaviour is also manifested
by the interaction of vacancies in metals, or the interaction of charged impurities (*).
This interaction is oscillatory just like the effective interaction between ions in metals.

(*) This is one case where the defect could be considered as being spherically symmetric. The reason
for this is that charged impurity is screened by the conduction electrons. According to the Fermi-distri-
bution of the conduction electron the Fermi-surface represents a sharp boundary between the occupied
and unoccupied electron-states in the Fourier-space. Hence, the potential P of the defect has a compact
suppoit in the Fourier-space. This support is — the Fermi-sphere.
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An oscillatory interaction between defects could also be obtained by putting P = A145.
We then have
(5.13) U= (M~—N)dg.
That this is oscillatory can be seen in the expression (3.14) or (3.15) for d5. However,
this is not a correct model because it would yield zero values for F as well as U at all lattice
points.

Since {g,41,} and {gy 41,41} are d-sequences it can be seen that in the long wave
limit U reduces to the result of the local theory:
(5.14) U= (M-N)é.
On the other hand, if L and A are comparable but very large in comparison with /,, 1,
we obtain the very simple result

(5.15) U= M§—Ng,.
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