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BRIEF NOTES 

A note on the force of interaction between external loads and 
a Griffith crack 

A. KACZYNSKI (W ARSZA WA) 

The problem of action of a field of external loads on a Griffith crack in an infinite 
elastic medium is discussed. Using the definition of the force exerted on a defect by 
the external field given in [1], the formula for the horizontal component of this force 
in terms of the stress intensity factors is derived in the static and quasi-static cases. 
The result shows the notion of the force of interaction to be useful in the analysis 
of fracture phenomena due to its interpretation and the relation to the well-known 
Irvin's potential energy release rate. 

1. Statement of the problem : crack geometry, assumptions relative to external loads, method 
of solution 

Let us consider an infinite, linear-elastic and isotropic medium containing a Griffith 
crack which is situated in the field of arbitrary external forces [symbolically denoted by 
(EXT) in Fig. 1]. 
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FIG. 1. 

The Griffith crack is a plane, two-sided surface S (positive and negative sides denoted 
by + and -)described in a rectangular Cartesian coordinate system (x1 , x2 , x3) as follows 

-a < x 1 < a, x2 = 0, - oo < x 3 < oo. 
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232 A. KACZYNSKI 

The discontinuity of the displacement vector ui on the surface S is characterized by 
the jump vector Ui(x 1) 

(1.1) 
Ui(xJ = ui(x 1 , o+)-ui(x1 , o-) for lx,l <a, 

Ui( ±a)= 0. 

The medium is assumed to be loaded by a system of forces applied outside the crack 
and independent of x3 in such a manner that the crack deformation can be split into three 
fundamental modes; thus the problem may be regarded as a problem of a crack in the plane 
(Mode I and Il) and antiplane states of strain (Mode Ill) and the considerations can be 
related to the cross-section x3 = 0 of the crack representing a line segment of length 2a 
and tips at x 1 = ±a. It is known from the classical theory of cracks that 

in the opening mode (Mode I ) U2 -:f. 0, U1 = 0, u3 = 0 on S, 
in the sliding mode (Mode ll) U1 -:f. 0, U2 = 0, u3 = 0 on S, 
in the tearing mode (Mode Ill) U3 -:f. 0, u1 = u2 = 0 on S. 

Each mode is characterized by the singular crack-tip stresses: 

a22 for Mode I, a21 for Mode IJ, a23 for Mode III. 

Finally, we assume that the problem is static, i.e., the crack is at rest and the external 
loading is independent of time. Generalization to the quasi-static case will be carried out 
at the end of this paper. 

In order to solve the elastic problem presented, a two-stage method is used. Making 
use of the superposition principle and taking into account the boundary condition re
quiring the crack edges to be free of tractions, our problem M can be represented in the 
form of the sum of two problems (Fig. 2). The first one M< 0

> concerns the distribution of 
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FIG. 2. 

displacements and stresses in a continuous crack-free medium loaded by external forces 
(EXT), while the second problem M(l> concerns the medium with a crack lx1 l <a loaded 
exclusively by forces - hi(x) applied to the crack faces; it is assumed that 

(1.2) 

and the corresponding solutions of M<0> i MO> are denoted by a~J>, u~0> and aU>, up>, Ul'>, 
respectively. 

The simple problem M<0 > may be solved by any method known in elasticity (Green 
functions, potentials, etc.), whereas the solution of M< 1' can be obtained by means of the 
methods usually employed in the case of problems with discontinuous boundary condi
tions (Cauchy integrals, integral equations, etc.). 
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2. Force of the external loads on the crack 

In order to describe the interaction between the external loads and the crack let us 
make use of the definition given in [1] of the force exerted on a defect by the "complemen
tary" field. The definition introduced in connection with general problems of dynamics 
of defects (e.g. dislocations) may also be applied to the crack considered here. This force 
is formally defined as a functional derivative of the interaction part of the action functional 
with respect to the defect position and in the present case is given by the fromula 

(2.1) F. - fa OO'~~>(xl' x2) I u~t)( )d 
J - 0 I Xl Xi • 

Xj Xl=O 
-a 

Here Fi denotes the force components, summation over i = 1 , 2, 3 should be perform
ed, and the symbols a<0 > and u(l> have the meaning explained in Sect. I. It follows that 
under the crack geometry and external loads assumed, the force F has at most two non
vanishing components, F1 and F2 , since oa~~> I ox3 = 0. Moreover, each of the fundamental 
modes of crack deformation reduces the sum (2.1) to a single term. 

Let us observe that, in spite of linearity of the entire formulation, the formula (2.1) 
does not allow for superposition, the integrand representing a product of forces and de
formation (like e.g. in the formula for strain energy). 

In order to investigate the action of external field on the crack by means of the rela
tion (2.1 ), the values of the jumps of displacements should be expressed in terms of external 
forces. Making use of the results of [2] we observe that the solution of M<n is common 
for all three modes and takes the form 

(2.2) 

(2.3) 

(2.4) 

where 

(2.5) 

l
(sgnx1)H,(x1) 

a~~>(xt, 0) = ~I xf-a2 

-ht(Xl 

for 

for 

for 

for 

0 ,-2--2 

H( ) - 1 f hi(t) va -t d 
i Xt - .......__ t 

1C X 1 - t 
-a 

(for lx11 < a these integrals are interpreted in the sense of Cauchy principal values), 

(2.6) 

ft - shear modulus, 'V- Poisson's ratio. 
The functions hi(x1) are assumed to be bounded for lx1 1 ~ a to ensure the existence 

of all integrals appearing in the paper. 
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3. Horizontal component of the force of interaction 

Let us introduce three additional functions 

(3.1) G1(x1) = - 1
- J~ hi(t)dt (for lx1 l < a- Cauchy principal values) and six 

n ya2 -t2 (x1 - t) 
-a 

coefficients 

(3.2) 

The following relations are easily obtained: 

(3.3) Hi(x1) = eix, +adi+ (a2 -xi)G1(x 1) and lim (a2 -xi)Gi(x1) = 0, 

(3.4) 

(3.5) 

x1-+-±a 

H1(±a) = a(di±ei), 

(Kf) 2
- (Kf) 2 = 4adiei. 

Here the stress intensity factors are expressed as follows: 

R 1" ,--( --)- O>( 0) Hi(a) ;-( d) K1 = tm y2 X 1 -a a2 1 x 1 , = .. ;- = Jta ei+ i, 
~- ~ ,a 

Kf ~ lim )12( -x1 -a)~','(x1 , 0) ~ - H,~-a) ~ y'Q(e1-d1). 
xl--a- a 

(3.6) 

The horizontal (longitudinal) component of the force (2.1) (j = 1) is equal to 

a 

(3.7) F1 = J d(d;:~)) up>(xt)dxl. 

-a 

Integrating by parts, taking into account (1.1h and (2.4), we obtain 

(3.8) 

Making use of (3.3) and (3.2) we have 

(3.9) 

where 

Changing the order of integrating in the last integral we note that 

(3.11) 2ci J = -Fl. 
# 
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Relation (3.9) is now rewritten in the form 

(3.12) 
4.n 

F 1 =- c1ad1e;-F1 
ft 

which yields the simple formula for F1 

(3.13) 

Let us now compare this result with (3.5). It is evident that the component F1 may be 
expressed in terms of the stress intensity factors 

(3.14) 

with c1 defined by (2.6). 
Thus it has been proved that in each crack deformation mode the component F1 of 

the force exerted on the crack by external loads is proportional to the difference of squares 
of the stress intensity factors at the right and left crack tips, respectively. These factors 
are, of course, certain functionals of the externally applied forces. 

A similar result may be obtained in the same way for a semi-infinite crack: 

(3.15) 

It is interesting to note the relation between F1 and Irvin's strain (or potential) energy 
release rate G[4] connected with the well-known Griffith fracture criterion: 

(3.16) 
G .n(l-v)( 2 2) .n 2 F1 = = --- K1 +K2 +-K3 

2ft 2ft 
for a semi-infinite crack, 

F1 = GR- GL for a finite crack. 

In order to give the interpretation of this force let us consider the medium with a crack 
deforming according to the Mode I. The corresponding load is so selected that u~~>(x1 , 0) = 
= 0 implying F2 = 0 (e.g. the system of two concentrated forces is symmetric with respect 
to xraxis [2]). It follows from (3.14) that if F1 > 0 or F1 < 0, then the crack has a tendency 
to propagate in the positive or negative directions of the x 1-axis, respectively. In the case 
of equal SIFactors, KR = KL, the component F1 = 0 and the crack has equal abilities 
to propagate in the directions. 

As far as the vertical component F2 of the force acting on the crack is concerned, no 
formulae of the type of (3.14) can be derived and the problem of its possible physical 
interpretation is not clear as yet. 

Our considerations may easily be extended to quasi-static case when the crack moves 
together with the field of external forces along x 1-axis with a constant speed v. Making 
use of the results obtained in [3] we observe that all the relations given so far hold true 
also in the quasi-static problem provided the following substitution of constants c; for c1 

is made: 

(3.17) 
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where 

(3.18) 

cd = y' (). + 2,u)/e- velocity of dilatational longitudinal wave, 
; -

·Cs = }1 ,u/e -velocity of shear transverse wave, 
e - density of the medium, 

A., ,u - Lame constants. 

A. KACZYNSKI 

1t is assumed that v < c5 (the motion of the crack and loads is subsonic). It is easily seen 
that if v -+ 0, then ci -+ eh since lim (1-fJl)f~R = 1-v. 

v--+oO 

The expressions (3.16) remain also valid in the quasi-static case provided G is replaced 
:by its dynamic counterpart as derived in [5]. Taking into account (3.17) and the behav
iour of ~R we arrive at the conclusion that for v = eR (velocity of Rayleigh waves) in the 
plane problems (Mode I, II) and for v = c5 in antiplane problems (Mode liT), F1 tends 
to infinity which sets the practical upper limits on crack velocity in these cases. 
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