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Quasicontinuum theory of crystals 

0. ROGULA (WARSZAWA) 

THE paper is concerned with discussing the fundamental concepts of the quasicontinuum 
theory and its applications to crystalline media. Various relevant methods of interpolation are 
presented and compared and a definition of the class of QC-functions is given. Some most 
important properties of the QC-functions are exhibited, and their action in the procedure of 
passing from a discrete to a continuum model is shown. The notion of equivalence of operators 
in QC-theory is introduced and a number of examples of mutual equivalences between dif
ferential, integral and discrete operators is given. The relation between quasicontinuum and 
nonlocal continuum as well as between quasicontinuum and discrete lattice is examined. The 
concept of differential models of di£crete lattices is introduced and discussed. 

Praca niniejsza dotyczy dyskusji podstawowych poj~ teorii quasi-kontynualnej i jej zastosowan 
do osrodk6w krystalicznych. Przedyskutowano r6i:ne odpowiednie metody interpolacji i podano 
definicjct klasy QC-funkcji. Wskazano na niekt6re z najwai:niejszych wlasno8ci QC·funkcji 
i pokazano ich dzialanie w procedurze przechodzenia z modelu osrodka dyskretnego do mo
delu kontynualnego. Wprowadzono pojcteie r6wnowaznosci operator6w w QC-teorii i podano 
szereg przyklad6w wzajemnej r6wnowainosci mictdzy operatorami r6zniczkowymi, calkowymi 
i dyskretnymi. Zbadano zaleznosc mictdzy quasi-kontinuum i nielokalnym kontinuum, jak 
r6wniei: mictdzy quasi-kontinuum i siatk(} dyskretn(}. Wprowadzono i przedyskutowano kon
cepcjct modeli siatek dyskretnych. 

HacrO.RlllaH pa6oTa KacaeTC.R o6cy~eiUm OCHOBilbiX noaHTHH KB33HKOilTHilYaJihllOH TeopHH 
ll ee npHMeHeHHII K KpHCTaJI.IIHtiCCKOH cpe.o;e. 06Cy)f{JJ;CHbl pa3J{bie COOTBeTCTBYIDlllHe MeTOJJ;bi 
HllTepnoJI.R~HH H .o;aeTCH onpe,AeJiei{He KJiacca QC-<PyHKnHH. Y!Ql381U>I HeKOTOpbie, caMbie 
Bamllbie, CBOHCTBHe QC-<:l>YllKnHH H ilOK333HO HX ,AeHCTBHe B npo~e.o;ype nepexo.o;a OT MO
JJ;eJIH JlHCKpeTI{OH cpeJJ;bi I< KOilTHilYa.TibllOH Mo,Aenu. Bae.o;ellO noll.RTHe 3KBHBaJiellTHOCTH 
onepaTOpOB B QC-TeOpHH H npHBeJJ;ell p.RJJ; npHMepoB B33HMllOH 3KBHBa JICJ{THOCTH MC)f{JJ;Y 
.AH<:l><:l>epell~aJibHhiMH, HJ{Terpan&llbiMH. H JJ;HCKpeTHbiM:H onepaTopaMH. Hccne.o;oaaua 3a
BHCHMOCTb MC)f{JJ;Y KBa3HKOilTHilYYMOM H HCJIOKaJibHbiM KOilTHilYYMOM, K3K TOH<e Me~y KB3-
3HI<OilTHHYYM H .AHCKpeTilOH ceTKOH. Bae.o;eHa n o6cy~ella Koa~en~ JJ;HCKpeTHbiX ceTOK. 

1. Introduction 

FROM the atomistic point of view the set of functions admitted in continuum theory is 
definitely too large. For example, the displacement field u(x) can. be interpreted only at 
those points at which the atoms are located, i.e. on a discrete set of points 

X= X,.~ 

Generally, there is a lot of functions of the continuous argument x which take some 
prescribed values u(X,.) = u,. at a discrete set x = X,.. In particular, there are many func
tions u(x) which are not identically zero but vanish at any X = X,.. Such functions cannot 
be reasonably interpreted in atomistic terms. Moreover, the physical meaning of rapidly 
oscillating functions of position is always doubtful. 
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564 D. ROGULA 

This is a fundamental difficulty of any continuum theory. It suggests the idea of res
tricting the set of admissible functions from the very beginning and to carry out all the 
mathematical considerations for this restricted set of functions. This set should contain 
only the functions which are necessary to describe all possible displacements of the 
atoms. The corresponding model of material medium differs considerably from the con
tinuous one: contrary to the latter case the number of degrees of freedom per unit volume 
is finite. The approach based on this idea was developed by KRUMHANSL (1963), RoGULA 

(1965) and KUNIN (1966), and will be called quasicontinuum theory. 
The problem of constructing the required set of functions is essentially an inte~pof~: 

tion problem. The set of interpolating functions will be denoted by QC. Without further 
assumptions this set can not be determined uniquely. We shall discuss three methods 
of constructing the set QC. Under some additional conditions, they turn out to be equi
valent to each other. 

For the sake of lucidity, we shall first discuss these methods for scalar fields on a linear 
chain of atoms. Afterwards we apply this procedure to vector fields on a three-dimensional 
primitive lattice. The state of a non-primitive structure can be described by multiplets 
of fields defined on the corresponding Bravais lattice, e.g. one field for each atom in the 
elementary cell. 

2. 'Ihc sampling function method 

Let a denote the distance between neighbouring atoms of a linear chain and let f be 
a certain quantity taking some values /, on atoms located at x = na (n - an arbitrary 
integer). 

Let S(x) be a function of the continuous variable x such that 

(2.1) S(na) = {~ for n .= 0, 

for n =F 0. 

Any function satisfying (2. 1) will be called a sampling function. 
Provided that a sampling function has been chosen, one can uniquely associate a func

tion f(x) of the continuous variable x to a function /, of the discrete variable n : 

(2.2) f(x) =}; S(x-na)J,. 
11 

This formula makes sense whenever the series involved is convergent. Because of (2.1) 
the function f(x) has the interpolation property 

(2.3) f(na) = /,. 

The function 

(2.4) () 
a. nx 

Sx =-sm-
nx a 

provides an example of a smooth (analytic) sampling function. 
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3. The Fourier transformation method 

Under some restrictions of its behaviour at infinity, the discrete function f,. can be 
represented as a Fourier integral 

nfa 

(3.1) .fn = ;n f dkeii'G"}(k) 
-n{a 

with an appropriate function (or, more generally, distribution) f(k). The function f(k) 

is uniquely determined by the function f,: 
00 

(3.2) }(k) = ! 2 e-iu"f,.. 
n=-oo 

On the other hand, by writting x instead of an in (3.1), one can define a function f(x) 

of the continuous variable x: 
n{a 

(3.3) f(x) = 2~ J dk eilu](k). 
-n/a 

The function f(x) has the interpolation property (2.3). 
The Fourier transformation method is equivalent to the sampling function method 

provided that the sampling function (2.4) is choosen. It follows from the fact that to 

the function S(x) given by the Eq. (2.4) there corresponds the function s"(k) = I, i.e., 

(3.4) 

:t{a 

S(x) = _ _!_ r dk eikx. 
2n ., 

-n{a 

4. The direct interpolation method 

According to the generalized Paley-Wiener theorem [4], any function of the form 

(3.3), with an arbitrary distribution j(k), can be continued to the complex x-plane as an 
entire analytic function. Moreover, it satisfies the inequality 

(4.1) lf(x)l ~ C(l + lxi)Ne"falmx 

for some constants C and N. This inequality is also sufficient for an entire analytic func
tion to have a representation of the form (3.3). 

In terms of the theory of analytic functions, f(x) is an entire analytic function of order 
not greater than I and type nfa. This class of functions can be identified with QC. Then 
the problem of fitting a function f E QC to given values f,. can be stated directly as an 
interpolation problem. If f,. = 0, then 

n{a 

(4.2) J dk eikanj(k) = 0 
-n/a 
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and f(k) must be of the form 

(4.3) j(k) = P (~) [d(k-nfa)- d(k+n/a)), 

where P( · ) is a polynomial. Therefore any function f E QC such that J, = 0 must be 
of the form 

(4.4) f(x) .= W(x)sin nx, 
a 

where W(x) is a polynomial. Thus for the functions f(x) and J,. which tend to zero at 
infinity the solution of the interpolation problem is unique. 

This result is directly related to the distribution of roots of entire analytic functions 
in the complex plane. Let f(x) be an entire analytic .function of order 'J, i.e., 

(4.5) e = inf a: lf(x)l ~ expjxj• 
«>0 

for sufficiently large lxl in complex x-plane (see e.g. [5]). Let {x,.} be the sequence of 
non-zero roots of f(x) in complex x-plane, ordered so that jx,.+ 1 1 ~ jx,.l (multiple roots 
taken according to their multiplicity). Then the exponent of convergence of these roots, 
defined as 

(4.5) 

satisfies the inequality 

(4.6) 1-l ~ (!. 

Hence the condition e ~ 1 eliminates the possibility for p, to exceed the exponent of 
convergence of x,. .= na, which equals I. 

5. The three-dimensional generalization 

The above considerations can be generalized directly to multi-dimensional lattices. 
The atoms of a primitive lattice are IabeJied by integer multiplets n and their positions 
are given by 

(5.1) X(n) .=An, 

where A is a certain matrix. The sampling function S(x) should have the property 

(5.2) {
1 for n = 0, 

S(An) = O 
for n # 0. 

Instead of integrating over the interval [n/a, - n/a] in (3.1) and (3.3), one should 
integrate over the first Brillouin zone, e.g. 

(5.3) I r ... J, = -- --- d 3keikxJ(k) 
,. (2nP . 

BZ 

and 

(5.4) I r ... /(x) = -- d 3keikxJ(k) 
· (2n)3 • • 

BZ 
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Although it is possible to choose some other equivalent domains of integration, the choice 
of the BZ has the advantage of retaining the point symmetry of the corresponding Bravais 
lattice. 

The sampling function corresponding to the Fourier transformation method is given as 

(5.5) 

The formulae (5.3), (5.4) and (2.2) can be directly adapted for multi-component 
quantities, e.g. for displacement fields, force fields etc. 

6. Some properties of QC-fonctions 

The functions QC have been defined as the entire analytic functions satisfying in-
equality (4.1). In particular, all polynomials are QC. 

The following simple properties can be checked directly: 
- if u e QC, then all the derivatives {)llu e QC, 
- if u e QC and the convolution u*v exists then u*v e QC (but it can happen that 

u· v ~QC). 
The following equations hold: 

(6.1) Q Et.= J d 3x[(x), 
n 

(6.2) 
D 

(6.3) Q 2 E u0 (/Jnn'wn' = J d3xd3x'u(x)(/J(x, x')w(x'), 
n,n' 

where Q denotes the volume of the primitive cell. 
In particular, it follows from (6.2) that the kinetic energy equals 

(6.4) 
D 

where e = mf!J. On the other hand, the potential energy of a crystal can be expressed as 

(6.5) U = -}.}; U;a(/Jrtuin' = 2~2 J d 3xd 3x'u;(x)(/J;i(x, x')ui(x'). 
n,n' 

The last expression is formally similar to the corresponding expression of non-local 
(integral) theory. The corresponding expression in (6.4) is also similar to the continuum 
one. The expressions (6.4) and (6.5) for the kinetic and the potential energies allow us 
to develop the theory in continuum-like form. The equations obtained, however, describe 
the crystal exactly. 

In the same way as in continuum theory, these equations can be generalized to include 
diilocation fields. We shall omit here the details of this procedure. 
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7. Equivalence of operators in QC 

Now we briefly consider linear operators L acting in QC. The classification of operators 
of continuum theory (ROGULA, 1 973) does not apply here. According to [6], the singular 
order of an operator L is determined by the behaviour of .1lii(k) at infinity. In QC, how
ever, k E BZ, so we can not speak of behaviour at k-infinity. 

Consider two linear operators L and L'. If for any u E QC 

(7. 1) Lu = L'u, 

these operators will be called equivalent. In fact, from the point of view of QC they are 
identical, and in any calculation one can put L' instead of L. This circumstance gives 
the QC-theory great flexibility. 

As an example, consider a differential operator 

(7.2) Lu = P(o)u, 

where P( o) is a certain polynomial. Let 

(7.3) P(x) = -
1 

- J d3 k P(ik) eikx • 
· (2n)3 ' 

BZ 

then we define another operator 

(7.4) L'u = 'l'*u, 

which is an integral operator. Moreover, let 

(7.5) tp(x, n) = .Q'l'(x-An) 

and 

(7.6) 
~, -

L"u = L.J !P(x, n)u(An). 
D 

All the operators L, L', L" are equivalent to each other. This shows that in QC there 
are equivalencies between differential, integral and discrete operators. 

8. Quasicontinuum vs. discrete lattice. Differential models 

The quasicontinuum approach, when applied to crystal lattices with given · force 
constants, produces the same physical results as conventional discrete lattice (DL) theory. 
This, in particular, follows from the formulae (6.4) and (6.5), if we take into account 
the one-to-one correspondence between force constants and QC-kernels, 

(8.1) 

which holds precisely under physically plausible conditions of vanishing at infinity. In 
this sense, there is an isomorphism between QC and DL. The equations of motion of 
a discrete lattice 

(8.2) ••a ~ mDD' ll' /'fl 
mui - ~ 'P ii ui = .1 ; 

D' 
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and the corresponding quasicontinuum, 

(8.3) 

contain the same physical information. 
The mathematics of QC, however, is much more flexible than that of DL. In the frame

work of QC one can use, apart from discrete operators, also other equivalent forms of 
operators without loosing the precise meaning of them. Therefore, the calculational 
efficiency of QC can be much higher than that of DL. 

Another, and perhaps even more important circumstance consists in the following. 
The lattice theory does not provide us with any specific set of force constants. These 
either have to be determined from other physical considerations, or treated as (infinitely 
many) phenomenological parameters. In any case, establishing a tractable set of force 
constants involves some approximations. 

One of the most popular simplifications in DL is a finite (and, as a matter of fact, 
very short) range of interactions. It is equivalent to approximating the exact dispersion 
curves by a combination of trigonometric functions. 

On the other hand, it is possible to achieve substantial simplification in a different 
manner, namely by choosing the force constants of the lattice so that the integral operator 
in (8.3) is equivalent to a differential one. Then, instead of (8.3) we have a differential 
equation of the form 

(8.4) 

This QC-equation describes exactly the dynamics of a certain crystal lattice. The force 
constants of this lattice do not vanish identically for great distances: instead of that, 
they tend to zero with some negative power of the distance. In the k-space, this cor
responds to approximating the dispersion curves by a polynomial instead of trigonometric 
functions, the polynomial being the simpler but not necessarily the worse approximation. 
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