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Quasicontinuum theory of crystals
D. ROGULA (WARSZAWA)

THE paper is concerned with discussing the fundamental concepts of the quasicontinuum
theory and its applications to crystalline media. Various relevant methods of interpolation are
presented and compared and a definition of the class of QC-functions is given. Some most
important properties of the QC-functions are exhibited, and their action in the procedure of
passing from a discrete to a continuum model is shown. The notion of equivalence of operators
in QC-theory is introduced and a number of examples of mutual equivalences between dif-
ferential, integral and discrete operators is given. The relation between quasicontinuum and
nonlocal continuum as well as between quasicontinuum and discrete lattice is examined. The
concept of differential models of discrete lattices is introduced and discussed.

Praca niniejsza dotyczy dyskusji podstawowych pojec teorii quasi-kontynualnej i jej zastosowan
do osrodkow krystalicznych. Przedyskutowano rézne odpowiednie metody interpolacji i podano
definicje klasy QC-funkcji. Wskazano na niektore z najwazniejszych wiasnosci QC-funkcji
i pokazano ich dzialanie w procedurze przechodzenia z modelu o§rodka dyskretnego do mo-
delu kontynualnego. Wprowadzono pojecie rownowaznosci operatorow w QC-teorii i podano
szereg przyktadéw wzajemnej rownowaznosci migdzy operatorami rozniczkowymi, catkowymi
i dyskretnymi. Zbadano zalezno$¢ miedzy quasi-kontinuum i nielokalnym kontinuum, jak
rowniez miedzy quasi-kontinuum i siatka dyskretna. Wprowadzono i przedyskutowano kon-
cepcje modeli siatek dyskretnych.

Hacrosmana pafota kacaetcs oOCY)<IEHHA OCHOBHLIX NMOHATHH KBa3HKOHTHHYAJIBHON TEOpHHM
M e MPHMEHEHHIT K KpPHCTAJUTHYECKOH cpene. OGCyH(IeHb! pa3HbIe COOTBETCTBYIOIIHE METOIbI
HMHTEPIOJIALMK M JaeTca onpenesieHre kiacca QC-dyHkunil. YkasaHbl HEKOTODbIE, CaMmble
BawHble, cBoficTBHe QC-dyHKUMIT 1 NMOKa3aHO HX JeiiCTBHE B npolegype nepexofa OT Mo-
e QUCKPETHOH cpebl K KOHTHHYATBHOH Moaend. BBejeHo TNOHATHE SKBHBANIEHTHOCTH
onepaTopoB B QC-TeopHH M NpHUBENeH pAN NPHUMEPOB B3aHMHOH KBHBA JICHTHOCTH MEXAY
mudrdepeHUHATEHBIME, HHTETPANBHBIMKH M NHCKpeTHIMH onepatopamu. Hccrenosana 3a-
BHCHMOCTh MEXKIY KBasSHKOHTHHYYMOM M HEOKAJIBHBIM KOHTHHYYMOM, KaK TOXKE MEXKIy KBa-
3NKOHTHHYYM M THCKPETHOI ceTkoli. BBeeHa 11 oGy KaeHa KOHLUENIHA AHCKPETHBIX CETOK.

1. Introduction

FroMm the atomistic point of view the set of functions admitted in continuum theory is
definitely too large. For example, the displacement field u(x) can be interpreted only at
those points at which the atoms are located, i.e. on a discrete set of points

x = X,.

Generally, there is a lot of functions of the continuous argument x which take some
prescribed values u(X,) = w, at a discrete set x = X,,. In particular, there are many func-
tions u(x) which are not identically zero but vanish at any x = X,. Such functions cannot
be reasonably interpreted in atomistic terms. Moreover, the physical meaning of rapidly
oscillating functions of position is always doubtful.
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This is a fundamental difficulty of any continuum theory. It suggests the idea of res-
tricting the set of admissible functions from the very beginning and to carry out all the
mathematical considerations for this restricted set of functions. This set should contain
only the functions which are necessary to describe all possible displacements of the
atoms. The corresponding model of material medium differs considerably from the con-
tinuous one: contrary to the latter case the number of degrees of freedom per unit volume
is finite. The approach based on this idea was developed by KRUMHANSL (1963), RoGguLA
(1965) and KunIN (1966), and will be called quasicontinuum theory.

The problem of constructing the required set of functions is essentially an intef[ﬁé-]-zt"-
tion problem. The set of interpolating functions will be denoted by QC. Without further
assumptions this set can not be determined uniquely. We shall discuss three methods
of constructing the set QC. Under some additional conditions, they turn out to be equi-
valent to each other.

For the sake of lucidity, we shall first discuss these methods for scalar fields on a linear
chain of atoms. Afterwards we apply this procedure to vector fields on a three-dimensional
primitive lattice. The state of a non-primitive structure can be described by multiplets
of fields defined on the corresponding Bravais lattice, e.g. one field for each atom in the
elementary cell.

2. The sampling function method

Let a denote the distance between neighbouring atoms of a linear chain and let f be
a certain quantity taking some values f, on atoms located at x = na (n - an arbitrary
integer).

Let S(x) be a function of the continuous variable x such that

for n=0,

1
&) S("“)={o for n#0.

Any function satisfying (2.1) will be called a sampling function.
Provided that a sampling function has been chosen, one can uniquely associate a func-
tion f(x) of the continuous variable x to a function f, of the discrete variable n:

@2) f) = D) S(x—na)f,.
This formula makes sense whenever the series involved is convergent. Because of (2.1)

the function f(x) has the interpolation property
(23) Sf(na) = £,.

The function

24 S(x) = ;‘;— sin 7

provides an example of a smooth (analytic) sampling function.
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3. The Fourier transformation method

Under some restrictions of its behaviour at infinity, the discrete function f, can be
represented as a Fourier integral

nja
G fom e [ dke i)

—ala
with an appropriate function (or, more generally, distribution) _?(k). The function j‘(k)
is uniquely determined by the function f,:
A 1 .
(32) fOy = Y e,
On the other hand, by writting x instead of an in (3.1), one can define a function f(x)
of the continuous variable x: '
nfa
o 1 ikx £
(3.3) Jfx) = > —‘!‘ dk e™*f (k).
The function f(x) has the interpolation property (2.3).
The Fourier transformation method is equivalent to the sampling function method
provided that the sampling function (2.4) is choosen. It follows from the fact that to
the function S(x) given by the Eq. (2.4) there corresponds the function f(k) =1, ie,

ala

(3.4) S(x) = -2% [ dk o**.

—mnla

4. The direct interpolation method

According to the generalized Paley-Wiener theorem [4], any function of the form

(3.3), with an arbitrary distribution f(k), can be continued to the complex x-plane as an
entire analytic function. Moreover, it satisfies the inequality

4.1 |/l < C(1+ |x])¥emetm=

for some constants C and N. This inequality is also sufficient for an entire analytic func-
tion to have a representation of the form (3.3).

In terms of the theory of analytic functions, f(x) is an entire analytic function of order
not greater than 1 and type m/a. This class of functions can be identified with QC. Then
the problem of fitting a function fe QC to given values f, can be stated directly as an
interpolation problem. If f, = 0, then

nfa

@.2) [ dk e*fik) = 0

—nja
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and f(k) must be of the form
4.3) f'(k) = P(;:,i—c) [6(k—=/a)— 6(k +=/a)],

where P(-) is a polynomial. Therefore any function fe QC such that f, = 0 must be
of the form

4.4 f(x) = W(x)sm —

where W(x) is a polynomial. Thus for the functions f(x) and f, which tend to zero at
infinity the solution of the interpolation problem is unique.

This result is directly related to the distribution of roots of entire analytic functions
in the complex plane. Let f(x) be an entire analytic function of order o, i.e.,

4.5 o = inf a: |f(x)] < exp|x|*
a=>0

for sufficiently large [x| in complex x-plane (see e.g. [5]). Let {x,} be the sequence of
non-zero roots of f(x) in complex x-plane, ordered so that |x,,,| = |x,| (multiple roots
taken according to their multiplicity). Then the exponent of convergence of these roots,
defined as

-
=infa: } |x,| " < o0,

(4.5) = 2; |xal

satisfies the inequality

(4.6) £ <o.

Hence the condition ¢ < 1 eliminates the possibility for u to exceed the exponent of
convergence of x, = na, which equals 1.

5. The three-dimensional generalization

The above considerations can be generalized directly to multi-dimensional lattices.
The atoms of a primitive lattice are labelled by integer multiplets n and their positions
are given by
(5.1) X(n) = An,
where A is a certain matrix. The sampling function S(x) should have the property

- oy {l for n=0,
-2) (“)_0 for n#0.

Instead of integrating over the interval [z/a, —=/a] in (3.1) and (3.3), one should
integrate over the first Brillouin zone, e.g.

1 -
(5.3) fo = G B.zf d3ke*xf (k)
and
(5.4) f(x) = (2 )3 rd’ke*'“‘f(k)
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Although it is possible to choose some other equivalent domains of integration, the choice
of the BZ has the advantage of retaining the point symmetry of the corresponding Bravais
lattice.

The sampling function corresponding to the Fourier transformation method is given as

1 .
(5.5) S(x) = (—2;)5—3! d3ke*x,

The formulae (5.3), (5.4) and (2.2) can be directly adapted for multi-component
quantities, e.g. for displacement fields, force fields etc.

6. Some properties of QC-functions

The functions QC have been defined as the entire analytic functions satisfying in-
equality (4.1). In particular, all polynomials are QC.

The following simple properties can be checked directly:

— if ueQC, then all the derivatives ¢*u € QC,

— if # € QC and the convolution u*v exists then u*» € QC (but it can happen that

u-v¢QC).
The following equations hold:
6.1) Q Nfu=[dxf(),
6.2) QD fuga = [ d*xf(0g(),
(6.3) IoE Vu oo = [ dxdxu@)P(x, X)w(x),

where £2 denotes the volume of the primitive cell.
In particular, it follows from (6.2) that the kinetic energy equals
n

=
6.4 .. z=£f 3yg?
(6.4) T 3 Vs =5 d*xv*(x),

where ¢ = m/2. On the other hand, the potential energy of a crystal can be expressed as
1\ . 1
©.5) U= Y uallfu = 5 [ dxd*u@®,x, X)),

The last expression is formally similar to the corresponding expression of non-local
(integral) theory. The corresponding expression in (6.4) is also similar to the continuum
one. The expressions (6.4) and (6.5) for the kinetic and the potential energies allow us
to develop the theory in continuum-like form. The equations obtained, however, describe
the crystal exactly. :

In the same way as in continuum theory, these equations can be generalized to |nclude
dislocation fields. We shall omit here the details of this procedure.
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7. Equivalence of operators in QC

Now we briefly consider linear operators L acting in OQC. The classification of operators
of continuum theory (RoGULA, 1973) does not apply here. According to [6), the singular
order of an operator L is determined by the behaviour of A;;(k) at infinity. In QC, how-
ever, k € BZ, so we can not speak of behaviour at k-infinity.

Consider two linear operators L and L'. If for any ue QC

(7.1) Lu= L',
these operators will be called equivalent. In fact, from the point of view of QC they are
identical, and in any calculation one can put L’ instead of L. This circumstance gives

the QC-theory great flexibility.
As an example, consider a differential operator

(1.2) Lu = P(d)u,

where P(¢d) is a certain polynomial. Let

1.3) W)= <y J dPkP(ik) el
) BZ

then we define another operator

(7.4) L'u = V*u,
which is an integral operator. Moreover, let

(1.5) ¥(x,n) = Q¥(x— An)
and

(1.6) L'u = ) ¥(x, n)u(An).

All the operators L, L', L' are equivalent to each other. This shows that in QC there
are equivalencies between differential, integral and discrete operators.

8. Quasicontinuum vs. discrete lattice. Differential models

The quasicontinuum approach, when applied to crystal lattices with given force
constants, produces the same physical results as conventional discrete lattice (DL) theory.
This, in particular, follows from the formulae (6.4) and (6.5), if we take into account
the one-to-one correspondence between force constants and QC-kernels,

(8.1) DY < Dy(x, X)),

which holds precisely under physically plausible conditions of vanishing at infinity. In
this sense, there is an isomorphism between QC and DL. The equations of motion of
a discrete lattice

(8.2) mip— 3 O Uy = f1
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and the corresponding quasicontinuum,

8.3) o)~ [ dyx'®yy(x, x)uy(x) = fi(x)

contain the same physical information.

The mathematics of QC, however, is much more flexible than that of DL. In the frame-
work of QC one can use, apart from discrete operators, also other equivalent forms of
operators without loosing the precise meaning of them. Therefore, the calculational
efficiency of QC can be much higher than that of DL.

Another, and perhaps even more important circumstance consists in the following.
The lattice theory does not provide us with any specific set of force constants. These
either have to be determined from other physical considerations, or treated as (infinitely
many) phenomenological parameters. In any case, establishing a tractable set of force
constants involves some approximations.

One of the most popular simplifications in DL is a finite (and, as a matter of fact,
very short) range of interactions. It is equivalent to approximating the exact dispersion
curves by a combination of trigonometric functions.

On the other hand, it is possible to achieve substantial simplification in a different
manner, namely by choosing the force constants of the lattice so that the integral operator
in (8.3) is equivalent to a differential one. Then, instead of (8.3) we have a differential
equation of the form

(8.4) o (x) — Py (9 u;(x) = fi(x).

This QC-equation describes exactly the dynamics of a certain crystal lattice. The force
constants of this lattice do not vanish identically for great distances: instead of that,
they tend to zero with some negative power of the distance. In the k-space, this cor-
responds to approximating the dispersion curves by a polynomial instead of trigonometric
functions, the polynomial being the simpler but not necessarily the worse approximation.
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