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On the relation between discrete and continuum mechanics
of certain material systems

Cz. WOZNIAK (WARSZAWA)

THE main purpose of the paper is to present some ways of deriving the discrete and the con-
tinuous models of material systems with complex (in general, discrete-continuous) structure.
To this aim we assume that the motion of the small parts of the system which are known can
be approximated by the family of homogeneous deformations. Next, the conditions of conti-
nuity of deformations and stresses among those parts are taken into account. It is shown that
the latter conditions lead to a special form of ideal constraints imposed on deformations and
internal forces. The material systems under consideration are assumed to be hyperelastic and
only binary interactions are investigated.

Glownym celem pracy jest przedstawienie pewnych sposobdéw konstruowania dyskretnych
i ciaglych modeli ukladéw materialnych o zlozonej (dyskretno-ciaglej) strukturze. Ruch do-
statecznie matych lecz danych z gory czeéci ciala aproksymuje si¢ jednorodnymi deformacjami,
biorac nastepnie pod uwage warunki ciagloéci deformaciji i oddzialywan pomiedzy cze$ciami.
Warunki te sg rownoznaczne narzuceniu pewnych idealnych wiezéw dla deformacii i sit we-
wnetrznych. Ograniczono sie¢ do ukladéw hipersprezystych i tylko binarnych oddziatywan.

T'naBHoit 1eBI0 paboTEI ABNAETCA NPEACTAB/IEHAE HEKOTOPLIX CMIOCOG0B NOCTPOECHHS [HCKPeT-
HBIX M CILUIOLIHBLIX MOMAENe MaTepHANbHBIX CHCTEM CO CIIOMKHOM (IMCKPEeTHO-CIUTONIHOM) CTPYK-
Typoii. JIBMmKeHHEe MOCTATOYHO MAMBIX, HO 3afaHHLIX ANPHOPH, 4YacTeil Tesa aNMpOKCHMH-
pyercs OgHOPOAHBIMH HedopMalMAMK, HMes 3aTeM B BHAY YCIOBHUA HENMpPePBIBHOCTH Aedop-
Maumii ¥ B3aUMOeliCTBHE MEXKIY YaCTHAMH TeNa. DTH YCJIOBUA PABHOCHILHBI HAKIAILIBAHHIO
HEKOTOPBIX HAeANBHBIX cBA3eH A nedopmaumit 1 BHyTpeHHuX cuil. OrpaHHUMBAIOTCA CHIEp-
YIIPYTHMHM CHCTEMAMH M TOJIBKO OMHAPHBIMH B3aMMOACHCTBHAMH.

Introduction

As the object of our investigations we shall take a certain complex (in general, discrete-
continuous) material hyperelastic system which will be denoted by M. We are to develop
the mechanics of M exclusively by means of the approximate, discrete or continuous,
models of M. Such an approach is necessary when the material system M is too complex
to be successfully analysed in the direct way. To give an example of such a system we
can take a homogeneous material continuum with a great number of inclusions or con-
centrated masses, a body with fibrous structure, etc. This paper shows how to construct
discrete, continuous and continuous-discrete models of M according to the concept of
ideal constraints for deformations and interactions.

1. General field equations

All models of M we are to deal with will be obtained under the assumption that the
partition M = u P(Z), Z ell, IT being the finite, countable or nuncountable set, so that
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the motion of each part P(Z) can be approximated (for a class of problems we are in-
terested in) by the family of homogeneous deformations. Let x,, ¢ be inertial coordinates
in the space-time. Thus the motion of any part P(Z) can be described, in a sufficiently
accurate way, by the deformation function of the form(*)

(l.l) xk=xi(z’ ‘)+Fk¢(zv t)Yus YE?R(Z):IER:

where Pg(Z) is a part of the physical space E* occupied by P(Z) in the fixed reference
configuration, and Y is a position vector in E* of the material points belonging to Pg(Z)
(the domains of Y may be different for the different values of Z). We assume that each
Px(Z) contains at least four material points not situated on the same plane and that
detF > O for any time instant f. Functions y and F, defined on ITx R, are unknown
fields which determine the motion of the model of M. Mind, that if P(Z,)nP(Z,) # ¢
for Z, # Z,, then the motion of the common part of P(Z,) and P(Z,) may not be uniqu-
ely described since the two deformation functions of the form (1.1) (for Z = Z, and
Z = Z,) represent two different approximations of the motion of P(Z,)n P(Z,).

The equations of motion of any part P(Z) of the material system M will be postulated
in the form
(12) Rdg = dif+dby—d(Gr.x),
where the measures pg = 0x(Z;Y), 0r = 0r(Z; Y, |x— x|) describe the inertial and
hyperelastic properties of P(Z), respectively; the measure br = ba(Z; Y, t) characterizes
the known external loads acting at P(Z); and t,, = tR(Z Y, ¢) is the measure of internal
forces due to the interaction between P(Z) and M— P(Z). We have tacitly assumed that
only binary interactions exist between material points in M.

To obtain equations for % and F we shall apply the known orthogonalization approach.

By virtue of Eqgs. (1.1) we are to analyse not the motion of M governed by Egs. (1.2)
but the motion of the model of M, putting

[ *dgr—dtk—dbk+d(G,.)] = 0,
Pr(Z)

[ Y*[*dgg— drk—dbk+d(Gr,)] = O,

Pr(Z)

(1.3)

where the motion x; is given by Eq. (1.1) and all integrals over Pg(Z) have to be inter-
preted in the Stielties sense.

Let us select Pg(Z) in such a way that the relation
[ Yedge =0
Pr(Z)
holds for each Z elT (the point Y = 0 is a mass centre for each Pg(Z)). Let us also
observe that
B&R B&R
3Fh Bxk

Y,

(*) Indices k, 1, ... and «, f, ... run over the sequence 1,2, 3. The summation convention holds.
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where &g = 6(Z; Y, F) = 6x(Z; Y, |Fi. Y?(), and

fdég,x,=—- fdo',.:o

Pr(2) Pr(Z)

We shall also introduce the characteristic length dimension / = /(Z) and a suitably chosen
measure v = v(Z) for an arbitrary part Pg(Z) of the physical space; if Pg(Z) is a region
in E3, then v(Z) can be assumed to be its volume. Taking into account the relations given
above, we shall obtain from (1.3) and (1.1) the following system of equations

0r(Z)XM(Z, 1) = dy(Z, 1)+ bR(Z, 1),

(1.4) Bo'(Z F)

RIFZ)PYZ, 1) = TIZ, 1) -ox(Z2) —=— + B¥(Z,1); Zell,teR,

where we have denoted

1 1 Y“I"‘B 1
- A aff — ey
Or = o _J- d@k’ JR = v dgk’ QRO = o J dalb
PR(Z) Pr(Z) Pr(Z)
1 A 1
(1.5) dgE?‘_ d:, i =‘;_fdb;,
Pg(Z) Pr(Z)
T,’;'s% f ydek, B E% f}"db;

Pr(2) Pr(2)

If v = v(Z) are properly chosen, then the fields defined by Eqgs. (1.5) are densities related
to the reference configuration of P(Z). If Px(Z) is a region in E* (P(Z) being the material
continuum), then, using the same procedure as in [1], we can prove that the sum Tx+Bg
can be interpreted as the mean value of the first Piola-Kirchhoff stress tensor in P(Z).

Equations (1.4), in which y, Fi,, d% and T& are unknown fields defined on ITx R
and the functions gg, [2J3?, b% and BY are assumed to be known(?), will be called the
general field equations. For any given partition M = u P(Z), Z ell, they characterize
the model of the material system M. If IT is the discrete set D, then, the corresponding
model will be called discrete. If IT is a differentiable manifold B (of one, two or three
dimensions) and the fields in Eqs. (1.4) are sufficiently smooth, then, the model of M
is said to be continuous. If IT = D x B we shall be dealing with the discrete-continuous
model of M.

We may observe that the number of unknown functions is equal to 24 while the
number of the general field equations (1.4) is equal to 12. The missing equations will
be obtained by taking into account the interactions among the different parts P(Z) of
the material system M. This will be done in the following sections of the paper. The
main idea of the approach we shall to present is to introduce the special kind of con-
straints imposed on the kinematic fields ¥, F as well as on the kinetic fields dg, Tx.

(%) The fields bg, Bg can also be related to the fields %, F, provided that Sg depends on the
motion.
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2. Discrete models based on the geometric constraints

In this section we shall assume that I7 is a rectangular lattice L (or a part of this lattice)
of points in the physical space E® with a fixed vector basis given by three orthogonal
vectors 4,Z = (I, 6?) (no summation with respect ). Let each Pr(Z), Z € L, be a set
of material points situated inside the cell of the lattice with a centre Z = (Z*). Assuming

in Eq. (1.1) that ——;—I, <YL —;-I,, we shall realize the continuity of the deformation

function in points Z+ —;—A,Z, putting

1 1
WZ, )+ 5 FialZ, e = p(Z+ AL, 1)~ 5 Fio(Z+AZ, 1)1,

for any fixed value of the index «, provided that the cells of the lattice with the centres
Z, Z+A,Z are occupied by the material points of M in the reference configuration. The
foregoing relation can be written in the form

(2‘1) AaZk(Z’ ‘)_FEFkﬁ(Z! Ir) =0

where we use the known difference and mean value operators on the lattice:

4,%(2) = 71; [(X(Z+4.2)-x2), Ax@D = % [X(Z-4.Z)- x(Z)],

W) = 5 BRNZ+ADRD),  EFD) = - HIFyZ—AZ) +Fy(2)].

To make our considerations more general we shall also take into account the extra con-
straints of the form

(2.2) h(Z,t, X, AaX, ) =0, v=1,..,r,

where /, are known differentiable functions. We shall postulate that the constraints (2.1),
(2.2) imposed on the fields y, F, are ideal; this means that the following relation

(2.3) ;‘ (A5 O+ TR OF,) = 0

hold for any 8y, 6F, consistent with Egs. (2.1), (2.2). From (1.3) and (2.1)-(2.3) follows
that B

A,Si‘+b§+r§ = Qﬂ.iks
do
0F,

where Tk = 3 S¥ and S} are unknown functions defined on L x R (they are Lagrange’s
multipliers for the constraints (2.1)). At the same time we obtain the relation

(2.5) Z?‘ﬁ&h =0

L

2.4

PIPES = @3 S¥—on—p— + B,

which is assumed to hold for any variation dy,, consistent exclusively with Eqgs. (2.2).
If there are no constraints (2.2), then, rzy = 0 and Egs. (2.1), (2.4) represent the basic
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system of equations for the unknown fields %, F and Sg. In the more general case, Egs. (2.1),
system of equations for the unknown fields %, F and Sg. In the more general case,
Egs. (2.1), (2.2), (2.4) and (2.5) represent the discrete model of the material system M.

3. Continuous models based on geometric constraints

Now, let us assume that I7 is a regular region B in the physical space E* with its bound-
ary @B, ie., IT = B. To each Z € B a set of material points Px(Z) is assigned in E* (cf.
Sect. 1); at the same time each Z € B will be assigned one material point of M in the
reference configuration. Neglecting the inertial properties of this point we can assume
that for Z € dB Eqs. (1.4), are identities and Eqs. (1.4); reduce to

(3.1) d5Z,t)+b8(Z,1) =0, ZedB,teR.

The mapping of the points of B into a set of subsets of the material system M in the ref-
erence configuration we are to deal with, is not arbitrary. We shall confine ourselves
only to those material systems M and those mappings where all known fields defined
by Egs. (1.5) can be approximated, with a sufficient accuracy, by the smooth functions
of Z € B; moreover, we shall construct these fields as the densities related to a region B
in E3. The smooth fields introduced will be denoted in what follows by the same symbols
as the fields defined by Egs. (1.5). Thus the general field equations (1.4) are assumed
to hold for each Z € B and t € R. We shall also assume that the unknown fields ¥, F,
dg and Ty in Eqgs. (1.4) are also smooth. To obtain the continuous model of the material
system M we shall postulate the following form of the internal geometric constraints

(32) x&.a(zs t)‘_'Fh(Z’ t) - 0’ Ze B; te R:

which can be treated as the continuous “approximation” of the relation (2.1). To make
our analysis more general we shall also introduce extra constraints of the form

h(Z,t, %, V%, ....,V"Y) =0, ZeB, teR, v=1,..,r,
R(Z,t,%,VX) =0, Ze€dB, teR, p=1,..,s,

where h,, R, are known differentiable functions and V is a material deformation gradient
on dB. It shall be postulated that the constraints (3.2), (3.3) are ideal, i.e., that the relation

(3.3)

(3.4) [ @8+ TR )do+ § dhdgdo =0
B aB

holds for any variations 8y, 6F;,, admissible by Egs. (3.2), (3.3). From equations (1.4)
(where the domain of the definition of all functions is restricted to Bx R) and from
(3.1)-(3.4) we obtain the following field equations in BXx R
Te" o+ bk +rk = 0x¥,
(3.5 . da
2yefk __ ke
IJRF‘B-—TR eR—th
and the kinetic boundary conditions on dBx R
(3‘6) T?nﬂn = bi+s}!:
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where n is the unit vector normal to dB. At the same time we also obtain the relation

@3.7) [ oo+ § skopdo = o,
aB

B

which is assumed to hold for any dy; exclusively consistent with Egs. (3.3). The system
{rx, sz} represents the reaction forces due to the extra-constraints (3.3). Equations (3.3),
(3.5)-(3.7), after substituting F = Vy, characterize the continuous model of the material
system M. Let us observe that in Egs. (3.5) we are dealing with three partial differential
equations (3.5), which, in the absence of constraints (3.3) (then rg = sgz = 0), have the
well known form of the Cauchy equations of motion. If the characteristic length dimension
1 is sufficiently small, we can put / —» 0; moreover, if the external load leads to the condi-
tion BE = 0, then, we obtain from (3.5), the known stress relation of the hyperelastic
bodies. On the other hand, if / ~ 0 and B = 0, we can derive from (3.3), (3.5)-(3.7)
the equations of elastic continuum with geometric constraints [2].

4. Discrete models based on the kinetic constraints

Let IT be a lattice L in E* (or a part of this lattice) and the structure of M be described,
in the reference configuration analogously as in Sect. 2. Let us also assume that the in-
teractions among the different parts P(Z) of M can be expressed as the densities related

to the boundaries S,, S, of the cell which is situated on the parametric planes Y* = % L

Yo = — —;-L, respectively. Putting v = [,/,1;, we obtain, from (1.5),,

k _\ She_ Sk
@.1) dk = szs (fdrR fd;R _Z o

where we have denoted
s},«:Lfd?;, Sk = -~1—de§, a# B #y#a
!ﬂ"? fﬁ fr <
Sq S
Let us also assume that for each o # B we have
[yedk=0, [yaik=0; o8
Then, from (1.5) we conclude that

4.2) Tk = —; (Sk+ Sk,

Equations (4.1), (4.2) hold for any Ze L and feR.
We shall assume that the part P(Z) of M can interact with parts P(Z+4,Z); the con-
tinuity of interactions leads to the conditions

(4.3) SK(Z,t) = SK(Z+A4,Z,1), S¥Z,t)=SKZ-4,Z,1).
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From (4.1)-(4.3) we obtain
di(Z,1) = 4,5%Z, 1) = 4,882, 1),
T¥(Z,t) = uSH(Z, 1) = B5S¥(Z,1).

In what follows we shall take as the unknown generalized forces the fields S¥(Z, ¢). For
the purpose of generalization we postulate extra conditions on those forces, as follows:

4.5) W(Z,t,Sg, ASg, 4Sg) =0, pu=1,..,1,
where h* are known differentiable functions. We assume that the constraints (4.4), (4.5)
are ideal; this means that the relation

(4.6) D (1 0dk+ Fo 8T = 0
L

(4.4

holds for any ddk, 6T% consistent with (4.4), (4.5). The foregoing relation can also be
transformed into the form

@7 D NSk =0, iy = Aug—pbFig,
L

which has to hold for any 45** consistent with Eqgs. (4.5). From general field equations
(1.4) and equations of kinetic constraints (4.4) we obtain the equations of motion
A_Sk+bk = ox¥",
do
OF iy

Equations (4.5), (4.7) and (4.8) represent the discrete model of the material system M,
which is based on the kinetic constraints (4.4), (4.5).

(4.8)

PISPES = a5 Sk —oq + B,

5. Continuous models based on kinetic constraints

Let us assume that JT = B, where B is a regular region in the physical space E* and
that all the assumptions given at the beginning of the Sect. 3, including the relation (3.1),
are satisfied. To obtain the continuous model of M we shall postulate the kinetic con-
straints
(5.1) d¥(Z,t)—Tg**(Z,t) =0, ZeB,teR.

Equations (5.1) can be interpreted as the “continuous” approximation of the discrete
kinetic constraints (4.4),. We shall also take into consideration extra kinetic constraints
in the form

(5.2) h(Z,t,Tg,VTg) =0, ZeB,teR, u=1,..,1,

where h* are known differentiable functions. Assuming that the constraints (5.1), (5.2)
are ideal we postulate that the relation

(5.3) [ Guddk+Fiu 6Ty do+ § g, 8dkdo = 0
B dB
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holds for any 8d%, 6T, consistent with Eqgs. (5.1), (5.2). The latter relation can be taken
in the form of

(5.4) [ 1 oTkdo =0,  Jia = tra—Fras
B

provided that we also postulate the boundary kinetic constraints
(5.5 T¥ng,+ds =0, ZedB, teR.

Relation (5.4) has to hold for any 67%* consistent with the extra constraints (5.2). From
the general field equations (1.4) (defined on Bx R) and from Egs. (3.1), (5.1), (5.5), we
obtain the equations of motion in Bx R

Tkh.n + bfl o QR?

(5.6)

Iz‘fﬂpﬁﬂ_ QR 3F +Bf"
and the kinetic boundary conditions on dBx R
(5.7 T;.I"Rc = bi-

Equations (5.6), (5.7) and (5.2), (5.4) characterize the continuous model of the ma-
terial system M, based on the kinetic constraints. If / ~ 0 and Bf* ~ 0, we obtain from
the equations mentioned above, the equations of the material continuum with the con-
straints imposed on the first Piola-Kirchhoff stress tensor, [2].

6. Discrete-continuous models

Let us assume now that IT = Bx L, where B is a regular region in E¥, N is equal to
1 or 2, and L is a lattice of points in E>~¥, We can interpret EY and E*~V as the sub-
spaces of the physical space E*. Let us denote Z = ((X*), (X*)), where (X*) € B, (X*) e L,
and the indices K, 4 run over the sequences 1, ..., N and N+1, ..., 3, respectively, and
where X* are Carthesian orthogonal coordmates in E3. Comblmng the results given in
Secst. 2 and 3, we shall postulate the geometric constraints

Aa:xt(z’ r)_#ngﬁ(z, t) = 0’
xk.K(Z! t)“a%Fiﬁ(Z: f) =0.
These constraints are said to be ideal if the relation

62) [ [ @kon+ThoRDdo+ § dksydo] =0
L B B

6.1

holds for any &y, 6F, admissible by Egs. (6.1) (if B = (0, h) = R, then the integral
over 9B has to be replaced by the expression of the form [d% dx,J%i1=%). From Eq. (6.2)
and from the general field equations (1.4) (where the functions are now defined on Bx L x
X R or BxL) we obtain in Bx Lx R the following equations of motion

A4,8% A+ T g+ b5 = orrt’,

(6.3) . 3
PIPFE = paSK'+ 0% TRX —or —7— e By,
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and on dBx L xR the kinetic boundary conditions of the form
6.4 Tngx = bk,
where Eq. (3.1) was also taken into account.
Equations (6.1)-(6.4) describe the discrete-continuous model of the material system

M, which is based on the concept of ideal geometric constraints (6.1). We shall obtain
an analogous result after including the kinetic constraints

(6.5) di = A—AS?""TRkK.Ks TR = p4Sg*+ 0% TR*™,

and assuming that they are ideal, i.e., that the relation

(6.6) D' ok +FooTi)do+ § zi6dkda] = 0
L B a8

holds for any ddf, 8T%* admissible by Egs. (6.5). However, models of M based on geo-
metric constraints are different from those based on kinetic constraints if the conditions
of the form (2.2), (3.3), (4.5) or (5.2) are included. Discrete-continuous models can be
used, among others, to describe the multi-layered structures (then K = 1,2 and 4 = 3)
or bodies reinforced with the family of non-intersecting regularly distributed fibres (then
K=1and 4 =2,3).

7. Conclusions

The main problem in the paper, that is, how to construct the approximate mechanical
models of certain material systems, was solved in Secs. 2-6 by applying the concept of
ideal constraints to the general field equations (1.4). We can now pass to the second
problem which concerns the relation between different models of the given material system.
This problem is much more complicated and here we shall confine ourselves to a few
conclusions which follow from the results obtained in the foregoing sections of the paper.

Comparing Eqgs. (2.4) with Egs. (3.5) and Eqs. (4.8) with Egs. (5.6), we can see that,
from the analytical point of view, the basic equations of the discrete models constitute
the finite difference approximation of the partial differential equations of the correspond-
ing continuum models. It follows that the “distance” between the related models can be
reckoned, for example, by the methods given in [3]). However, it does not necessarily
follow that the continuous models are more or less exact than the discrete models. Using
the known methods of function spaces [3], only the “distance” between both kinds of
models can be analysed because the discrete and continuous models studied were obtained
independently each other. On the other hand, the degree of approximation of any model
of M given in Secs. 2-6 with respect to the exact equations (1.2) of mechanics of the
material system M, can be traced only for a given kind of a partition M = u P(Z),
Z el (cf. Sect. 1), for a known class of motions etc. This problem is connected with
the applications of the models dealt with to the special cases of material systems, such
as laminated bodies, fibrous media and others.

The next problem concerns the relations between models based on the geometric
and the kinetic constraints, both in discrete and continuum approximation. If we compare
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Egs. (2.4) with Egs. (4.8) and Egs. (3.5) with Egs. (5.6), we can see that the correspond-
ing models (based on the geometric and kinetic constraints, respectively) coincide in the
absence of the extra constraints given either by Egs. (2.2), (4.5) or by Egs. (3.3), (5.2).
In this paper the extra constraints were introduced formaly (we did not analyse the form
of the functions h,, R,, #*); however, their role has to be investigated for each special
case of the construction of the model of M. Roughly speaking, the models based on
geometric constraints are more “rigid” while the models based on kinetic constraints
make the body more “slender”. For a more detailed discussion of this problem the reader
is referred to [2].

The discrete and continuous models obtained in the paper are rather simple models
of the complex material system M. However, because of presence of the length dimension
! in the field equations (2.4), (3.5), (4.8) or (5.6), the weak non-local effects are included.
For the asymptotic case / ~ 0 we obtain from (1.4), the stress relation of the hyper-
elastic material. If / & 0, B ~ 0, then the models obtained in Secs. 3, 5 are governed
by the equations of the classical continua with internal constraints for deformations and
stresses [2). Using the ideas which lead to the models as described in Secs. 2-6, we can
also construct more general models. For this purpose we have to introduce, instead of
Egs. (1.1), the nonhomogeneous approximations of the motion of any part P(Z) of the
material system M. In this way we arrive at the form of the basic field equations which
is more general than that given by Eqgs. (1.4). The constraints imposed on the unknown
fields in the basic equations will lead to the discrete and continuous models which are
governed by the equations of the non-simple or Cosserat type systems with geometric
or kinetic ideal constraints.

It must be stressed, that the approach to the problem of construction of approximate
models of material systems which was presented in the paper and based on the concept
of ideal constraints, is, obviously, not a unique one. Instead of postulating the ideal
constraints of the form (2.1), (3.2), (4.4), (5.1), we can also postulate constitutive equa-
tions for the kinetic fields 4§, T, the arguments of corresponding response functionals
are the kinematic fields x,‘,iFg,_. For the discrete models with potential interactions be-
tween parts P(Z), P(Z+4,Z) of the material system M, we obtain, after some simple
calculations (cf. [4]),

d = AHY, Th = A,H+ G
where

3sg akf _ 383

a4, Xk ’ =

_ O _Oex
= AR’

oF ’

He =
and where eg = ex(Z; 4, %y, Fre, 43F3,) is the potential of interaction of the part P(Z)
with parts P(Z+4,Z) of M. The foregoing equations along with the general field equa-
tions (1.4) give what can be called the discrete elastic system of the Cosserat type. For
the continuous model with potential interactions among different parts P(Z) of M, we
shall obtain by means of the variational approach the Eqs. (1.4) in which

di . Hnd.m Tltta = deﬂ.ﬁ'!'cilar
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where
de de de
ak — R akp — _ YUR ke o - TR
HR S a;fl,a ] -HI'R = 3Fn,p ] GR =t th ’
and where &g = £(Z; Xk.z; Fra; Fra3) is the density of the potential of interactions.
Lagrange’s corresponding function was assumed in the form -12—93 >+ %PJ?F", F".p—

—pr0o—eg. These models are more complicated than those based on the concept of con-
straints. Recent literature on the laminated and fibrous media and composite materials
also gives evidence of other approaches to the problem of construction of approximate
models of complex material systems are applied (cf. [5, 6]). However, the approach based
on the notion of constraints seems to be very simple and very general. The direct ap-
plications of the discussed models special complex material systems, have not been
analysed thus far and will be the subject of separate investigations.
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