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On the relation between discrete and continuum mechanics 
of certain material systems 

Cz. WOZNIAK (WARSZAWA) 

THE main purpose of the paper is to present some ways of deriving the discrete and the con
tinuous models of material systems with complex (in general, discrete-continuous) structure. 
To this aim we assume that the motion of the small parts of the system which are known can 
be approximated by the family of homogeneous deformations. Next, the conditions of conti
nuity of deformations and stresses among those parts are taken into account. It is shown that 
the latter conditions lead to a special form of ideal constraints imposed on deformations and 
internal forces. The material systems under consideration are assumed to be hyperelastic and 
only binary interactions are investigated. 

Gl6wnym celem pracy jest przedstawienie pewnych sposob6w konstruowania dyskretnych 
i ci~glych modeli uklad6w materialnych o zlozonej (dyskretno-cictglej) strukturze. Ruch do
statecznie malych lecz danych z gory czctsci ciala aproksymuje sict jednorodnymi deformacjami, 
bior~c nastctpnie pod uwagct warunki cictglosci deformacji i oddzialywan pomictdzy CZftsciami. 
Warunki te ~ r6wnoznaczne narzuceniu pewnych idealnych wictz6w dla deformacji i sil we
wncttrznych. Ograniczono sict do uklad6w hipersprct:Zystych i tylko binarnych oddzialywan. 

rJiaB~OH qeJibiO pa60Tbl HBJIHeTCH npegCTaBJieHHe HeKOTOpbiX CllOCOOOB llOCTpoeHHH gHCKpeT

~biX H CllJIOIIIHbiX MOgeJieH MaTepHaJibHbiX CHCTeM CO CJIO>KllOH (gHCKpeTH:Q-CllJIOIIIHOH) CTpyK

Typoii. ,I:(BH)f{ei{He goCTaTOt:IHO MaJibiX, ~0 33gal{l{biX anpHOpH, llaCTeii TeJia annpOKCHMH

pyeTCH OgHopogl{biMH ge<i>opM3I.lHHMH, HMeH 33TeM B BHgy YCJIOBHH aenpepbiBH:OCTH ge<i>op

M3I.lHH H B3aHMOgeHCTBHe Me)f{gy lJ3CTHHMH TeJia. 3TH YCJIOBHH paBHOCHJibHbl 1{3KJiagbiBillUIIO 

l{eKOTOpbiX HgeaJib~IX CBH3eH gJIH ge<i>opMai.lHii H Bl{yTpeHI{HX CHJI. 0rpaHHliHB3IOTCH rHnep

ynpyrHMH CHCTeM3MH H TOJILKO 6~apHbiMH B3aHMOgeiiCTBHHMH. 

Introduction 

As the object of our investigations we shall take a certain complex (in general, discrete
continuous) material hyperelastic system which will be denoted by M. We are to develop 
the mechanics of M exclusively by means of the approximate, discrete or continuous, 
models of M. Such an approach is necessary when the material system M is too complex 
to be successfully analysed in the direct way. To give an example of such a system we 
can take a homogeneous material continuum with a great number of inclusions or con
centrated masses, a body with fibrous structure, etc. This paper shows how to construct 
discrete, continuous and continuous-discrete models of M according to the concept of 
ideal constraints for deformations and interactions. 

1. General field equations 

All models of M we are to deal with will be obtained under the assumption that the 
partition M = u P(Z), Z E Il, II being the finite, countable or n.ocountable set, so that 
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512 Cz. WozNIAK 

the motion of each part P(Z) can be approximated (for a class of problems we are in
terested in) by the family of homogeneous deformations. Let x", t be inertial coordinates 
in the space-time. Thus the motion of any part P(Z) can be described, in a sufficiently 
accurate way, by the deformation function of the forme) 

(1.1) 

where P R(Z) is a part of the physical space £ 3 occupied by P(Z) in the fixed reference 
configuration, and Y is a position vector in £ 3 of the material points belonging to PR(Z) 
(the domains of Y may be different for the different values of Z). We assume that each 
P R(Z) contains at least four material points not situated on the same plane and that 
detF > 0 for any time instant t. Functions X and F, defined on II x R, are unknown 
fields which determine the motion of the model of M. Mind, that if P(Z1)nP(Z2) =F cp 
for Z 1 =F Z2 , then the motion of the common part of P(Z1) and P(Z2 ) may not be uniqu
ely described since the two deformation functions of the form (1.1) (for Z = Z 1 and 
Z = Z 2) represent two different approximations of the motion of P(Z1) r.P(Z2 ). 

The equations of motion of any part P(Z) of the material system M will be postulated 
in the form 

(1.2) X"deR .= dt:+db~-d(uR,x,), 
where the measures QR = QR(Z; Y), dR = dR (Z; Y, lx-xD describe the inertial and 
hyperelastic properties of P(Z), respectively; the measure bR = bR(Z; Y, t) characterizes 
the known external loads acting at P(Z); and tR = tR(Z; Y, t) is the measure of internal 
forces due to the interaction between P(Z) and M- P(Z). We have tacitly assumed that 
only binary interactions exist between material points in M. 

To obtain equations for x and F we shall apply the known orthogonalization approach. 
By virtue of Eqs. (1.1) we are to analyse not the motion of M governed by Eqs. (1.2) 
but the motion of the model of M, putting 

f [X"deR-df:-db:+d(ttR,XII)] = 0, 

(1.3) 
PR(Z) 

I Y«[X"deR-di:-dS:+d(t1R,x")1 .= o, 
PR(Z) 

where the motion x" is given by Eq. (1.1) and all integrals over PR(Z) have to be inter
preted in the Stielties sense. 

Let us select PR(Z) in such a way that the relation 

holds for each Z ell (the point Y = 0 is a mass centre for each PR(Z)). Let us also 
observe that 

(1) Indices k,l, ... and (X, {3, ... run over the sequence 1, 2, 3. The summation convention holds. 

http://rcin.org.pl



ON THE RELATION BETWEEN DISCRETE AND CONTINUUM MECHANICS 573 

f ,.. 0 f ,.. dUR,x" =a duR = 0. _ Xk _ 
PR(Z) PR(Z) 

We shall also introduce the characteristic length dimension I= /(Z) and a suitably chosen 
measure v = v(Z) for an arbitrary part PR(Z) of the physical space; if PR(Z) is a region 
in £ 3

, then v(Z) can be assumed to be its volume. Taking into account the relations given 
above, we shall obtain from (1.3) and (1.1) the following system of equations 

eR(Z)xk(z, t) = a:(z, t)+b:(z, t), 

(1.4) [2J~P(Z)Fkp(Z, t) = T~11(Z, t)-eR(Z) ou~~:~~ F) +B~11(Z, t); 
where we have denoted 

Zell,teR, 

(1.5) 

£!RU := ! J' dJ'R; 
PR(Z) 

r~~~ = ! J yaait B~ _ ! J Y11db~. 
PR(Z) PR(Z) 

If v = v(Z) are properly chosen, then the fields defined by Eqs. (1.5) are densities related 
to the reference configuration of P(Z). If ~(Z) is a region in £ 3 (P(Z) being the material 
continuum), then, using the same procedure as in [I], we can prove that the sum T R +BR 
can be interpreted as the mean value of the first Piola-Kirchhoff stress tensor in P(Z). 

Equations (1.4), in which Xb Fka, a: and T~~~ are unknown fields defined on II x R 
and the functions £!R, [2J~P, b~ and B~~~ are assumed to be known(2), will be called the 
general field equations. For any given partition M = u P(Z), Z ell, they characterize 
the model of the material system M. If II is the discrete set D, then, the corresponding 
model will be called discrete. If II is a differentiable manifold B (of one, two or three 
dimensions) and the fields in Eqs. (1.4) are sufficiently smooth, then, the model of M 
is said to be continuous. If II = D x B we shall be dealing with the discrete-continuous 
model of M. 

We may observe that the number of unknown functions is equal to 24 while the 
number of the general field equations (1.4) is equal to 12. The missing equations will 
be obtained by taking into account the interactions among the different parts P(Z) of 
the material system M. This will be done in the following sections of the paper. The 
main idea of the approach we shall to present is to introduce the special kind of con
straints imposed on the kinematic fields x, F as well as on the kinetic fields dR, T R. 

e) The fields bR, BR can also be related to the fields x. F, provided that bR depends on the 
motion. 
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2. Discrete models based on the geometric constraints 

In this section we shall assume that II is a rectangular lattice L (or a part of this lattice) 
of points in the physical space £ 3 with a fixed vector basis given by three orthogonal 
vectors LJczZ = (lcz ~~) (no summation with respect ex). Let each PR(Z), Z e L, be a set 
of material points situated inside the cell of the lattice with a centre Z = (Z«). Assuming 

in Eq. (1.1) that- ~ lcz ~ ycz ~ ~ /cz, we shall realize the continuity of the deformation 

function in points Z + ~ LJczZ, putting 

for any fixed value of the index cx, provided that the cells of the lattice with the centres 
Z, Z+L1czZ are occupied by the material points of M in the reference configuration. The 
foregoing relation can be written in the form 

(2.1) 

where we use the known difference and mean value operators on the lattice: 

To make our considerations more general we shall also take into account the extra con
straints of the form 

(2.2) h,(Z, t, x, Llczx, ~X)= 0, , = 1, ... , r, 

where h, are known differentiable functions. We shall postulate that the constraints (2.1), 
(2.2) imposed on the fields x, F, are ideal; this means that the following relation 

(2.3) 2: (d: ~Xk + T~a~pka) = 0 
L 

hold for any c5xb ~Ftcz consistent with Eqs. (2.1), (2.2). From (1.3) and (2.1)-(2.3) follows 
that 

~s~a+b~+r~ = eR'ik, 

pjaPpk = "jiaskP_e ~ +Bka R p p R R (}Fka R ' 
(2.4) 

where T~cz = JirpS':f and S't are unknown functions defined on L x R (they are Lagrange's 
multipliers for the constraints (2.1)). At the same time we obtain the relation 

(2.5) 

which is assumed to hold for any variation c5xk, consistent exclusively with Eqs. (2.2). 
If there are no constraints (2.2), then, rR = 0 and Eqs. (2.1), (2.4) represent the basic 
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system of equations for the unknown fields x, F and SR. In the more general case, Eqs. (2.1), 
system of equations for the unknown fields x, F and SR. In the more general case, 
Eqs. (2.1), (2.2), (2.4) and (2.5) represent the discrete model of the material system M. 

3. Continuous models based on geometric constraints 

Now, let us assume that I/ is a regular region B in the physical space £ 3 with its bound
ary oB, i.e., I/= B. To each Z E B a set of material points PR(Z) is assigned in £ 3 (cf. 
Sect. 1); at the same time each Z E oB will be assigned one material point of M in the 
reference configuration. Neglecting the inertial properties of this point we can assume 
that for Z E oB Eqs. (1.4h are identities and Eqs. (1.4)1 reduce to 

(3.1) d:(z, t)+b~(Z, t) = 0, Z E oB, t eR. 

The mapping of the points of .If into a set of subsets of the material system M in the ref
erence configuration we are to deal with, is not arbitrary. We shall confine ourselves 
only to those material systems M and those mappings where all known fields defined 
by Eqs. (I .5) can be approximated, with a sufficient accuracy, by the smooth functions 
of Z E B; moreover, we shall construct these fields as the densities related to a region B 
in E 3 • The smooth fields introduced will be denoted in what follows by the same symbols 
as the fields defined by Eqs. (1.5). Thus the general field equations (1.4) are assumed 
to hold for each Z E B and t ER. We shall also assume that the unknown fields x, F, 
dR and T R in Eqs. (1.4) are also smooth. To obtain the continuous model of the material 
system M we shall postulate the following form of the internal geometric constraints 

(3.2) Xk,«(Z, t)-F~c«(Z, t) = 0, z E B, t ER, 

which can be treated as the continuous "approximation" of the relation (2.1). To make 
our analysis more general we shall also introduce extra constraints of the form 

h.,(Z, t, X, V X, ... , V"' x) = 0, Z E B, t E R, 'V = 1 , ... , r, 
(3.3) 

ZeoB, t ER, e=1, ... ,s, 

where h.,, RP are known differentiable functions and V is a material deformation gradient 
on oB. It shall be postulated that the constraints (3.2), (3.3) are ideal, i.e., that the relation 

(3.4) J (d:~xk+T:«~Fk«)dv+ f d:~x~cdct = o 
B 8B 

holds for any variations dx"' ~Fku admissible by Eqs. (3.2), (3.3). From equations (1.4) 
(where the domain of the definition of all functions is restricted to B x R) and from 
(3.1 )-(3.4) we obtain the following field equations in B x R 

(3.5) 

TRII:«.«+b~+r: = eRz", 

12Jaf1p··" _ T"« n oa + B"« R p- R-t:R-- R' oF le« 

and the kinetic boundary conditions on oB x R 

(3.6) 
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where n is the unit vector normal to oB. At the same time we also obtain the relation 

(3.7) J r~<5xtdv+ f s~<5xtd<1 = 0, 
B aB 

which is assumed to hold for any <5xt exclusively consistent with Eqs. (3.3). The system 
{rR, sR} represents the reaction forces due to the extra-constraints (3.3). Equations (3.3), 
(3.5)-(3.7), after substituting F = Vx, characterize the continuous model of the material 
system M. Let us observe that in Eqs. (3.5) we are dealing with three partial differential 
equations (3.5)1 which, in the absence of constraints (3.3) (then rR = sR = 0), have the 
well known form of the Cauchy equations of motion. If the characteristic length dimension 
I is sufficiently small, we can put I--+ 0; moreover, if the external load leads to the condi
tion B': = 0, then, we obtain from (3.5h the known stress relation of the hyperelastic 
bodies. On the other hand, if I "' 0 and B';t = 0, we can derive from (3.3), (3.5)-(3. 7) 
the equations of elastic continuum with geometric constraints [2]. 

4. Discrete models based on tbe kinetic constraints 

Let II be a lattice L in £ 3 (or a part of this lattice) and the structure of M be described, 
in the reference configuration analogously as in Sect. 2. Let us also assume that the in
teractions among the different parts P(Z) of M can be expressed as the densities related 

to the boundaries s«' sfl of the cell which is situated on the parametric planes y« = ~ [«' 

y« = - ~ !«, respectively. Putting v = 11 12 13 , we obtain, from (1.5)4 , 

(4.1) 

where we have denoted 

k«- 1 f "k SR =TT dtR, 
P Y s« 

Let us also assume that for each ex # fJ we have 

ex # fJ # y # ex. 

J yrzai: ~ 0, J yrzii; ~ 0; ex# {J. 
Sp Sp 

Then, from (1.5) we conclude that 

(4.2) 

Equations (4.1), (4.2) hold for any Z e L and t eR. 
We shall assume that the part P(Z) of M can interact with parts P(Z ± L1«Z); the con

tinuity of interactions leads to the conditions 

(4.3) s~«(z, t) = s~cx(Z+L1czZ, t), S}t(Z, t) = s~«(Z-L1czZ, t). 

http://rcin.org.pl



ON THE RELATlON BETWEEN DISCRETE AND CONTINUUM MECHANICS S17 

From (4.1)-(4.3) we obtain 

(4.4) 
d:(z, t) = L1«S~(Z, t) = ~s~a(z, t), 

T~a(z, t) = p,0S';!(Z, t) .= P,iJS';!(Z, t). 

In what follows we shall take as the unknown generalized forces the fields S~«(Z, t). For 
the purpose of generalization we postulate extra conditions on those forces, as follows: 

(4.5) 

where hP are known differentiable functions. We assume that the constraints (4.4), (4.5) 
are ideal; this means that the relation 

(4.6) 2,; (Xkt5d~+F~cat5T~a) = 0 
L 

holds for any t5d~, t5T~a consistent with (4.4), (4.5). The foregoing relation can also be 
transformed into the form 

(4.7) 2,; l~ca t5S~a = 0, Jk« = L1 a Xk- p,~Fkfb 
L 

which has to hold for any t5S~ca consistent with Eqs. (4.5). From general field equations 
(1.4) and equations of kinetic constraints ( 4.4) we obtain the equations of motion 

(4.8) 

L(S~a+b~ = (!RX", 

[2JflflF"- li.«s"P-n ~ +B~ca 
R fJ - r{J R t: R oF~ca R • 

Equations (4.5), (4.7) and (4.8) represent the discrete model of the material system M, 
which is based on the kinetic constraints (4.4), (4.5). 

5. Continuous models based on kinetic constraints 

Let us assume that JI = ii, where B is a regular region in the physical space £ 3 and 
that all the assumptions given at the beginning of the Sect. 3, including the relation (3.1), 
are satisfied. To obtain the continuous model of M we shall postulate the kinetic con
straints 

(5.1) 

Equations (5.1) can be interpreted as the "continuous" approximation of the discrete 
kinetic constraints (4.4)1 • We shall also take into consideration extra kinetic constraints 
in the form 

(5.2) hP(Z' t' T R' VT R) .= 0' z E B' t E R' ft = 1 ' ... ' I' 

where hP are known differentiable functions. Assuming that the constraints (5.1), (5.2) 
are ideal we postulate that the relation 

(5.3) J (xk t5d~ + Fk« t5 T~a) dv + f Xk t5d:dl1 = 0 
B oB 
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holds for any ~dA, ~TA«, consistent with Eqs. (5.1), (5.2). The latter relation can be taken 
in the form of 

(5.4) J Jka~T':dv = 0, Iu = Xk,a-Fu, 
B 

provided that we also postulate the boundary kinetic constraints 

(5.5) TA«nRa+dA = 0, z E aB, t ER. 

Relation (5.4) has to hold for any ~TA« consistent with the extra constraints (5.2). From 
the general field equations (1.4) (defined on Bx R) and from Eqs. (3.1), (5.1), (5.5), we 
obtain the equations of motion in B x R 

TRk«,a+b~ = f!R"l, 

12J«flp""" - T"« n a a + B"« R p- R-t:Rap
0 

R' 
(5.6) 

and the kinetic boundary conditions on aB x R 

(5.7) TA'nR« = b~. 

Equations (5.6), (5.7) and (5.2), (5.4) characterize the continuous model of the ma
terial system M, based on the kinetic constraints. If I~ 0 and B~« ~ 0, we obtain from 
the equations mentioned above, the equations of the material continuum with the con
straints imposed on the first Piola-Kirchhoff stress tensor, [2]. 

6. Discrete-continuous models 

Let us assume now that II = B x L, where B is a regular region in EN, N is equal to 
1 or 2, and L is a lattice of points in E 3 -N. We can interpret EN and E 3 -N as the sub
spaces of the physical space E 3 • Let us denote Z = ((XK), (X ... )), where (XK) e B, (XA) e L, 
and the indices K, A run over the sequences 1, ... , Nand N + 1, ... , 3, respectively, and 
where X« are Carthesian orthogonal coordinates in E 3 • Combining the results given in 
Secst. 2 and 3, we shall postulate the geometric constraints 

L1cxXk(Z, t)-p,~F~cp(Z, t) = 0, 
(6.1) 

Xk.K(Z, t)- ~~Fkp(Z, t) = 0. 

These constraints are said to be ideal if the relation 

(6.2) }; [ f ca:~x"+TA«~Fk«)dv+ f dA~x"da) = o 
L B U 

holds for any ~X"' ~Fka admissible by Eqs. (6.1) (if B = (0, h) c R, then the integral 
over aB has to be replaced by the expression of the form [d~ ~X"]§!~~). From Eq. (6.2) 
and from the general field equations (1.4) (where the functions are now defined on B x L x 
x R or B x L) we obtain in B x L x R the following equations of motion 

LfAs~ ... + TR"~K+b~ = (!Rt, 
(6.3) 

12Jaflp""k - IJ.« S"A + ~(l T"K £1 a a + B"l% R fJ - rA R Ug R - t:R -- R' 
aFka 
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and on oB x L x R the kinetic boundary conditions of the form 

(6.4) T~KnRK = b~, 
where Eq. (3.I) was also taken into account. 

Equations (6.1)-(6.4) describe the discrete-continuous model of the material system 
M, which is based on the concept of ideal geometric constraints (6.1). We shall obtain 
an analogous result after including the kinetic constraints 

(6.5) 

and assuming that they are ideal, i.e., that the relation 

(6.6) r [ f (x~cdd:+F~c11 dT~~~)dv+ f x~cdd:dO'] = 0 
L B 8B 

holds for any ddA, dTAx admissible by Eqs. (6.5). However, models of M based on geo
metric constraints are different from those based on kinetic constraints if the conditions 
of the form (2.2), (3.3), (4.5) or (5.2) are included. Discrete-continuous models can be 
used, among others, to describe the multi-layered structures (then K = I , 2 and A = 3) 
or bodies reinforced with the family of non-intersecting regularly distributed fibres (then 
K = I and A = 2, 3). 

7. Conclusions 

The main problem in the paper, that is, how to construct the approximate mechanical 
models of certain material systems, was solved in Secs. 2-6 by applying the concept of 
ideal constraints to the general field equations (I.4). We can now pass to the second 
problem which concerns the relation between different models of the given material system. 
This problem is much more complicated and here we shall confine ourselves to a few 
conclusions which follow from the results obtained in the foregoing sections of the paper. 

Comparing Eqs. (2.4) with Eqs. (3.5) and Eqs. (4.8) with Eqs. (5.6), we can see that, 
from the analytical point of view, the basic equations of the discrete models constitute 
the finite difference approximation of the partial differential equations of the correspond
ing continuum models. It follows that the "distance" between the related models can be 
reckoned, for example, by the methods given in [3]. However, it does not necessarily 
follow that the continuous models are more or less exact than the discrete models. Using 
the known methods of function spaces [3], only the "distance" between both kinds of 
models can be analysed because the discrete and continuous models studied were obtained 
independently each other. On the other hand, the degree of approximation of any model 
of M given in Secs. 2-6 with respect to the exact equations (1.2) of mechanics of the 
material system M, can be traced only for a given kind of a partition M = u P(Z), 
Z ell (cf. Sect. I), for a known class of motions etc. This problem is connected with 
the applications of the models dealt with to the special cases of material systems, such 
as laminated bodies, fibrous media and others. 

The next problem concerns the relations between models based on the geometric 
and the kinetic constraints, both in discrete and continuum approximation. If we compare 
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Eqs. (2.4) with Eqs. (4.8) and Eqs. (3.5) with Eqs. (5.6), we can see that the correspond
ing models (based on the geometric and kinetic constraints, respectively) coincide in the 
absence of the extra constraints given either by Eqs. (2.2), (4.5) or by Eqs. (3.3), (5.2). 
In this paper the extra constraints were introduced formaly (we did not analyse the form 
of the functions hv, RP, hP); however, their role has to be investigated for each special 
case of the construction of the model of M. Roughly speaking, the models based on 
geometric constraints are more "rigid" while the models based on kinetic constraints 
make the body more "slender". For a more detailed discussion of this problem the reader 
is referred to [2]. 

The discrete and continuous models obtained in the paper are rather simple models 
of the complex material system M. However, because of presence of the length dimension 
I in the field equations (2.4), (3.5), (4.8) or (5.6), the weak non-local effects are included. 
For the asymptotic case I~ 0 we obtain from (1.4h the stress relation of the hyper
elastic material. If I ~ 0, B~« ~ 0, then the models obtained in Secs. 3, 5 are governed 
by the equations of the classical continua with internal constraints for deformations and 
stresses [2]. Using the ideas which lead to the models as described in Secs. 2-6, we can 
also construct more general models. For this purpose we have to introduce, instead of 
Eqs. (1.1), the nonhomogeneous approximations of the motion of any part P(Z) of the 
material system M. In this way we arrive at the form of the basic field equations which 
is more general than that given by Eqs. (1.4). The constraints imposed on the unknown 
fields in the basic equations will lead to the discrete and continuous models which are 
governed by the equations of the non-simple or Cosserat type systems with geometric 
or kinetic ideal constraints. 

It must be stressed, that the approach to the problem of construction of approximate 
models of material systems which was presented in the paper and based on the concept 
of ideal constraints, is, obviously, not a unique one. Instead of postulating the ideal 
constraints of the form (2.1), (3.2), (4.4), (5.1), we can also postulate constitutive equa
tions for the kinetic fields 4~, Tft, the arguments of corresponding response functionals 
are the kinematic fields Xk, 'pk«.· _.~or the ~iscrete models with potential interactions be
tween parts P(Z), P(Z + L1« Z) of the material system M, we obtain, after some simple 
calculations (cf. [4]), 

where 

and where ER = eR(Z; L1«Xb Fb, L1pFt11) is the potential of interaction of the part P(Z) 
with parts P(Z + L1 :t Z) of M. The foregoing equations along with the general field equa
tions (1.4) give what can be called the discrete elastic system of the Cosserat type. For 
the continuous model with potential interactions among different parts P(Z) of M, we 
shall obtain by means of the variational approach the Eqs. (1.4) in which 

T k« _ H 11kp +Gk« 
R - R ,p R' 
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where 

H
ak _ 8eR 
R =-a--· 

Xk.« 

581 

and where ER = ER(Z; Xk,a; F~;11 ; Fkii,/J) is the density of the potential of interactions. 

Lagrange's corresponding function was assumed in the form ~ (!R xkik+ +[2J~f1ftkllpkfJ
-en(]-ER. These models are more complicated than those based on the concept of con
straints. Recent literature on the laminated and fibrous media and composite materials 
also gives evidence of other approaches to the problem of construction of approximate 
models of complex material systems are applied (cf. [5, 6]). However, the approach based 
on the notion of constraints seems to be very simple and very general. The direct ap
plications of the discussed models special complex material systems, have not been 
analysed thus far and will be the subject of separate investigations. 
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