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The effective elastic response of randomly oriented polycrystalline 
solids in tension 

J. W. PROV AN and D. R. AXELRAD (MONTREAL) 

THE present paper represents one of our first attempts to apply the probabilistic micromechanics 
theory, albeit in its elastic format, to actual polycrystalline solids in the form of pure copper 
and aluminium constrained in a simple but realistic boundary value configuration. In doing 
so it is observed that all of the previously introduced experimental material, kinematic and 
stress concepts of the micromechanics theory pertaining to the elastic deformation of poly­
crystalline materials have been utilized and, for the first time in most instances, are numerically 
evaluated for the two materials in question. In particular, the actual numerical determination 
of microstress distributions in the case of uniaxially stressed specimens has represented one 
of the primary goals of micromechanics since its inception. 

Praca niniejsza stanowi jedn~ z pierwszych pr6b zastosowania probabilistycznej teorii mikro­
mechaniki w zakresie sprcezystym do aktualnych polikrystalicznych cial stalych takich jak 
czysta miedf i aluminium, ograniczonych wicezami przez prost~ lecz realn~ konfiguracjce brzegu. 
Zauwazono przy tym, i;e wszystkie wyprowadzone poprzednio koncepcje dotyc~ce ekspery­
mentu, materialu, kinetyki i naprcetenia w teorii mikromechaniki, odnos~ce sice do deformacji 
sprcezystej materia16w polikrystalicznych, zostaly wykorzystane i po raz pierwszy zostaly wyzna­
czane numerycznie dla wyi;ej wspomnianych dw6ch material6w. W szczeg6lnosci wprowa­
dzone okreslenie numeryczne rozkladu mikronaprcezen w przypadku jednoosiowych naprceta­
nych pr6bek stanowi jeden z gl6wnych ce16w mikromechaniki. 

HaCTO.Rll~a.R pa6oTa COCTBBJIHeT O,D;Hy H3 nepBbiX nOnbiTKOK npHMeHeJUUI npo6a6HJIHCTH'IeCKOH 

TeopHH MHKpOMexamuw, HO TOJILKO B ynpyroft o6nacrH, K aKTYaJILHbiM noJIHKpHCTaJIJIH'IeCKHM 
TBep.I{biM TeJIIlM, TaKHM KaK 'liHCTa.R Me,I{L H amoMHJUdi, OrpiUUNeHHbiX CBH3HMH npoCTOH, 

H;O peaJILH;Oit KOH;<flllrypa~ rpaHHUbl. IlpH 3TOM KOH;CTBTHpyeTCH, 'ITO Bee BBe,I{eHHLie p81Ud11e 

KOH;~enl.UIH 3KcnepHMeH;Ta, MaTepHana, KHH;eTHKH H HanpJDReHHH B TeopHH MHKpoMexaHHKB, 

OTH;OC.R:UU{eC.R K ynpyroit ,I{e$opM~ llOJIHI<pHCTaJIJilAeCKHX M&TepHaJIOB, 6biJIH HCllOJib3Q­

BaHbl H BnepBbie t~HCJieH;HO onpe~eJieH;bl ~ BbWie ynOMmlYTbiX ~Byx MaTepHaJIOB. B t~acr­
H;OCTH ~aH;Hoe 'liHCJieH;H;oe onpe.I{eneH;He pacnpe~eneHHH MHKpoHanpJDRe.H;Jdi, B cnyqae O,D;HOCHO 

H;&npiDReHHbiX o6pa3~0B, COCT8BJIHJIO O,D;Hy H3 rJI&BHbiX ~eJieH MHKpoMexaHHKH OT BpeMef( 

ee B03HHKHOBeHHH. 

1. Introduction 

THE description of the mechanical response of polycrystalline solids has been the objective 
of many theoreticians working in the general field of continuum and applied mechanics. 
The question naturally arises as to whether it is possible to bridge the gap between these 
theories and the information constantly being made available concerning the mechanical 
responses of such solids on their atomic and molecular level. Basically, this was one of 
the goals of micromechanics as expressed in the 1972 lecture series [I] (1) and recently 
more fully described in the monograph by D. R. AxELRAD [2]. Since that time we have 

( 1) Bracketed numbers denote references list at the end of this paper. 
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532 J. W. PROVAN AND D. R. AXELRAD 

made progress towards answering some of the hypotheses proposed in [I] and the present 
work constitutes the first time that it has been possible to apply micromechanics theory 
to real polycrystalline solids and to obtain quantitative values for the large number of 
variables involved. In our opinion the effort involved has been vindicated by the results 
obtained. 

Micromechanics theory considers that the kinematic parameters involved in the de­
formation process are random variables in the elastic case and stochastic processes in the 
irreversible case. Restricting our attention to the elastic response, the polycrystalline 
random kinematic variables are defined and reviewed in Table 1. The indicated references 
may be consulted for more details. 

Table 1. Kinematic random variables 

Symbol 

«r:«r, - («r1 , «r2, «r3) 
«~,. - («n x «P A., «n, «P A.) 

«/lA. - (0, 0, 1) 

()0 

«/Jd :«Pd,. - («Pd,, «Pd2 , «Pd3) 

«P&:«P<5,.- («Pd1 , «fJd2 +Ll, «Pd3 ) 

Main 
Ref. 

[4] 
Fig. 1 

[4] 

[4] 
[3] 

Fig. 1 
[3] 

Fig. 1 
[3] 

Fig. 1 

[4] 
[4] 
[4] 

Interpretation 

External coordinate frame: location of any point. 

Int~rnal coordinate frame of a.th microelement: 
location of any point in a.. 

Location of center of a. with regard to x 1• 

Grain boundary coordinate frame. 

Unit normal to grain boundary of a. with 
regard to x,. 

Direction about which a rotation of 0° super­
imposes the crystallographic axes of the a. 
and fJ contiguous microelements with regard 
to x1 • 

Mismatch rotation angle. 
Relative g.b. displacement w.r.t. «Pl;,.. 
Deformed counterpart of 11. 

Undeformed counterparts of above are indicated by their corresponding majuscules 
11: Ll,. - (0, Ll, 0) [4] Grain boundary thickness w.r.t. «Pl; •. 

[4] Displacement of point within a.. 

[4] Linear microstrain in a.. 

[3] Linear microstrain in grain boundary. 
[4] 

By introducing the three measuring scales, denoted by, micro-, meso-, and macro­
the microkinematic parameters listed in this table have been transformed into probabilistic 
density and distribution functions and into mean values and variances of the parameters 
involved. These two quantities are all that are required for a complete description of any, 
particular kinematic probability density function under the micromechanic assumption 
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THE EFFECTIVE ELASTIC RESPONSE OF RANDOMLY ORIENTED POLYCRYSTALLINE SOLIDS 533 

that all such distributions are Gaussian. An explicit description of the strains discussed 
above and involved in the boundary value problem developed in this paper, based upon 
the experimental holographic interferometric results described by AxELRAD and KALOUSEK 
[6] and KALOUSEK [7], is presented in Sect. 3. 

The third basic micromechanic concept is that of the existence of a material operator 
M9Jl which takes the place of the conventional constitutive relations and is developed, 
not from the classical macroscopic response of materials but from studies of their atomic, 
molecular and microscopic mechanical behaviour. In other words, although the opera­
tional characteristics of conventional constitutive relations and M9Jl are largely the same 
they are numerically specified on the basis of entirely different experimental observations. 
Hence, prediction of the influence of theoretical microstructure changes on the macro­
response characteristics of the material in question thereby becomes feasible. The material 
operator M9Jl for the elastic response of polycrystalline solids has been formulated in detail 
in previous publications and its parameters and notations are simply listed in Table 2 

Table 2. Material operator coefficients 

Symbol 

«fJ!;a = «fJa.jaXl 
a{J A :«f1a.,a«f1a.)b «fJa.kc«fJa.ltJ 

A= <«f1A> = f «fJAdfYJ" 

«fJE:«fJEabctJ; «fJE- 1 = «fJE;,~d 
E = <«f1E) = j «fJEd&fJ 

" 2 
'YJ =-G(1-v)J2aetJ 

3.n 

G, V 

I 

t1(!tJ 
«fJAa"' («fJAt, «fJA2, «fJAJ) 

Aa = («fJ A a) = j «fJ Ad&9 

Main 
Ref. 

[3] 

[3] 

Table 5 
Eq. (5, 6) 

Sect. 5 

Sect. 5 

Sect. 5 

Sect. 5 

[3] 
[3], [8) 
Table 4 

[8] 

[8] 
[10] 

Sect. 5 

Table 5 

Interpretation 

Elastic material operator for polycrystalline 
solids. 

Material operators for single microelements. 

Direction cosines. 
Grain boundary coordinate transfer operator. 

First statistical moment of «fJA. 

Material operators for grain boundary. 

First statistical moment of «fJE. 

Statistical frequency of g.b. material. 
The influence of inactivated Frank-Read dis­

location sources on the elastic response of 
single microelements. 

Shear modulus, Poisson's ratio. 
Characteristic distance between pinning points 

of an edge dislocation. 
The mobile dislocation density. 
G.b. elastic responses in l;a directions. 

First statistical moment of «fJ A a. 

where again the appropriate references are noted. Quantitative values for the elastic 
response of the microelements or grains of pure polycrystalline copper and aluminium, 
based upon a dislocation model [8] involving the inactivated Frank-Read source, are 
evaluated in Sect. 4, while the summarized results of recent grain boundary studies 
[9, 10] are presented in Sect. 5. ~ection 6 combines the results of these two studies; as 
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534 J. W. PROVAN AND D. R. AXELRAD 

indicated in Table 2, in order to quantitatively formulate expressions for the material 
operator for pure polycrystalline copper and aluminium. 

Once the explicit expressions for the material operator are available it is no problem 
to combine them with the experimentally obtained strain distributions of Sect. 3 to obtain 
expressions for the density functions of microstresses in specimens of copper and alumin­
ium loaded as described in Sect. 2. This part of the work is described in Sect. 7 where 
conclusions are also drawn. 

Until recently, the elastic response was studied solely in order to check the validity 
of the basic micromechanic hypotheses before delving into a quantitative description of 
an actual irreversible response, such as creep or fatigue, of a real material. As discussed 
in [3 and 5], however, it now appears that at least the probabilistic form of the secondary 
creep and linear viscoelastic responses of polycrystalline solids may be completely des­
cribed by a knowledge of the elastic response and a so called "kinematic transition pro­
bability matrix", thereby placing additional emphasis on the explicit knowledge of the 
reversible response of such materials. An extension of this concept to the transition zone 
between the purely elastic response and the irreversible response described by a time 
dependent transition probability matrix constitutes an accompanying presentation at 
this symposium [11]. 

Finally, in what follows, miniscules denote deformed components of their undeformed 
majuscule counterparts and direct notation is utilized throughout the development. For 
clarification, Cartesian tensor notation is occasionally reverted to with Latin indices 
i, j, k, I, indicating reference to the external coordinate frame, Latin indices a, b, c, d, 
refer to grain boundary coordinates, while Greek indices indicate the interior coordinate 
system of the individual microelement. 

2. Choice of boundary value problem configuration 

To the knowledge of the authors the only available data for the determination of 
explicit strain distributions, ~·, is the work of AxELRAD and KALOUSEK [6, 7]. They used 
a two-phase material consisting of pure aluminium monocrystals embedded in an epoxy 
resin matrix and established distribution histograms for two translations and one rota­
tion by a combined holographic interferometry and X-ray back-reflection Laue technique. 
Their experimental results, as utilized in the following section, are limited to the uniaxial 
tension of the two-phase model with the 2 x 2 x 2 mm3 aluminium monocrystals pre­
oriented such that their [001] crystallographic axis, with reference to Fig. 1, is always 
in the x3-direction and the normals to their epoxy embedded surfaces are uniformly 
distributed in the x1 , x2-plane. This experimental configuration, along with the com­
putational simplifications brought about, has constrained the discussion to polycrystalline 
specimens of copper and aluminium with the dimensions, orientations and coordinates 
as indicated in Fig. 1. The three particular probability measures &Jn, obtained from 

~ = ! {H(</>)-H(</>-:n:)}, ~ = ~(</>) and &• = ~(<~>-;)are examined throughout 

this paper in order to discuss the limiting cases of the influence of crystallographic 
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Xz 

p~= 
~+---1 fS(t/J-'Jr/2) 

FIG. 1. Scheme of idealized polycrystalline material sample. 

535 

grain boundary orientations on the overall mechanical response and microstress distribu­
tions in polycrystalline copper and aluminium. 

Furthermore, in connection with topics discussed in Sect. 5 of this paper, only sym­
metric tilt boundaries with mismatch orientation angles of (J = 22.6°, 28.1°, 31.9°, 36.9° 
and 53.1° have been studied in detail for copper and aluminium in Refs. [9 and 10]. 
Hence, for both the materials and for the three distributions of grain boundary normals 
introduced above, the distribution of (J is chosen to reflect this limitation. Due to both 
the large number of crystallographic symmetries in both copper and aluminium and to 
the marked tendency of crystals to unite with coincidence mismatch orientations [14], 
it is felt that the five angles chosen are sufficient to describe a large proportion of grain 
boundaries in polycrystalline copper and aluminium. 

3. Distributions of strains 

Micromechanics theory postulates the existence not of a deterministic strain field but 
of a probablistic one. In order to obtain distributions for the three strains e11 , e22 and 
e 12 , the basic two-dimensional displacement and rotation histograms, obtained by the 
combined holographic and X-ray technique introduced in [6] and presented in [3 and 7], 
are utilized in this section. We are, of course, aware of the limitations of the proposed 
method of obtaining strain measurements and of the results obtained but until better 
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measurements are available the strain measurement histograms about to be developed 
are considered to be sufficient both to illustrate the use of the micromechanics theory 
and to draw some interesting conclusions. 

As mentioned in Sect. 2 the displacement results were obtained for a two-phase model 
consisting of 147 monocrystals of aluminium embedded in an epoxy resin matrix. By 
measuring the undeformed distance between the geometric center of neighbouring crystals 
and by taking the difference between their displacements measured by holographic inter­
ferometry, strain approximations were determined by appropriate divisions of the latter 
by the former. Simple calculations led to the means and variances listed in Table 3 for 

Table 3. Strain means and standard deviations 

(e) o.445 x to- 3 0.0 0.0 

Ue = fVe o.2 x to- 3 o.25 x to- 3 0.3xl0- 3 

an average stress level of (e11 ) = 2.5 x 103 dynes/cm2
• This low stress level was chosen 

to ensure that the aluminium monocrystals were stressed within their elastic limit. 
In Sect. 7, the microstrain means and variances of Table 3 are utilized to determine 

microstress distributions in both polycrystalline aluminium and copper. This is of course 
incorrect since the experimental two-phase model used in determining the Table 3 informa­
tion is not the same as either pure polycrystalline copper or aluminium. However, as 
stated previously they are the only results at present available to us for utilization in 
determining the validity of the micromechanics approach. It is hoped that the results 
expressed in this paper will motivate other researchers to begin to investigate non­
deterministic, rather than phenomenological, strain fields developed in externally loaded 
polycrystalline specimens. 

4. Material operator-grain interior response 

Effectively, polycrystalline solids are considered to consist of two distinct zones; the 
separate crystals and the grain boundary between contiguous grains. The first zone, con­
sisting of the grains themselves, have the kinematic and strain random variables listed 
in Table 1 and the constitutive response given in Table 2. Using the appropriate sources 
listed, Table 4 gives the numerical values of both Hiikl and Hi]lr for copper and aluminium 
as deduced from the constitutive relations shown. 

S. Material operator-constitutive relations for grain boundaries in copper and aluminium 

Computer simulations of the mechanical response of symmetric tilt grain boundaries 
with crystallographic mismatch angles of () = 22.6°, 28.1 °, 31.9°, 36.9°, and 53.1° in 
pure copper and aluminium have recently been presented by BAMIRO and PROVAN [9, 10]. 
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Table 4. The mechanical response of copper and aluminium monocrystals 

Basic Equations 

2G2 2G[3Gv+4rJ(1 +v)] 
H·H =--15 15 + 15 o . LJkl G+ 417 lk 11 3 (1_ 2,) (G+ 47J) 11 kl 

_ 1 G +41'} 3 Gv+4rJ (1 +v) 
H- 1 

· H··kl = -- 15~cl5 - 15,JI5k, 
• 'J 2G2 ' Jl 6G2(1 +v) 

Parameter Copper Aluminium 
- ----------·-· · 

G 9.5 x 1011 dynes/cm2 2.86 x 1011 dynes/cm2 

V 0.324 0.347 

G(!d 107 cm/cm3 107 cm/cm3 

I 3 x 10-s cm 3 x 10-s cm 

7J 12.26 x 108 dynes/cm2 3.57 x 108 dynes/cm2 

H 18.9 X 1011 15," 15}1 + 17.52 X 1011 01} 15kl 5.69 X 1011 151ti5JI+6.497 X 1011 01} 15kl 
dynes/cm2 dynes/cm2 

H- 1 5.29 x 10- 13 15Jk 151,-1.297 x 10- 13 151} ~5k, 

cm2/dyne 
17.6 X 10-13 151t 15}1-4.533 X 10-13 151} 15kl 

cm2 /dyne 

480 

-·-·-·- Az 

----- A3 

0 0.05 0.1 0.15 0.2 025 

Displacement (A) 

FIG. 2. Average stress-displacement curves for copper boundaries. 

[537] 

Main 
Ref. 

[3] 

Table 2 

[3] 

Table 2 

[15], [16] 
[12] 
[13] 

[12] 
[8] 

Table 2 
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538 J. W. PROVAN AND D. R. AxELRAD 

The chief motivation behind the work involved in the preparation of these two reports, 
which are mainly of interest to researchers in the field of computer simulated grain bound­
ary configurations and energies, has been the micromechanic desire, first expressed in 
[1 and 4], for quantitative information concerning the mechanical response of grain 
boundaries in polycrystalline solids. This information was required in order to complete 
the numerical knowledge of the parameters involved in the material operator M9Jl as 
expressed in Table 2. The results are reproduced in Table 5. Figure 2 compares, with 

Table 5. Grain boundary response at 673°K in copper and aluminium 

(JO 

22.6 
28.1 
31.9 
36.9 
53.1 

f a.p A,d&(J I 

Copper 

a.fJA, a.{JAz 

(X 108) (X 108) 

490 1376 
300 1414 
134 2048 
454 338 

3508 5988 

A, Az 
(X 108) (X 108) 

977.2 
11 

2232.8 
--------' 

dynes 

cm2 A 

a.p A3 a.fJAl 

(X 108) (X 108) 

606 600 
580 540 
472 2064 
358 120 

3760 752 

A3 A, 
(X 108) (x 108) 

11 
1155.2 815.2 

Aluminium dynes 

cm2 A 

a.{JAz a.pA3 

(X 108) (X 108) 

------
1712 464 
984 808 

2496 1816 
600 890 
642 920 

Az A3 
(X 108) (X 108) 

1286.8 979.6 

respect to the coordinate directions ~a, a = 1 , 2, 3, the slopes and hence the relative 
mechanical strengths of symmetric tilt boundaries in copper. These slopes represent the 
moduli, A a, with respect to displacements in the ~a directions. 

The grain boundary constitutive relations as a function of material, mismatch orienta­
tion angle, (), and temperature are obtained from the grain boundary strain tensor derived 
in [3] and listed for convenience in Table 1, namely: 

[ 

• afJdtfiJ • ] 
«Peab "' 1/2 afJdtfjj 2afJdzfiJ afJd3fiJ , 

• afJdz/iJ • 

(5.1) 

the grain boundary computer simulated stress-displacement relations: 

[ 

afJA 1afJd1 ] 

(5.2) a{J~ab I"'W afJAl.·aBdl ap Azapd2 a{J A3;.Pd3. 

a{J A3afJd3 

and the assumption that the grain boundary response to "in plane" tensions and shears 
is identical to that of the bulk isotropic crystalline material, i.e. : 

«fJ~u = Huu«Peu + Hu33«fJe33, 

(5.3) «P~33 = Huuafleu + H1133a{Je33, 

«PEtJ = lft3t3
11
Pet3· 
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Hence, the grain boundary constitutive relation can be written as: 

(5.4) 

where its material matrix is given by: 

Huu 0 Hu33 0 0 0 
~~.pA 2 LI 0 0 0 0 

(5.5) 11.{JE: 11.{J Eabcd "' H3333 0 0 0 
211./J A 3 LI 0 0 

Ht3t3 0 
211./J A 1 LI_ 

Upon referring the local grain boundary coordinates «fJCa to the external coordinate system 
Xi by: 

(5.6) 11.{JCa = 11./JrxiaXi 

the constitutive relation (5.4) may be written in terms of the external coordinates as: 

(5.7) 11.{J~- 11./Jf1.11./JE11.fJe,11./Jf: .. - 11./JN. 11.{JIV 11.{JIV 11.{JIV 11.{J£ «fJe 
., - • ~ 'J - IA.Ja v.jb v.kc ~A.ld abed kl• 

Restricting, now, attention to the particular boundary value configuration introduced 
in Sect. 2 the direction cosines, ~~.prxia' expressed in (5.6) become in terms of angle 4> indic­
ated in Fig. 1 : 

(5.8) 

With this particular choice of grain boundary orientation and the strain field introduced 
in Sect. 3, the general expression (5.7) reduces to the foJlowing three equations: 

(5.9)1 •P~u = {•Pc,•PA,+'PC, H~,u +4'Pc,•PA,}•Peu 

+2{11.fJC2~~.p A2 +2ePc4 _~~.pC2)~~.p A }11.Pe1 2 +11.fJC3 {11./J A2 +Htttt/LI-411./J At }11.Pe22; 

(5.9h ~~.pE 12 -111.Pc ~~.pA ~~.pC 91111 +2(11./Jc «fJC )~~.PA }11.f1e Ll - 2 2- 4-LI- 4- 2 t 11 

+ {•Pc, •P A2 +'PC, H ~-'-! +2('PC, -z•Pc, +'PC,)'P A, }•Pe,, 

{•Pc• •P A' - •Pc, H ~ u + 2("PC,- •PC.)"P A' }•P e,,; 

(5.9h ~~.pE~~ -111.Pc ~~.pA +~~.pC 91111 411.f1C ~~.pA \~~.pe Ll - 3 2 3 -LI-- 3 tf u 

+2{"PC• •P A2 +2("PC2 -•PC4 )"PA,}•Pe12 +{«~~c,«P A2 +"PC1 H~,, +4•Pc,•PA, }•Pe22 • 

In the above expressions: 

(5.10) 
«Pet .= sin4 «/J4>, ~~.pC2 = sin3 «f1lj>cos~~.p4>, 11.fJC3 = sin2 ~~.114>cos2 «P4>, 

11.{JC4 = sin~~.f1lj>cos 3 ~~.plf>, 11.{JC5 = cos4 11.Pfj>. 
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540 ]. W. PROVAN AND D. R. AXELRAD 

As discussed previously in [3], micromechanics considers it sufficient to deal with 
the first statistical moment of the orientation and material coefficients involved in ob­
taining an explicit form of the material operator M9Jl for polycrystalline solids. Experience 
has shown that without invoking this assumption a large number of equations would 
result from which one can hardly hope to extract a solution. 

To begin with, the first average quantities we wish to determine are for the orienta­
tion terms in a.fJ A defined in ( 5. 7). As theoretically indicated in Table 2 this can, in general, 
be written as: 

(5.11) 

However, in the context of the boundary value configuration under discussion in this 
paper, (5.11) ultimately reduces to a consideration of the terms 

(5.12) 

only, where the a.fJC1 are defined in (5.10) and utilized in (5.9). As mentioned in Sect. 2, 
three particular probabilities of crystallographic grain boundary orientations are studied 
in order to examine the effect of the shape of the microelements on the microstress dis­
tributions discussed in Sect. 7. The three probability measures of interest are chosen to be: 

(5.13) ~ = ! {H(</>)-H(</>-n)}, 9• = d(<J>), ~ = d(</>- ; ). 

Table 6. Grain boundary interpretations of AE and (AE)-1 for copper and aluminium at 673°K 

Equation Variable • 9~ = -{H(~)-H(~-:n)} 9. = c5(•) 9~ = c5(.-:n/2) 
:n 

(5.10) 1 
cl 0.375 0 1 
Cz 0 0 0 
C3 0.125 0 0 
c. 0 0 0 
c5 0.375 0 

Copper Aluminium 

Huu dynes/cm2 36.4195 X lOll 12.4565 x 1 o•• 
L1=4aA 10.2 11.8 

~/:n c5(~) c5(~-:n/2) ~/:n c5(.) c5(•-:n/2) 

I B.,(x 10") 27.18149 36.4195 22.77456 15.17496 12.4565 15.18424 
(5.16) B12 = B21 (x 1011) 2.41554 0 0 -1.35459 0 0 
dynes Bu(x lOll) 27.18149 22.77456 36.4195 15.17496 15.18424 12.4565 
cm2 

{ B, = 1/C,(x 10") 17.36670 19.93488 19.93488 13.07445 19.23875 19.23875 
(5.19) Cu(x t0-13) 3.70825 2.74578 4.39086 6.64273 8.027937 6.58578 

dynes Cu = ell (X t0- 13) -0.32949 0 0 0.59296 0 0 
cm:z Cz:z(x t0-13) 3.70825 4.39086 2.74578 6.64273 6.58578 8.027937 
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where H is the Heaviside step function and c5 is the Dirac-delta function. The effect of 
this choice on the values of C1 , I= I, ... , 5, is shown in Table 6. 

The second group of quantities that we wish to average are the «fl Aa obtained from 
the computer simulation. Motivated by the available data and the experimental con­
firmation of CHAUDHARI and MATTHEWS [14] we choose for both copper and aluminium 
a probability measure of the form: 

(5.14) 
1 

9 8 = 5 { c5(()- 22.6) + c5(()- 28.1) + c5(0- 31.9) + c5(()- 36.9) + c5(0- 53.1)}. 

Using this measure the first statistical moments of «fl Aa, i.e., Aa := («fl Aa) are obtained 
and expressed in Table 5. Hence, in doing so, relation (5.9) reduces to: 

a.fl~ 11 (c A C H 1111 4C A )a.fl C (A Hllll 4A )a.fl -~ = . 1 2+ s -L1-+ 3 1 eu + 3 2+-L1-- 1 e22' 

(5.15) afl~22 (c A C H 1111 4C A )a.fl C (A Hull 4A )a.fl -L1- = s 2+ 1-L1-+ 3 1 e22+ 3 2+-L1-- 1 ell, 

•P~ 2 = {c3 A2+C3 HA" +2(C,-2C,+C,)A,}•Pe12. 

Now, identifying: 

(5.16) (c, A2 + Cs HA" +4C,Al c, (A 2 +HA" -4A,), 0 

B =A B21 = B,2, (CsA2+C, Hj!.!..! +4C3 A,), 0 

0, 0, [ C3 A2 +C3 H~111 +2(C5 -2C3 +C1)A 1 J 
it is seen that (5.15) may be written as: 

(5.17) 

and that it has a unique inverse: 

(5.18) 

in which 

B22 
BuB22-Bf2 

(5.19) c- C21 = C12 

0 
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-B12 
0 

B11B22-Bf2 ' 

Bu 
0 

BllB22-Bf2 ' 

0 
B33_ 
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The only variable in the above series of equations which remains to be decided is the 
thickness, L1, of the grain boundary material. As discussed in [10] a good approximation 
to its actual value is given by: 

(5.20) L1 = 4a, 

where a is the lattice constant of the FCC Materials being considered. 
Before turning to the actual determination of the material operator Mffn, several 

interesting points should be noted. Firstly, since the setup of the problem has resulted 
in the Eq. (5.17) which is essentially the starting point of the plane strain problem, the 
matrix 8 identifies a particular two-dimensional interpretation of the general three­
dimensional expression, AE. Hence, when obtaining the inverse relations to 8, expressed 
as C in (5.19) and in Table 6, the values of C do not correspond to the three-dimensional 
values of (AE)- i with which C is identified. As we shall see this has implications on the 
numerical values of M9:Jl about to be discussed. Finally, for the grain boundary orienta-

tion distributions !JI• = ~( t/>) and ~ = <I ( tf> - ; ) Eq. (5.15) or (5.17) becomes: 

[Huu 0 ~ ]"'e, ~ = 6(tf>): crJJ; = 0 A2L1 
0 0 2A1 LI 

(5.21) 

~=<I(</>-;): _,~ = l A~LI 0 

~ l'e, Huu 
0 2A 1 L1 

as expected. 

6. The material operator 

With reference to paper [3] and Table 2, the elastic material operator for polycrystalline 
solids may in general, be represented by: 

(6.1) 

The term H- 1
, representing the mechanical behaviour of single monocrystals, has already 

been discussed in Sect. 4 whilst (AE)- 1, representing the grain boundary influence, has 
been developed in the previous section. The only variable which remains unspecified for 
the present boundary value configuration is the statistical frequency of grain boundary 
influenced material, "· " is a function of the distribution of the sizes of microelements, 
the value of L1, the grain boundary orientation probability measure and the boundary 
value configuration being investigated. Although various expressions for x, based upon 
reasoning related to geometric properties and the first statistical moment of the geo­
metric parameters involved, can easily be envisaged, results are presented for copper 
and aluminium for the three chosen values of " as follows: 

(6.2) " = 0.01' 0.05, 0.2. 
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Table 7. Mm for copper and aluminium 

Copper dynes/cm1 Aluminium dynes/cm1 

" 9tP Mmuu Mmuzz Mmu22 Mm1212 Mmuu Mmuzz Mm2212 Mm1212 
(xl011) (xl011) (xl011) (X 1011) (xl011) (X 1011) (x 1011) (xl011) 

0.01 1/1/n 27.97337 9.02489 27.97337 18.88688 8.72752 3.00817 8.72752 5.71413 

V: 
0(1/1) 28.02662 9.00355 2.72802 18.91338 8.72014 3.00973 8.72981 5.72214 

~ o(t/1 -n/2) 27.2802 9.00355 28.02662 18.91338 8.72981 3.00973 8.72014 5.72214 .!:!! 

0.05 t/l{n 27.8791 8.74906 27.8791 18.82031 8.84111 2.96653 8.84111 5.84712 
0(1/1) 28.15069 8.64361 27.5737 18.95262 8.80299 2.97488 8.85281 5.88932 

o(t/1-n/2) 27.5737 8.64361 28.15069 18.95262 8.85281 2.97488 8.80299 5.88932 

0.2 1/1/n 27.57345 7.73043 27.57345 18.57483 9.3129 2.77266 9.3129 6.40627 
0(1/1) 28.74221 7.32287 26.42022 19.10122 9.13914 2.18564 9.36308 6.61395 

o(t/1-n/2) 26.42022 7.32287 28.74221 19.10122 9.36308 2.81564 9.13914 6.61395 

http://rcin.org.pl



544 J. W. PROVAN AND D. R. AXELRAD 

Basically, without including the influence of the shape and orientation of microelements, 
large values of" represent large values of L1 and/or smaller sizes of the individual grains. 
With the choice of (6.2) the information contained in Tables 4 and 6 may be combined 
to give the final quantitative values of M9Jl, listed in Table 7, for the effective elastic re­
sponse of randomly oriented polycrystalline solids in tension. It is to be noted, however, 
that M9Jl is an operator and not simply the numerical reciprocal of each individual 
M9Jl- 1 term and that it corresponds to the inverse of a two-dimensional operator, not 
a three-dimensional one, for the reason discussed at the end of the previous section. The 
different strengths of copper and aluminium as a function of crystal shape, orientation 
and size in Table 7 is a clear validation of the micromechanic approach to the descrip­
tion of the mechanical response of polycrystalline solids. 

7. Microstress distributions 

The specific information concerning the microstrain distributions, as discussed, along 
with their limitations, in Sect. 3, and the material properties, as presented in Sect. 6, can 
now be combined to give an estimate of the microstress distributions for this particular 
boundary value configuration and for these specific materials. These microstress distribu­
tions are obtained from the general expressions, whose derivation is discussed in [3]: 

(7.1) 

(7.2) 

(7.3) 

< ;) = M9Jl (e)' 

y; = M9JlM9JlTVe, 

where < · ) indicates a first moment and V the variance of the subscripted parameter. 
Since micromechanics concerns itself with the first and second statistical moments of the 
parameters involved and assumes all distributions to be Gaussian, the relations (7 .2) 
and (7 .3) are sufficient to specify the microstresses inherent in the material under review. 
In the context of the present boundary value configuration and utilizing the values listed 
in Tables 3 and 7, the Eqs. (7.2) and (7.3) reduce, respectively, to: 

(7.4) (~u) = Mffnuu(eu), (;22) = M9Jlu22(eu), (;12) = 0, 

and: 

uEu = y'v,u = (M9Jlf 111 Ve 11 + Mffni122 Ve22)
112, 

(7.5) (1E22 = y'VE22 = (M9Jl~122 Ve 11 + M9Jl~222 Ve22)
112, 

u,u = y'v,u = (M9Jl~212 Ve12)
112· 

The values of(;) and u,, where u is the standard deviation, are listed in Table 8. There 
is, of course, no method of verifying these results either in terms of the means or in terms 
of the variances. 

Sets of readings, extracted from Table 8, are illustrated in Fig. 3 for the material 
parameters shown. The general characteristics of these normally distributed microstress 
densities are primarily due to the strain histograms developed in Sect. 3. For this reason 
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Table 8. Microstress means and variances 

Copper (dynes/cm2 x 109
) Aluminium (dynes/cm2 x 109

) 

~ <P <~u > Cleu <~22 > (fe22 <~12 > Cleu <~u > Cleu <~22> (fell <~12> Cleu 

0.01 <Pin I 1.2448 o.6o32 1 0.4016 0.7222 
I 

0.0 0.5666 
If 

0.3884 o.19o1 1 0.1339 0.2263 0.0 0.1714 

o(.p) 1.2472 0.6040 0.4007 0.7054 0.0 0.5674 0.3880 0.1899 0.1339 0.2264 0.0 0.1716 

o(<P ~) 1.2140 0.5902 0.4007 0.7234 0.0 0.5674 0.3885 0.1901 0.1339 0.2262 0.0 0.1716 
v; 
~ 

.!11 
0.05 <P /n 1.2406 0.5989 0.3893 0.7186 0.0 0.5645 0.3934 0.1917 0.1320 0.2289 0.0 0.1754 

o(.p) 1.2527 0.6030 0.3846 0.7107 0.0 0.5686 0.3917 0.1911 0.1324 0.2292 0.0 0.1767 

o(~- ~) 1.2270 0.5923 0.3846 0.7247 0.0 0.5686 0.3940 0.1920 0.1324 0.2280 0.0 0.1767 

0.2 <P/n 1.2270 0.5843 0.3440 0.7065 0.0 0.5572 0.4144 0.1987 0.1234 0.2393 0.0 0.1922 
o(.p) 1.2790 0.6033 0.3259 0.6765 0.0 0.5730 0.4067 0.1959 0.1253 0.2408 0.0 0.1984 

o(<P- ~) I_ 1.1757 o.5592 1 o.3259 0.7333 0.0 0.5730 I 0.4~~-0~2000 J 0.1253 0.2353 0.0 0.1984 
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no emphasis is placed on the actual numerical values obtained. Qualitatively, it is im­
mediately noticed, however, that while there is a positive average stress in both copper 
and aluminium the possibility still exists for stresses to be compressive, an observation 
similar to that made on thermodynamic grounds by KESTIN [17]. At the other extreme, 

-0.5 

1.0 

OB 

,.-
/ 
~ 0.6 

I 

~ 
~ 
.2' 
-~ 0.4 

~ 

0 

Copper £.11 

0.5 1.0 1.5 

Stress (dLJnes/cm 2x109
} 

FIG. 3. Examples of microstress distributions for copper and aluminium. 

microstresses exist in a polycrystalline solid which may be considerably higher than that 
of the mean stress, a fact of interest not only to researchers in probabilistic solid mechanics 
but also to the practicing stress analyst. The second fact which may be observed is that 
the effect of grain boundaries and their orientation distributions is not pronounced. This 
is due to the elastic grain boundary responses, as developed in Sect. 5, not being radically 
different from the bulk material response. This is expected to reverse itself when irrevers­
ible responses of grain boundaries are included, at a future date, in the analysis of time 
dependent responses of structured materials. One aspect which does not come out of 
the results is the importance of microstress gradients obtained from a correlation formula­
tion as discussed in [1, 4 and 8]. Hence, both the table and figure clearly illustrate the 
usefulness of the micromechanics approach. 

Running the possible risk of being repetitive, any structured solid is amenable to 
a micromechanic approach. The accumulation, however, of the necessary microscopic 
information concerning the material in question is, as has been amply summarized in 
this paper, a time consuming and often frustrating requirement of the theory if specific 
results are to be presented. It is not just sufficient to develop mechanical response theories 
from abstract mathematical principles. Such theories must be verified both experimentally 
and numerically by their proponents if they are ever to be accepted. This paper represents 
our first attempt at carrying out such a validation of micromechanics. Table 8 infers 
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that the philosophy behind and principles laid down in micromechanics over the last 
decade are worthwhile developing further into fields concerned with different materials, 
configurations and mechanical responses. 
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