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On the theory of linear elasticity 
in statistically homogeneous media 

P. MAZILU (BUCHAREST) 

A STATISTICALLY homogeneous elastic mediwn subjected to non-uniform strain field is con· 
sidered; the expression of the effective elastic moduli and the equations for the mean values 
of stress and strain are derived. A particular attention is paid to the model of perfectly dis
ordered composite materials introduced by E. Kroner in order to describe the polycrystalline 
aggregates having a very fine microstructure. 

Rozwai:any jest statycznie niejednorodny osrodek spr~zysty poddany r6wnomiernemu polu 
odksztalcenia. Wyprowadzono efektywne moduly spr~zyste oraz r6wnania na wartosci srednie 
napr~tenia i odksztalcenia. Szczeg61n'l, uwag~ poswi~no modelowi idealnie nieupofZ'l:dko
wanych materia16w kompozytowych wprowadzonych przez E. KR.oNERA do opisu agregat6w 
polikrystalicznych, cechuj'l,cych si~ doskonal<l, mikrostruktUr<l,. 

PaccMaTpHBaeTcH craTHcrHqecKH :aeo~opo.n;:aru~ ynpyraH cpe.n;a no.n;aepr:ayrru~ paBHOMep:aoMy 
nomo .n;e<t>opMarurlL Bhlae.n;eHbi 3<l><l>eKTHBHbie MOcyJIH ynpyrocrH, a TaKme ypaa:ae:aHH .n;nH 
cpe.n;H;HX 3H;aqeJUrli :aanp.HmeH;HH H .n;e<t>opMarum. Oco6e:a:aoe BHHMaH;He nocam.Qe:ao Mo.n;enH 
H.n;eaJibHO HeynopH,n;oqeH;H;biX KOMll03HTilbiX MaTepHanoa, aae.n;e:a:aoii 3. KpeHepoM .n;JIH OnH
ca:aHH llOJIHKpHCTaJIJIHqecKHX arperaTOB, o6na.n;aro~ H,ll;eaJibHOH MHKpOCTPYKTYPOH. 

1. Introduction 

THE classical theory of elasticity is devoted to homogeneous media or to media whose 
mechanical properties are well known at every point. There are however materials whose 
mechanical properties vary to such extent that only a statistical description is possible. 
This is the case of heterogeneous materials, like concrete of fiber-reinforced materials 
and polycristalline aggregates. References on the mathematical and experimental aspects 
concerning the mechanical behaviour of such kind of materials can be found in the 
BERAN's book [1] and in the works of KRONER [2, 3]. 

The present paper deals with some problems concerning the mathematical foundation 
of the theory of statistically homogeneous media. Section 3 presents a mathematical 
justification of a successive approximation method used in most of the works devoted 
to the theory of statistically homogeneous media. Section 4, by using Green matrix tech
nique, presents the analytical representation of the solution corresponding to a determin
istic nonhomogeneous material. Using this representation, in the next section the mean 
values of the displacements strain, stress and internal energy are derived. Section 6 is 
devoted to the perfectly disordered composite material defined in the sense used by 
KRoNER. For this class of materials one can evidence (via balance of energy), in addition 
the mean value of stress (a), a new mean value denoted (j which can be interpreted as 

a surface-average stress. This surface-average satisfies Hill condition ( W) .= ~ "ii(s). 
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518 P. MAZILU 

From this form of Hill relation it follows that the variational principles used some
times in order to derive the effective elastic moduli, leads in fact to a relation between 
surface-average a and ensemble (volume) average (e). 

2. Statistically homogeneous elastic materials 

Let us consider a statistically homogeneous elastic medium, filling a bounded domain 
D c: R3

, whose Hooke tensor L is characterized by the correlation tensors (LP), p := 

= 1 , 2, ... , calculated in the ensemble sense i.e. the tensor of components 

N 
. 1 '\1 (n) (n) 

(2.1) (L:: (x1) ••• L:: (xp)) = hm N L.,; L:: (x1) ••• L:: (xp), x 1 , ••• Xp e D, 
N~ n=l 

(11) 

where (L)neN is a realization of the random Hooke tensor L; (a sequence of deterministic 
(n) (n) 

tensor functions defined on D). By L: : one denotes the components of L. 
Assume this medium to be subjected to an external body force F = F(x), x e D (of 

components F;, i := 1 , 2, 3) and to a prescribed displacement h on its boundary S 

(2.2) u = h(x); xeS 

(both F and h are deterministic functions). 
The problem is to derive in this case the mean values of the displacements, strains, 

stress and internal energy. These mean values are calculated in the ensemble sense, and 
therefore, if one admits the validity of the ergodic hypothesis these are at the same time 
volume averages. The physical meaning of the stress requires also the determination of 
the surface-average stress. 

In order to solve this problem, the following general strategy will be followed: 
i) a particular realization of the random Hooke tensor L i.e. a sequence of tensorial 

(•) (v) 

functions L = L(x); x e D such that 

N 

(2.3) 
. 1 ~(11) (11) 

hm N L.JL::(x1) ••• L::(x,.) = (L::(x1) ... L::(x,)) 
N~ •=I 

is considered. 
ii) The deterministic solutions of the boundary value problems 

(2.4) 

(1') (v) 

(L~}'uhk) ,1 + F; = 0, 

u1(x) = h1(x), for x e D 

are derived. 
iii) the mean values of the displacements, strains, stress and internal energy are cal

culated. 
For developing this program, we shall firstly present some mathematical preliminaries. 
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LINEAR ELASTICITY IN STATISTICALLY HOMOGENEOUS MEDIA 

3. Solving of equilibrium equations of nonhomogeneous elastic media by an iterative 
processus 

We shall solve the boundary value problem (2.4) by iterative processes. 

519 

To this end, we shall assume the existence of two positive constants C0 and C1 (C0 > 
> C1 > 0) such that for all x e D and 11 e% 

(v) 

(3.1) Co~ii~iJ ~ L~"(x)~ii~"" ~ C1 ~ii~li 

for any symmetric matrix ~ of components ~11 (i,j = 1, 2, 3), so that the equality holds 
only for ~ .= 0. 

Let us consider a general tensor L(x) satisfying (3.1). Denote by L(x) the difference 

L*(x) = L-L(x), 

where i is the constant tensor 

(3.2) Ltl = ~ Co( (},, (}1" + (}it (}1,). 

Let us consider the following sequence of boundary value problems: 
P0 • Determine u<0 > e C2(D)n C1 (D+S) such that 

(3.3) (itJ"u~~>),1 +F1 .= 0, 

ui0>(x) = hi(x) for x e S. 

P,.. Determine u<"> e C2 (D)n C1(D+S) such that 

(3.4) (L-~k u<">) . = (L• ltk u<n- 1 >) . 
ij ltk •J I) "·" ,J' 

u\">(x) = 0 for x e S. 

Let us assume that each of these boundary value problems has a uniquely determined 
solution(!). Consider the series 

u = u<0>+u<l)+u<2>+ ... 

We have the following theorem: 
00 

THEOREM. The series }; u<"> is convergent with respect to the norm llull 2 = J u1,1u1,1d1: 
n=l D 

of the space 

W~2 = {u: D ~ R 3
/ j u1,1u1,1d1: < + oo, u(x) = 0 on s}. 

D 

Proof. Let us multiply both terms of (2.5) by u<"> and let us integrate over D. 
According to Green-Ostrogradski formula we find 

(1) P, (n = 0, 1, 2, ... ) is in fact a Dirichlet boundary value problem for the equations of elastic 
equilibrium for a material having Lame constants A. = 0, p. = C0 /2. 
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520 P. MAZILU 

or taking into account the expression of the tensor i 

llu<">ll 2 = -
1
- Ji~~u<n-l>u~")d-r c lJ h.lc '·J . 
OD 

(3.3) 

Let US consider the bilinear form defined On wr 2 X wr 2 

A(u, v) = J L~Ju,,kui,jdT. 
D 

From (3.2) and (3.1) and from the symmetry of Hooke tensor L it follows that A(u, v) 
defines an inner product in W~ 2 • Therefore we have 

IA(u,.-1 u<">)l ~ (Jih~u<n-l>u<":-l>d-r)1/2 (Ji~~u<">u<">d..,..)l/2 ' ~ iJ h.k i,J 'J h.k i,j ~ . 
D D 

But from (3.1) it follows 

J L~Ju~~t 1 >u~~j 1 >d-r ~ (C0 -C1)IIu<"- 1 >11 2 

D 

and 

fj}~u<"> u<")d-r ~ (C -C) llu<">ll2 iJ h.k i.J ~ 0 1 . 
D 

Consequently, 

From (3.3) it follows 

llu<">ll ~ _Co-Ct llu<n-1>11 = xllu<"-1)11, x < 1 
Co 

and therefore the terms of the series 2: u<"> are majorated by the terms of the geometrica] 
progression 

00 

llu(O>ul; x". 
n=l 

This proves the theorem. 
Let us consider the displacement field 

u = u<O> + 2; u<">. 

We shall prove that u is the weak solution of the boundary value problem (2.4), i.e. 

(3.4) f LrJu,,kvi.jdT = f F· vd-r, 
D D 

for any VE W~l· 
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LINEAR ELASTICITY IN STATISTICALLY HOMOGENEOUS MEDIA 521 

Indeed, from (3.3) and (3.4) it follows 

J i~Ju~~lv1 ,1 d-r = J F1v1d-r, 
D D 

• JL-hk (ll) d _ JL"k ((n-1) d ,1 u,,kv1,1 T .,.... IJ u ,,k v1,1 T, 
D D 

whence, calculating the sum with respect to n, one finds (3.4). 
Now, let us assume that Hooke tensor L has the form 

(3.5) L(x, ex)= i- cxi(x), 

where ex is a positive parameter and L is an arbitrary constant tensor. Assume that L(x, ex) 
satisfies (3.1) for all ex E [0, 1]. 

Let us write L(x, ex) in the form 

(3.6) L(x, ex)= L-(i-i+ cxL(x)) 
- . - -

with L defined by (3.2). Now, denoting L = L-L+cxL(x) we can solve the boundary 
value problem 

(3.7) 
(L~J(x, cx)u,,k),1+Fi = 0, 

u1(x) = h1(x) for X E S 

by the iterative procedure described above. Therefore the series 

(3.8) 

where u is the solution of the boundary value problem 

(L~Ju1?D.J+Ft = o, 
u~0>(x) = hi(x) for x E S 

and u<">, (n = I, 2, ... ) are the solutions of the boundary value problems 

(L~ju1~1>.1 = (L,J-i~J+ cxL~j(x))u1~;; 1 >). 1 , 
u~">(x) = 0 for x E S 

is uniformly convergent with respect to ex E [0, 1] in W12 • 

We shall prove that the sum u(x, ex) is analytical for ex E [0, 1]. Indeed, let us look 
for a solution of the form 

(3.9) 

for the boundary wlue problem (3.7). Taking into account (3.5) it follows for u<"> (n = 
= 0, 1, 2 ... ) that the boundary value problems have forms 

(i~jv1?D.1 +F, .= o, 
vf0 >(x) = hi(x) for x E S 

(3.10) 

and for n = 1, 2, ... 

(3.11) (L~~v<">) · = (L~~v<"- 1 >) · 'J h.k ·J J} h.k ,J' 

vi(x) = 0 for xeS. 
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522 P. MAZILU 

According to the above results each of these problems have a uniquely determined 
solution. 

In the same way as in the precedent theorem we obtain the following results: 
For sufficiently small 0 ~ ex ~ ex 1 the series (3.9) is convergent in W~2 and represents 

the weak solution of (3. 7). Since the weak solution of (3. 7) is uniquely determined, it 
follows that (3.8) is analytical on [0, ex1]. 

Now writing the tensor L(x, ex) under the form 

(3.10) 

and looking for a solution of the form 

u = w<0 >+(ex-ex1)w<0 +(ex-ex1) 2 w< 2 )+ ... 

it follows that (3.8) is analytical for ex E [ex 1 , ex2 ]. 

Re mark. The proof of this latter fact is quite similar to the proof of the precedent 

theorem if we take i- ex 1 L(x) instead Land L instead of L. (The fact that L is a constant 
tensor has no importance in the proof). 

It is possible to show that by this procedure we cover the whole interval [0, 1]. Indeed, 
let us assume the contrary, that is there exists ex0 E [0, I] such that u(x, ex) is not analytical 
in the neighbourhood of ex0 • 

Writing L(x, ex) under the form 

L(x, ex)= (L-ex0 L(x))-(ex-ex0)L 

it follows, by the procedure already used, that there exists a vicinity of ex0 where u(x, ex) 
is analytical. This contradiction proves our assertion. 

We can conclude therefore that the solution u(x, ex) corresponding to the boundary 
value problem (3.1) with L(x, ex) having the form (3.5) is analytical in ex E [0, 1]. This 
implies that the series 

with v<"> satisfying (3.10) or (3.11) is convergent for sufficiently small ex and represents 
the weak solution of (3.1). The above results show that for the Hooke tensor splitted 

under the form L(x) = L-L(x), where L is defined by (3.2), the above iterative pro
cesses are convergent. Generally, if a different splitting L(x) = i-i(x) is used, the above 
iterative procedure does not converge. However, in this second case, for sufficiently small 
ex, we can prove the convergence of the series corresponding to Hooke tensor L- exi 
and the possibility of prolonging analytically this series over [0, 1]. 

This fact allows us to develop any proof for small ex and to extend "aposteriori" the 
final results to ex = 1. 

4. Representation of the solution by Green matrix 

Let us consider a Hooke tensor of the form (3.5) with I isotropic 

(4.1) 
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LINEAR ELASTICITY IN STATISTICALLY HOMOGENEOUS MEDIA 523 

where A and p. are positive constants. Corresponding to the domain D and to the isotropic 
Hooke tensor consider Green matrix G of components: 

(4.2) G;J(Xt, x2) = gii(xt, X2)+G?ix1, x2), 

where giJ are the components of Somigliana tensor 

with 

( ) 
_ {Jij b (xll-X2i)(X1j-X2j) 

g,1 x 1 , x 2 - a ( ) + I 13 Xt -X2 Xt -X2 

3A+7p. 
a:= - 16nJt(Ap.) ' 

b = - A+p. 
16np.{A + 2,u) 

and G~(x1 , x 2 ) solutions of the equations 

Lhk oG~ = 0, G?j(Xl, x2) = -gjj(x1, x2) for X E s. 
pq ox2koX2q 

or 

(4.4) 

where 

According to the flux divergence formula this can be written 

(4.5) uf">(x1) = - J oG,p L}ke<n-t>dr • ox pq hk 2' 
D 2q 

or in a more compact form 

U <n> - G' * Lo "'<n-t> .- - 12 2"2 • 

Since Green matrix has a weak singularity for x 1 = x2 having the order of magnitude 

0 (I 1 I) ((this means that IGi11 < I k I for all x 1 , x2 en), the flux divergence 
Xt-Xz x 1 -x2 

formula must be applied in D-!J"', where !J11 is a sphere centred in x 1 having 'YJ as radius. 
In the flux divergence formula the contribution of the boundary E"' of !J11 is 

J G L
0 hk (11-1) d 1'1 = ip pqehk nq s. 

E'l 

It follows that 
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524 P. MAZILU 

Passing to the limit for 'YJ-+ 0 one obtains 

I,-+ 0. 

Now, in order to derive the expression of e<11> one differentiates (4.5). According to the 
formula of differentiation of integrals with a weak singularity (S. G. MIKHLlNE [4]), we 
find 

<11> L
0

hlc (11-t> jG L
0

hlc <11>d e = KiCpq)J pqehlc - i<p,q>J pqEhk 1'2, 
D 

where the parantheses around subscript indicate symmetrization and g;pqJ denote the 
following integrals over the unit sphere !J 

KipqJ = J r 2g;p,qJCOS (r, x 2 )dw. 
D 

Let us denote by y the tensor of components 

1 
Kt<pq>J = 2 (g;pqJ + KtqpJ)' 

by q; the tensorial field of components 

- ~ r3(g;p,qJ+g;q,pJ), 

and by (/> the matrix of components 

0 1 0 0 ) G,<,q>J = - 2(G,,,qJ+Gtq,pJ . 

For the sake of compactness, we shall introduce the operator defined for all tensor func
tions e: D -+ R3 x 3 

Using this notation e<11> can be expressed as 

Re mark. If D = R 3 (whole Euclidean space), then G0 = 0 and r reduces to r 
defined by 

The solution of the boundary value problem (3. 7) is given by the series 

u = ui0>- G~2 * l 2 e~0>-Gb * l2e~l)+ ... , 

(4.6) - <O>+r Lo <O>+r Lo O>+ E- Et 12* 2£2 12* 2e2 ••• , 
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LINEAR ELASTICITY IN STATlSTICALLY HOMOGENEOUS MEDIA 525 

or expressing all in terms of u<0 >, e<0> 

u = u~-G~2*L2e~0>-Gf2•Fz3*L2eU~+ ... , 

(4.7) 

5. Mean values for statistically homogeneous media 

Let us consider a statistically homogeneous elastic medium whose random Hooke 
tensor is characterized by its correlation tensors (L), (L2

), ••• Assume that the mean 
value (L) is an isotropic tensor. 

(v) 

Let L(x)ve...Y be a realization of the random Hooke tensor. Consider for each tensor 
of this realization the boundary value problem 

(5.1) 
(t•)hk 

(L1i(x)uhk)i+Fi = 0, ui(x) = hi(x) for xeS. 
<•> 

In order to solve these boundary value problems, let us split each L into mean and 
fluctuating parts according to the formula 

L(x) = (L)- i(x). 
(v) 

Now, writing the expression of u, e and C1 given by (4.7) for each term L of the realiza-
M o 

tion (L)PI:...Y and taking the average, it follows (since (L) = 0) 

(u) := u~0>- G~ 2 * F23 * (L2 L 3 ) e~0> + ... , 

(e) =e~0>+F12 •F23 •(LzL3)e~0> + ... , 

(C1) = (L) e~ +F12 •(LtLz)e~0> +F12 •F23 * (Lt L2L3)e~0> + .... 

Re mark. Here one assumes that the average of our series can be calculated term 
by term. 

We shall derive the expression of the internal energy. In order to better evidence the 
variables, let us write the strain and stress tensor for an arbitrary term of the realizatioii 

(v) 

(L)ve..¥ under the form 

Et= e~0>+F12*L2e~0>+F12 *F23•L2L3e~0>+ ... , 

C11 = Lte\0>+Ftz'*LtL~,e~0>+Ft2'*F2'3'*LtL2,L3,e~0>+ .... 

If we consider the product C1e = uii eii one finds 

C1tet .= e\0>(Lte~0>+F12 * L1 L2 e~0>+F12 •F23 •L2 L3 L3 .e~0>+L1 e~0>(F12 i2 e~0> 

+F12 •F23 •Lzi3e~0>+ ... )+F12 •F12 ,*LtL2L2,e~0>e~~>+ .... 

18 Arch. Mech. Stos. nr 3176 

http://rcin.org.pl



526 P. MAZILU 

Calculating the average one obtains 

(5.2) (ue)1 = e\0>(u1)+(L1)e\0>(F12(L~0>)e~0>+rl2 •F1 3 *(i2 i3)e~0>+ .. . ) 

+ E~0>(r12<Ll 12) E~O) + rl2 * r23 * (Ll i2 L3) e~O) + .. . ) 

+F12 •F12,(L1 L2 L2,) e~0> e~~> + ... . 

6. Perfectly disordered composite materials 

Let us consider a statistically homogeneous elastic material filling the whole Euclidean 
space R3

• 

Assume that the distribution of its material components over two very distant regions 
is statistically independent. From the mathematical point of view this implies 

lim (Lk1(x 1) ••• Lk,(xp)) = (Lkt) ... (Lk,). 
IXl-XJI-+00 

it~<} 

Now, let us consider a statistically homogeneous medium defined by the following cor
relation tensors 

(J.k1(x1) ••. ;_k,(xp)) = lim(Lk1(nx1) .•. Lk,(nxp)). 
11-+00 

We note that, if xi '# xb (i '# j), then 

(6.1) 

A statistically homogeneous material whose correlation tensors satisfy (6.1) is called 
a perfectly disordered composite material. 

Re mark. From physical point of view, the model of perfectly disordered material 
corresponds to a statistically homogeneous material having a very fine microstructure, 
so that the distribution of its internal components is statistically independent in any two 
closed regions. 

This concept and its physical interpretation was firstly used by KRoNER in order to 
describe the mechanical behaviour of the polycristalline aggregates. 

Let us denote by (u)11 , (e)11 , (u)11 , ((Je),. the mean values of the mechanical para
meters corresponding to the statistically homogeneous medium whose random Hooke 
tensor has the correlations 

By definition the limits 

(u) = lim(u)11 , e = lim(e)11 , 

11-+00 X-+00 

(o') = lim ((1)11 , 

11-+00 

w = 
2
1 

((Je) = 
2
1 

lim((Je)11 , 

11-+00 

will be the mean values for the perfectly disordered material. 
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It was proved [5] that for x E D 

limrk- 1 • <i!)e<o> = (fk- 1 * (i) )e<0 >, 
n-+OO 

limFk * (i!)e<0 > = (f* 'i.k)e<0 >. 
n-+00 

Re mark. These formulae are no longer valid if x E S. 

Let us denote by C and C the constant tensors defined by 

00 

C.= (L)- 2 fk- 1 •(i.k), 
k=2 

00 

C = (L)-C = 2 fk- 1*(]}). 
k=2 

527 

Using these notations we obtain the following expressions for the mean values of the 
displacement, strain and stress in a perfectly disordered composite material: 

(u) = u<0>- G' * Ce<0 >, 

(e) = e<0 >+F• Ce<O>, 

(G) = Ce<0 >+(L)F* Ce<0 >. 

It is possible to give a mechanical interpretation for the vector G' * Ce<o> and for the tensor 

r. Ce<0 >. 
Let us consider the following boundary value problem: determine the displacement 

field u: D --. R3 , u E C(D + S) nC2 (D) such that 

((L~k)uh,k),j = (Cffek~>).b u(x) = 0 for XES. 

Obviously, the solution of this boundary value problem is 

- G' c- <O> u = - 12 * e2 

and the corresponding strain field will be 

i = r12 * Ce~0>. 

Therefore, the above formulae can be written 

(u) = u<O>+u, 

(e)= e(O)+e, 

(G) = Ce<0 >+(L)e. 

In order to derive the expression of the internal elastic energy for a perfectly dis
ordered composite material, we remark that 

limF12 .F12,(Ln 1 in2 Ln2')e~0>e~~> = F 12 .Iim F 12,(Ln1 Ln2 in3 ) = 0 
n-+oo n-+oo 

ft-+00 

Similar formulae are true for higher order products. 

18* 
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Taking into account these equalities one finds, for the internal elastic energy, the 
expression 

1 -w == y(Ce<0 >e<0 >+2(L)e<0 >e-Ce<O>s<0 >). 

For an increment of the displacement field b(u) = bu<o> + bu, the variation of this internal 
energy will be 

(6.2) 

According to the theorem of the virtual work one must find 

(6.3) J bwdr = J Fb(u)dr+ J (1<n>b(u)ds, 
D D S 

where (j<n> is the mean stress on the boundary S of D. 
If we introduce (6.2) in (6.3), after a simple integral transformation (flux-divergence 

formula) it follows 

(6.4) J a<n>b(u)ds .= J ((a)-Ce< 0>)nb(u)ds+ J 1pbu0 dv, 
S S D 

where 1p denotes the vector of components 
_ (C-hk <o>) 

"Pi - ii ehk ,j· 

Re mark. By· virtue of Riesz-Frechet theorem and Sobolev-Kondrasev imbedding 
theorem, the relation (6.4) defines uniquely the vector a<n>. 

However, because of the last term of (6.4) it is not generally possible to express -a<n> 
in terms of (fJ) or (e) (or equivalently in terms of e<o> and e) calculated on the boundary. 
We shall see that this will be possible in the particular case when the mean strain-field 
is uniform (e<0 > = const). In this case 1p is zero and from (5.8) it follows 

a <n> = ((a)- Ce<O>) n . 

Let us consider, generally, the tensor 

(6.5) 

We note that 

and 

- aw 
aiJ=~ 

CJEij 

a~"> = aiini. 

For this reason we shall interprete the tensor 'd as the mean value of strain calculated 
over oriented surfaces. 

R e m a r k. According to the ergodic hypothesis, ( fJ) can be regarded as the mean 
value of stress calculated over volume-elements. 

It is easily seen that the mean value of stress ( fJ) verifies the equilibrium equations 

div(fJ)+F = 0. 
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From (6.5) it follows: 

div"O-+F+1p = 0. 

This relation suggests to interprete the vector field 1p as an internal body force field. 
This internal body force field occurs only for non-uniform strain state. 

Now, we can evidence the following expression for the variation of the internal energy 

f <5w = f (F <5( u) + 1p<5u<0 >) d-e fan <5( u) ds. 
D D S 

Therefore the variation of the internal energy is equal to the virtual work performed 
by the external body force F, internal body force "'' and the surface-average of stress (j<n> = 
= an. From (6.5) it follows, for uniform mean strain field, that a = (C-C) (e) and 
consequently the surface-average (i and the volume average of the strain (e) satisfy Hooke 
law, having Cer := C-C as effective tensor of elastic moduli. 

We note that the internal elastic energy also can be expressed under the form 

w .= ~ a(e). 

This shows that Hill condition is satisfied if instead of volume average of stress one takes 
the surface-average of stress. 

Therefore if in the deriving of the effective elastic moduli tensor one uses a varia
tional principle, then one obtains Cer = C-C as the effective tensor of elastic moduli, 
corresponding to a relation between surface-average of stress C1 and the volume-average 
of strain (e). 
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