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Invariance conditions in the transmission from discrete lattice models 
to the continuum limit 

W. LUDWIG (MUENSTER) 

CERTAIN statements on the macroscopics properties of crystals can be derived from invariances 
against certain symmetry transformations. This has been shown for elastic properties and also 
for the elastic limit of lattice theory in simple cases. In this paper we deriv~ such statements 
in more general cases and show that a unique and consistent transition from lattice theory 
including internal degrees of freedom is possible only if the conditions of translational and 
rotational invariance are satisfied. 

Z niezmienniczosci wzgl~dem pewnych przeksztalcen symetrycznych mozna wysnuc niekt6re 
wnioski o makroskopowych wlasnosciach krysztal6w. Wykazano to w prostych przypadkach 
dla wlasnosci spr~zystych, jak r6wniez dla granicy spr~zystosci teorii strukturalnej. W niniejszej 
pracy wyprowadzono takie wnioski w przypadkach bardziej og61nych i pokazano, i:e jedno
znaczne i konsekwentne przejscie od teorii strukturalnej, wl~czaj~c wewn~trzne stopnie swo
body, jest moi:liwe tylko wtedy, gdy spelnione s~ warunki niezmienniczosci wzgl~dem translacji 
i obrotu. 

J13 HH;BapHaH;THOCTH no OTHOIJleH;mo K HeKOTOpbiM npeo6pa30BaHHHM CHMMeTpHH MO>KH;O Bbi

BCCTH H;CKOTOpbie CJIC,ll;CTBHH 0 Mai<pOCI<OnHqeCI<HX CBOHCTBaX I<pHCTaJIJIOB. 3TO noi<a3aHO 

a npOCThiX cJiyqaHx ,n;JIH ynpyrHx caoiicra, I<aK TO>I<e ,ll;JIH npe,n;ena ynpyrocrH CTPYKTypaoii 

TeopHH. B HacroH~eii pa6oTe BhiBCJl:eHhi TaKHe cJie,n;CTBHH a 6oJiee o6~HX cJiyqaHx H noi<a3aHo, 

qTO O,ll;H03H;aqH;biH H nocJie,n;oBaTeJILHhW nepexo,n; K crpyi<TypH:OH TeOpHH, BI<JIIOqaH BHyTpeH;HHe 

creneH:H cao6o,n;LI, B03MO>I<eH TOJILKO Tor,n;a, Kor,n;a y,n;oaJieTaopeHhi ycJIOBHH HHBapHaHTH:OCTH 

no OTHOillCHHIO K TpaH:CJIHQHHM H Bpa~eHHHM. 

Introduction 

INVARIANCE conditions play an important role in physics; this has been known for a long 
time. Nevertheless, they are sometimes disregarded, what often leads to incorrect conclu
sions. In general, such conditions are related to symmetries of space and time and give 
statements about physical quantities. 

In the elastic theory the invariance conditions are generally satisfied mainly by choos
ing appropriate variables which are invariant by themselves, such as the finite strain or 
corresponding variables for other degrees of freedom. But even in the elastic theory 
rotational invariance is not always taken into account, and it is only in recent years that 
some of its consequences have been discussed. 

The main concern of my discussion is lattice theoretical aspect of such invariances 
where the elastic theory is the limiting case. Therefore, some of the elastic statements 
are required. On the other hand, invariance conditions in the lattice theory have very 
often been disregarded; the aim of this contribution is to stress its importance in general 
cases. 
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502 W. LUDWIG 

As a rule there are a number of symmetries and invariance conditions which set 
restrictions to physical constants. Some of them are related to lattice symmetries, others 
to space inversion (parity) and time reversal, which may equally be essential. But in 
this report we will consider the influence of translational and rotational invariance; the 
latter has sometimes been omitted in lattice theory. 

The importance of such conditions in lattice theory was first pointed out by 
K. HuANG and M. BoRN [1-5]. In their approach to the continuum limit they did not 
even use the invariance conditions because they postulated certain symmetries of lattice 
sums. But these symmetries can be related to invariances. It is only with these condi
tions that there can be unique and consistent way to the elastic limit. This has been shown 
for lattices of mass-points [4, 5]. More complicated systems with internal degrees of 
freedom of the constituents have not been discussed. Having thus introduced some elastic 
and lattice theoretical foundations we shall deal with some extensions of the mmal 
approach. Objections have been raised against rotational invariance in the lattice theory 
and it was even suggested to cancel such well-known principles as of virtual work. But 
it should be pointed out strongly that the condition of rotational invariance, for example, 
has to be used explicitly only in the case of models (like Born-von Karman) in the lattice 
theory. However, if one starts with a given potential energy of the whole system, then 
these conditions are satisfied identically and no explicit use has to be made. But in model 
calculations they are required. Sometimes, it is also convenient to use them in cases of 
a given potential in order to derive general statements without using the potential ex
plicitly. We will discuss rotational invariance in connection with homogeneous (compact) 
systems mainly. 

This is even more important in lattices with defects or at the surfaces of lattices be
cause one can use it, for example, in deciding whether a certain model is stable or not. 
However, most effects can be stretched by means of the simpler discussion mentioned. 

1. Continuum foundations of invariances 

In the continuum limit one first has to specify the appropriate variables; these variables 
must not only describe the elastic deformation of the continuous medium, but also the 
magnetization, polarization and, if present, the external fields acting on the body. The 
displacements of every volume element of the medium are described by the field u(X) 
in the Lagrangian way, where X is the material coordinate (in the initial state). A deforma
tion is then described by the displacement gradient (distorsion) which is different from 
zero: 

(1.1) 

Here, Xt is the space coordinate of the volume element after deformation and vik(X) des
cribes the state of the deformed medium if we restrict ourselves only to compact media 
with sufficient slowly varying fields. The energy density of the medium can then be ex
panded with respect to the vik and the other possible variables 

(1.2) 
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INVARIANCE CO~DITIONS IN THE TRANSMISSION FROM DISCRETE LATTICE MODELS 503 

where we have introduced a dependence on magnetization and magnetic field. It may 
also depend on m1lk and further variables which we will not discuss since they can be 
handled in a similar way. 

Rotational and translational invariance means that (1.2) may not change under a ro
tation or translation of the space coordinate system (provided, of course, there is no 
preferred direction in space). Let D be the rotation matrix, then by rotation(!) 

, OXm ~ 
X=> x' = Dx, V;k => V;k = D;m axk-- Ujk = D;mVmk+D;k- €5ik· 

For most purposes it is sufficient and easier to consider infinitesimal rotations defined by 

(1.4) 

and 

(1.5) 

m;= m;+!J;kmk, h; = h;+!J;khk. 

Then (1.2) must be independent of D or Q for all possible deformations v1k and mh hk. 
The variables given do not change with a translation. But if there are such variables, say 
u<r> with 

(1.6) 

under a translation of the coordinate system, then (1.2) has to be invariant of t1 too. 
We use an arbitrary expansion of (1.2) just to compare it with lattice theory. This 

expansion might be(l) 

(1.7) 
1 1 1 

w = S;kVik + 2 sik,jlvikvjl+P;m;+N;,jzm;Vjl + 2Dikmimk 

1 I h I 1 I 

+-V-k ·zm·mkV·z+M· ;+L1 •1h·V·1+G·kh ·mk+-T·k ·zh·mkv·1+ 2 I ,J I J I ,J I J I I 2 I ,J I J 

where, of course in many cases, some terms might be equal to zero. The first two terms 
represent elastic deformations, the others give the dependence on further variables and 
interactions. 

Now, if we insert (1.5) into (1.7) and remember that w must be independent of Q 1" 

for all the possible v1b m;, h1, we obtain 

sj, =l 9--.. 6 
sik.jl + sjk €5il symmetric 45 __.. 21 

(1.8)1-6 
N;,i, +Pi €5;, against 27 __.. 18 number 

L;,i, + Mi €5il interchange 27 __.. 18 of coefficients 

v;k,jl + Di" €5il +Du €5k, = of j, I 54__.. 36 

Tik.il + Gik €5u + Gii €5k, = J 81 __.. 54 

+ relations for higher order coefficients. 

(1) We always use summation convention for the lower indices. 
(2) One should not drop the commas in such coefficients because the proi)erties of symmetry depend 

essentially on the "position of the comma". 
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504 W. LUDWIG 

These relations reduce the number of independent constants essentially(l). This can be 
accounted for by dividing the coefficients into their symmetric and antisymmetric parts, 
i.e., we put 

S;k,jz- Su t5;i 

1 I I ) -(N· ·z+N·z· 2 1,) I, J = N;,jz = N;,zi, 

(1.9) 
1 I I ) -(N· ·z-N·z· 2 1,) I,} 

_]_ (V~k ·z+ V~k z·) = V.k ·z = V.k z· 2 I ,J I , J I ,) I , J' 

where use has been made of (1.8). If we insert this into the expansion (1.7), we obtain 
a new expansion with symmetric variables and symmetric coefficients: 

(1.10) 1 * * 1 * * w = S;k'YJik+ 2Cik.ii'Y/ik'YJiz+P;mi +N;,jzm; 'YJiz+ 2D;km; mk 

+ ~ vik,jzm~mtr;jz+M;hr+L;,jzhrr;jz+G;khrm:+ ~ T;t,jzhtm:r;jz· 

In this expansion, every term is rotationally invariant, because the new variables are in
variant. They are defined in the following way. 'Y/ik is the finite strain tensor 

(1.11) 1 ( - - ) r; = 2 v+v+vv • 

whereas the starred variables are 

(1.12) 
m* = Rm or mr = mkRk;, 

h* = R. ~~ hr = hkRki 

with 

(1.13) 
R = (l+v)·(l+2r;)- 1

'
2 = R(v), 

RR = RR .= 1, det R .= +1. 

It can be seen immediately that, with (1.5), these variables are invariant with respect 
to rotations D of the coordinate system. For small deformations it is 

(1.14) 
1 

R = 1 + w+ 2 (ww-ew-we) ... 

where 

V= e+w, e = e, w= -w. 

(3) If there are variables of the kind indicated in (1.6), translational invariance gives conditions 

for certain sums, e.g.,_2 c<T> = 0, if c<1> is the coefficient of u<1>. 
~ 
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Of course, both expansions (1.7) and (1.10) can be used, but (1.7) only with (1.8). We 
have indicated both expansions because they are necessary in the continuum limit of 
lattice theory. Although the finite strain theory is old, it seems to me that (1.12) was 
first given by TouPIN [11, 12]. The physical meaning is that there are rotational motions 
if there is a magnetization in a finite strained material. Written explicitly, one of these 
terms is in lowest order 

(1.15) 

The effects related to these rotation terms are not large in general but they can be 
observed in some cases. It can be seen from (1.15) that this term vanishes in isotropic 
(cubic) materials, but higher order terms are present even then. Their influence has been 
discussed by MELCHER [15-18] and others only in recent years. 

2. Lattices of mass-points 

In a microscopic discrete lattice theory the appropriate variables are the atomic dis
placements from equilibrium positions: 

(2.1) 

(m: number of atom, xm corresponds to the material coordinate). Rotational invariance 
of the potential energy means 

(2.2) ([J(x) = ([J(Dx). 

Expansion about the equilibrium positions gives 

(2.3) (/J(x) = (/J0 (X) + 2; (/J'{'u'l'+ ~-2 (/J~"u'{'uj+ ... 
m mn 

and after rotation of the coordinate system 

(2.4) 
x' = Dx = DX+Du or with D .=l+.Q, 

x; = Xi+.QikXk+ui+.Qikuk. 

If we insert this into (2.3) and regard that (/> has to be as independent of .Q, we obtain 
the conditions of rotational invariance 

2 (/)'{'Xi: = 2 {[J'f: Xi, 

(2.5) 
m m 

2 (/Jjj" X; + ([Jj fJ ik = 2 {[J'fk" Xj + {[J'f: fJ ii 
n n 

and so on. These relations are very similar to Eq. (1.8) 1 , 2 , (1.9) but their correspondence 
is not complete. As the potential energy is also invariant against (infinitesimal) 
translations, we obtain further 

(2.6) ~ (/)'?' = 0 
.L.J ' ' 

2 (/)~" = 0, etc. 
m n 
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506 W~ LUDWIG 

With the help of (2.6), (2.5) can be transformed in many ways. With the definitions 

(2.7) 

and 

sik = ~ ~ (]>rx: 
m 

S"' 1 \"l.mmnxmxn 
il.jk = v .L.J 'Pij , k 

mn 

(V: volume) it follows 
"' ... 

(2.8) 
sik =ski, 

sil,jk+sj,~ik = sil.kj+sk,~ij, 
and a number of similar relations. One of these further relations is 

(2.9) 

1 A A A 1 A A A 

- (S·z ·k+S·k ·z)-Sk,~ .. =- (Sk· z·+Sz· k·)-S .. ~kz 2 I ,) l ,J IJ 2 J, l J, I IJ ' 

(; .. kl 1), 

which is very similar to (1.9); definition (2. 7) together with (2.9) gives also 

mn mn 

where use has been made of (2.6). From (2.10) it can immediately be seen that 

(2.11) (; .. kl = (; .. lk = c .. kl· IJ, l), )1, 

At this point it should be emphasized that all the relations follow from (2.5) and (2.6) 
and are valid for all sets of mass-points interacting by a potential energy; the set needs 
not necessarily be a lattice but it must have equilibrium positions. 

Now, we can establish the connection between the microscopic description and the 
elastic theory (1) by using homogeneous deformations or (2) by using slowly varying 
displacements (as in a wave-field). In the first case we set 

(2.12) 

in the second case 

(2.13) 

In both cases this implies a number of assumptions: the deformations of all the atoms 
are described by (2.12, 13), which means that there is no individual sublattice displacement 
or every atom is a center of inversion (e.g., Bravais-lattices); there are no defects or 
surface-effects in the lattice or the lattice is infinite; the range of forces is small compared 
to the varying displacements or the elastic limit is just that described by (2.12, 13). Since 
all the essentials can be seen with these assumptions, we restrict our considerations 
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to such cases. Otherwise we would have additional terms which are not affected by 
rotational invariance(4). From (2.3) and (2.12) we have 

(2.14) 

with §defined in (2.7). (2.14) is the energy-density of the crystal and can be identified 

with the pure elastic expression (1. 7), that means S = S (in Bravais-crystals, otherwise 
there are further terms). (1.8), (2.8) and similar relations guarantee the maintenance of 
rotational invariance. 

For practical purposes, definitions (2.7) are unfavourable because they contain ab
solute distances from a given point. For example, surface effects can be eliminated only 
through complicated manipulations. It is then better to start with the equation of motion 
derived from (2.3) 

(2.15) M ••m mm ~mmn n 
Ut = -w,- ~ 'Pij UJ+ ...• ,. 

From this relation it can be seen that the rJ>T have to vanish at least in the interior of the 
crystal to allow for an elastic limit (existence of equibrium). If there are individual 
forces on every atom, an elastic limit is not possible. We assume, therefore, 

(2.16) 

in the interior of the crystal. Then, using (2.13) and the symmetry relations for lattices 
in which every atom is a center of inversion, we obtain (uT=> u1) 

(2.17) 

and 

C,J,kt = - 2~z l~ f!>'tj"(Xk'-XC)(Xi-Xi). 
,. 

This definition of C is identical with that in (2.1 0); if the range of forces is small compared 
with the dimensions of the crystal and if the crystal is large enough to neglect surface 
contributions to the sums in (2.1 0, 17), with order words, the sum over n in (2.17) has 
to be independent of m (there are N bulk terms, but N 213 surface terms). 

(2.17) has to be compared with the corresponding elastic equation of motion derived 
from (1.7) or (1.10): 

(2.18) eiit = ~ (Stk,Jt+Su,Jk)uilk" 

and by comparison with (2.17) 

(2.19) 

(
4

) If there are no external fields, etc. 
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(cf. (2.9); (2.19) holds for Bravais-lattices, otherwise there can be additional terms)(5 ) 

(2.19) is consistent, and that is the essential point, only if the condition of rotational 
invariance is satisfied because this condition guarantees the correct symmetries in the 
indices. Further (2.19) can be uniquely solved for the Sik,Jl or the elastic constants if, 
and only if, the conditions of rotational and translational invariance are satisfied. From 
(2.19) and (1.9) we then have 

" 1 
C· · kl -= -- (C·k ·z+C·, ·k)+Skzd·· 1), 2 I ,) I,] I)' 

(2.20) 

" 1 
Ck· ., =- (Ck· ·,+Ck, ··)+S-,dk· ),1 2 1,) ,)1 I J' 

" 1 -Ck· ·1 = -- (Ck1 ·,+Ck, ··)-S 1dk· 1,) 2 ,I ,)) ) l' 

This allows to determine elastic constants from lattice theoretical quantities. It must be 
emphasized that (2.20) are the elastic constants of a homogeneous medium without any 
surface effects. If there are stresses in the initial state, these are contained in (2.20), 
i.e., in the relation between microscopic and macroscopic quantities. By using the sym
metry relations these stresses can also be obtained from (2.20) apart from a homogeneous 
pressure 

(2.21) 

e.g., 

s12 = cii,12- c21'ii' i arbitrary, no summation! 

In general, however, the elastic constants are defined without stresses in the initial equi
librium state, so that ski = 0. 

Equations (2.17,18) clearly show that by sound wave measurements one determines 
the C-coefficients, not the true elastic constants C. But the condition of rotational in
variance guarantees that both can be determined from each other. 

Some further consequences of the conditions (2.5) should be mentioned. The condi
tion of rotational invariance connects force constants of the n-th and (n+ 1)-th order. 
In an anharmonic theory, elastic as well as lattice theory, one obtains similar but more 
complicated relations for the higher order constants. One can even show [6, 9] that a pure 
harmonic theory is not possible, this means that such a lattice or medium would be in
stable. In elastic limit as well as in lattice theory it is necessary that every crystal be 
anharmonic in order to be stable. 

(
5

) In no.1-:e:1trosymmetric crystals there is an a:Uitional term in (2.18,19,20) which has the form 

~ "!-' !-'" "v 
L.; Cm,ik Rmn Cn,)l• 

It can be s:1own thlt this term is rotationllly invariant ai.ld has the correct symm:!tri~s [8, 9]. Therefore 
we will not go into details here. 
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INVARIANCE CONDITIONS IN THE TRANSMISSION FROM DISCRETE LATTICE MODELS 509 

This does not contradict a lattice model with spring constants between the atoms 
because every spring acts anharmonically if stretched perpendicular to its direction. But 
even though this is only a small anharmonic effect, it is sufficient to satisfy the conditions 
of rotational invariance. Of course, the "real anharmonic" forces in general are larger 
by an order of magnitude. 

The condition of rotational invariance is even more restrictive in the vicinity of defects 
or any perturbations. We consider a free surface where, again, the significance of this 
condition can be seen. In finite elastic media · there exists the possibility of surface waves 
(Rayleigh waves, etc.) These waves propagate in a direction lying on the surface and have 
exponentially decreasing amplitudes perpendicular to the surface. To treat these waves 
we have to solve (2. I 8) with the boundary condition of a free surface, i.e., all forces 
(or stresses) on this surface have to vanish, for a x3 = 0 surface e.g., 

(2.22) s13 = s23 = s33 = 0 at x3 = 0. 

But instead of solving (2. I 8) with (2.22) we can also discuss the solution of 

(2.23) 

and this is even the more general equation of motion, valid for non-homogeneous elastic 
media (varying elastic constants). It can be derived just as the usual equation of motion 
(2.I8) with the assumption that the Sik,Jl depend on position. If the elastic constants 
can be described by a step-function at x 3 = 0, jumping from zero to the value of the 
interior of the crystal, it can be shown that (2.23) is equivalent to (2.18) and (2.23). 
In (2.23) it holds with Sik = 0 

(2.24) 

Now let us look for the corresponding lattice expression. The equation of motion is 
(2.15) with (/JT = 0.: By introducing the slowly varying displacement field (2.13) we now 
obtain 

(2.25) •• 1 ~ At.m"(X" xm) CA eui = - v; LJ 'Vij I - I Ujjl + ij,klUj jkl 

11 

which is different from (2. I 7) in the first term. 
In infinite homogeneous lattices or in the interior of finite lattices the first term on 

the right side vanishes because every atom is then a center of inversion (Bravais-lattices). 
The second term is the general term of homogeneous media. 

In inhomogeneous media, e.g. near a surface, the first term in (2.25) does not vanish 
since there is no inversion symmetry for surface atoms! It corresponds to the first term 
in (2.23) with symmetry given by (2.24). Therefore, the first term in (2.25) must have 
the same symmetry which is possible only if (2.5) is satisfied! 

In inhomogeneous media the second term depends on the position (x, m); but this 
again gives a correspondence between the lattice and elastic theory and can be discussed 
in the usual way. Moreover, the first term depends on m, but this dependence is limited 
to the surface if the inhomogeneities are limited to the surface. A step-function in the 
elastic constants corresponds to the case where the first term in (2.25) is different from 
zero only for m-values on the surface. 

17 Arcb. Mecb. Stos. nr 3176 
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510 W. LUDWIG 

What should be emphasized again is that surface waves calculated by means of the 
lattice theory coincide with elastic waves or even have an elastic limit only if the condition 
of rotational invariance is satisfied. This has been overlooked in a great number of papers. 

3. Lattices of rigid molecules 

The objections first raised against the symmetries of elastic constants and to the 
agreement of the elastic and lattice theory of all crystals were then transferred to molecular 
crystals, where the molecules can be looked upon as being rigid. In these molecular 
crystals we have translations (of the center of mass) and rotations (librations) as the 
possible motions, which means that we have additional degrees of freedom compared with 
the usual lattices of "mass-points". 

Of course, molecular crystals can also be looked upon as being composed of (very 
many) mass-points. Then, such lattices can be treated as crystals with many optical branches 
(of high frequencies) and we can make use of the procedures in the preceding sections 
to obtain the elastic constants. These constants have then all the properties mentioned 
there. 

But we will show here that we can obtain the same result if we treat the molecules 
as rigid bodies with additional degrees of freedom connected with librations. Complica
tions arise if in the equilibrium state different molecules of the lattice have different orienta
tions. But as this gives only additional terms in the elastic constants we restrict ourselves 
to "simple" molecular crystals where all the molecules have the same orientation (in 
equilibrium) and there is only one molecule per unit cell. 

Then the equation of rigid molecule motion is 

(3.1) 

Here uj are the translations (of the mass center), wj are small librations, Iik is the tensor 

of the moment of inertia and the t!>': p couple the different motions. 
I 1 

Again, we can look for the conditions of translational and rotational invariance and 
find out 

(3.2) 2 mn 2 mn t/Ja. u = t/Ju {J = 0, 
I } I 1 n m 

(3.3)1 ~{ mn mn ,. ~, mu 
£.; tl>a. uXZ-t/>a. uXi} = L.J t/>a. wElkj, 
n I} lk n il 

or 

(3.3h 
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with ex, {J = u or w and s1k1: total antisymmetry tensor of 3rd rank. It should be men
tioned that these relations imply equilibrium in the initial state; otherwise we have ad
ditional terms. The condition of rotational invariance (3.3) now connects translational 
and librational motions and this even twice (with ex = u and ex = w ). In other words, 
the coupling constants of translational and librational motions (different kinds of motions, 
variables) are connected by these relations. This is the essential point. In order to obtain 
the elastic limit, we introduce slowly varying fields again: 

(3.4) 
u'j-uj = ui1k(XC-Xk')+ ~ uiJkt(XC-Xk') (Xi-Xi), 

Then 

(3.5) 1 A A 

J.7/ikwk = Ci,JtUJJt+CtmWm 
z 

with 

Cij,kl = - 2~z 2 fP'jj (Xk'-X&) (Xi-Xi), , 

(3.6) Ct,jk = - ~z 2 f/J;:; (X&- X;'), 
n 

C· · = - -- f/Jw w' A 1 2 mn 

IJ Vz I j ' 
n 

in deriving (3.5) use has been made of (3.2) and of the fact that there is only one molecule 
per unit cell. Further, using (3.2) and 

sik.}l = -2 (/JF;x:xr 
mn 

we obtain 

(3.7) 
A 1 A A 

CIJ,kt = 2 (Sik,Jt+Su,Jk). 

The condition of rotational invariance gives the symmetry relations 

(3.8) 

and by direct inspection 

(3.9) 

~} .= cji; ci,jk-ci,k} = cuslkb 

Sil,jk-Sil,k} = -Cs,ilCskj' 

Sil,jk-Sli,jk = -Cs,jkCsli 

The relations (3.8,9) now guarantee that the solution of (3.5) has an elastic limit and 
gives the elastic constants with the correct symmetries. 

17* 
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wm has to be eliminated from (3.5) where the term wk can be neglected in accordance 
tO the following argument: in the long WaVe limit Ujjl and Wmlk vanish, therefore, Ui as 

well which describes the acoustical waves in this limit. wk "" Cimw., must describe the 
librational modes with non-vanishing frequencies in this limit. These frequencies are 
"high" compared with the elastica! acoustical ones which are of sole interest here. We 
can neglect librational waves and use stationary solutions of (3.5h: 

Wm = - (C- 1
)m,.Cn,jlUjjh 

(3.10) 

according to (2.18). This relation can be solved for the elastic constants Sik.il or Cik,il 

provided that (3.8) and (3.9) and (3.2,3) are satisfied. Then, and only then, all the coef
ficients again have the correct symmetries. For the sake of simplicity, we introduce 

(3.11) 

and obtain, similarly as in before 

(3.12) 

In a sound wave measurement one measures only the sum given in (3.10). The elastic 
constants, defined by static deformations, can be obtained from (3.10) only through 
(3.11,12). However, they have the correct symmetries as well as the coefficients in (3.10). 

It must be emphasized further that, if one starts with a given potential energy, then 
the conditions (2.5,6) and (3.2,3) are always satisfied; but if one does model calculations 
with free parameters, these conditions are true conditions, which have to be satisfied 
and which set restrictions to the possible models. 

4. Lattices of atoms with internal degrees of freedom 

The situation becomes even more complicated if one considers interactions in external 
fields, e.g., in magnetic and electrical fields, which act on internal degrees of freedom 
like spins, etc. One is then forced to consider additional terms which describe the cor
responding interactions with spins or electrical polarisation and so on. The elastic limit 
of these effects can be found in the description given at the beginning. 

Lattice theory, of course in the long wave limit, has to coincide with this elastic 
theory, and again this is consistent only if there is a rotational invariant expansion in the 
lattice theory as well. In order to compare the lattice theory with the elastic limit, we can 
start as previously. The energy of the crystal might be given by a spin-dependent and 
a usual potential energy: 

(4.1) E = ~ 2 Jij"O''{'uj+h1 2 KijO'j+W(x'{'). 
mn , 
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Ising- and Heisenberg-models are special forms of this theorem ( 4.1) can be expanded 
with respect to displacements from equilibrium positions to give 

(4.2) E = hi{~ Kijuj+ L Kijro}ur ... } 
n np 

This energy has to be invariant against translations and infinitesimal rotations of the 
coordinate system 

Then the conditions of translational invariance are 

}; f/>'{'j = }; f/>'{'j = 0' 

(4.3) 
P m 

\' K."!Pk = 0 L.J I} ' }; J;"j£ = 0, 
p p 

and those of rotational invariance 

(4.4) }; J["j£Xf+Jf'j(}u+J,m~t5Jl = 

symmetric against, 

p 

}; Kij£Xf + Kkj (};, + K;Z (} Jl = 

interchange of k, /. 

p 

These relations have a certain similarity to the relations (1.8); they are necessary 
and sufficient for a consistent elastic limit of (4.2). 

In order to obtain the correspondence to the elastic limit explicitly one has to use 
again the method of homogeneous deformation (2.12) or of slowly varying fields (long 
waves, 2.13) together with the energy density from (4.2) or the corresponding equations 
of motion: 

Mmu,~ = p" m,. = - h, ~.., K,'!"! a~ - _!__ ~ J,P'!"! a,P a'! - "' (/>'!''! u~ ~ J I J 2 L.J J I J L.J •J '}' 

n 
(4.5) 

np n 

One first obtains certain lattice theoretical coupling constants which have symmetry 
properties expressed by (4.3) and (4.4) basically. With the help of these properties, and 
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only if ( 4.3,4) are satisfied, these lattice theoretical constants can be related to the expan
sion coefficients of the elastic theory in (1.7) or (1.10). We will not give the details here 
because some of the expressions are very "long,. But in any case the elastic limit exists 
consistently only if (4.3,4) are satisfied; in other words, the rotational terms in (1.7) and 
(1.10) are necessary for a consistent theory. 

The effects of these terms and corresponding higher ones are small in general and 
occur in lowest approximation only in anisotropic materials. However, some effects 
caused by these terms have been observed since 1970. The first investigations seem to have 
been made by MELCHER [18] who studied the antiferromagnetic system MnF 2 • A large 
effect of the rotation terms can be seen near the spin-flop-transition which gives effective 
elastic constants. 

It is clear that the rotational invariance is of similar importance in every system which 
is elastically coupled to further degrees of freedom and to external fields. In the case 
of electrical fields and electrical (sublattice) polarisation in crystals this has already been 
pointed out by TOUPIN [1956], and in a more general form, by LAx and NELSON [14]. 
The main point is always the same: one has to use the appropriate rotational invariant 
variables in the continuum theory and, to obey the conditions of translational and ro
tational conditions in the microscopic lattice theory. The theory can also be extended 
to energy densities depending on higher derivatives of displacements, of magnetic moments, 
of fields. In any case one has to look for the corresponding invariant variable and the 
related microscopic invariance conditions. 

Of course, there might be and there are in general further conditions which set re
strictions to the expansion parameters. These further conditions are related to the lattice 
symmetries and set the usual restrictions to the number of independent constants. Other 
invariance conditions are those related to space inversion (parity) and time reversal. 
Sometimes these are also essential. 

But it seems to me that the most important conditions are those of translational and 
even more of rotational invariance. They must be satisfied in every system with no ex
ception and only they can guarantee a continuum theory as a consistent limit to the micro
scopic theory. 
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