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The self-similar problem of the unsteady motion 
of viscous, heat-conducting gas driven by a piston 

V. P. SHIDLOVSKY (MOSCOW) 

THE one-dimensional motion of gas is assumed to be governed by Navier-Stokes equations and 
induced by a piston moving according to a power-law, with the initial pressure equal to zero. 
The condition of self-similarity is formulated for such a motion. If this condition is satisfied the 
problem is reduced to that of numerical solution of a non-linear boundary-value problem for· 
a fifth-order system of ordinary differential equations. The solution is analysed a computation 
example being given. In addition, a special case of heat-conducting, inviscid gas is considered. 

Przyjmuje si~, :ie jednowymiarowy ruch gazu opisany jest r6wnaniami Naviera-Stokesa zgoanie 
z pot~owym prawem poruszaj~cego si~ tloka przy cisnieniu poc~tkowym r6wnym zeru. 
Dla takiego ruchu sformulowany jest warunek samopodobienstwa, przy pomocy kt6rego pro
blem zostal sprowadzony do numerycznego rozwi~zania nieliniowego problemu brzegowego, 
opisanego ukladem r6wnan r6:iniczkowych zwyczajnych pi~tego r~du. Przeprowadzono dyskusj~ · 
rozwi~nia oraz dla jego ilustracji podano przyklad liczbowy. Rozwa:iono ponadto szczeg6lny 
przypadek gazu nielepkiego lecz przewo~cego cieplo. 

11pHH;HMaeTcn, tiTO O.AHOMepaoe .ABIDKeHHe ra3a OIIHCbiBaeTcH ypaBHeHHHMH Haabe-CToKca 

COrJiaCHO CTeneHHOMy 3aKOHY ,ABIDK~erOCH nOpiiiHH, npH }{allaJibHOM ,AaBJieJUm paBHOM 

Hymo. llJIH TaKOrO ,ABIDKe}{HH CcPOpMyJIHpOBaHO yCJIOBHC aBTOMO,AeJib}{OCTH, npH llOMOILUI 

KOTOporo 3a,Aalla CBe,AeHa K liHCJieHHOMY pemeamo }{eJIHHeHHOH KpaeBOH 3a,AaliH OIIHCaH}{Oit 

CHCTeMOH o6biKHOBeH}{biX .AHcPcl>epeHUHaJII>HbiX ypaBHeHHH llHTOro nopH,AKa. 11poBe,AeHO 

o6cym,AeHHe pemeHHH, a TaiOKe .AJIH ero HJIJilOCTPauHH npHBe,AeH liHCJioaoii npHMep. Kpo

Me 3TOrO paCCMOTpeH llaCTHbiH CJIYllaH HeBH3KOro, HO TellJIOnpOBO,AHOrO ra3a. 

THE one-dimensional non-stationary motion of gas driven by a piston is usually consider
ed as a classical example of propagation of wave perturbations. Self-similar problems 
of this class for adiabatic flow with shock waves were stated first by L. I. SEoov [1]. Their 
detailed analysis was made by N. N. KOCH INA and N. S. MELNIKOVA [2, 3] and S. S. GRI
GORIAN [4]. 

Together with the motion of gas compressed by a plane piston may be considered. 
motions under the action of an expanding cylinder or sphere. The solution of the self-simi-· 
Jar problem in the case of an expanding sphere was obtained by N. L. KRASHENINNIKOVA 
[5], who considered some variants of the power-law of expansion, one of the variants 
being analysed with consideration of the influence of viscosity and heat conduction. 

If the density of the unperturbed gas is that of normal atmospheric conditions, the 
influence of viscosity and heat conduction reduces to the display of a shock wave 
structure and a thermal boundary layer at the surface of the piston. However, reduced 
density gives rise to conditions, under which the influence of dissipation extends over the 
entire region of motion of the gas. As a consequence, complete Navier-Stokes equations. 
are needed for the correct description of that motion. 
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Below we consider the general case of the self-similar problem of a piston acting on 
a viscous, heat-conducting gas, using power-laws of motion of the piston and variation 
of viscosity and any type of symmetry of the motion. 

1 

Let us consider the one-dimensional non-stationary motion of a viscous heat-conduc
ting gas, characterized by plane, axial or central symmetry. If the gas· of arbitrary nature 
has constant coefficients of specific heat and constant Prandtl number and the viscosity and 
heat conductivity are related to the temperature by power-laws, the motion of the gas is 
:governed by the Navier-Stokes equations. The form of these equations and the method 
of their transformation to a dimensionless form corresponding to the self-similar motion 
is given in Ref. [6]. 

Let the gas, the initial density of which, e1 , is uniform, move under the action of a 
plane piston, or an expanding cylinder or sphere; this impermeable moving surface will 
be referred to in all the cases considered as the piston. Its velocity of displacement will 
be prescribed by the equation 

(I. I) U = ctm, c, m = const. 

It will be assumed that there is, at any instant of time, no heat exchange between the 
gas and the surface of fhe piston. Then, the initial and boundary conditions for the solution 
of the piston problem can be written in the form 

Q = Q1, p = e =V= 0 for t = 0 and t > 0, r = rl, 
(1.2) 

for 

:where v-velocity, p-pressure, e-internal energy, u-Prandtl number, ?e-ratio of 
specific heats, ,u-viscosity, rP-coordinate of the piston and r1 -coordinate of the per
turbation front. Let us observe that the existence of the perturbation front is connected 
with the assumption that the temperature of the gas in the unperturbed region is zero 
(see [8]). 

Denoting ~ = I +m and following [6] we shall adopt as an argument the quantity 

(1.3) 'YJ = arjrP = a~r/(ct6) 

and transform the variables, which are sought for, according to the formulae 

e = etR('YJ), 
u 

v = Q(f V('Y)), 

{1.4) p = e.(a~r P('fJ), I ( U )
2 

e = ?e-I Ql N('Y)), 

where 

(1.5) 
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If the expression (1.1) for U, and the expression for r P obtained from it by integration 
are substituted in (1.5), the condition of independence of the parameter x on time will 
represent a condition of self-similarity of the motion, which has, in our case, the form 

(1.6) 

The condition (1.6) will be considered, in what follows, to be satisfied, but there are 
other limitations (see [2]), valid in the limiting case of adiabatic flow and also the condition 
of non-negative exponent n. 

Taking into. account all the limitations we can consider the values of nand m whithin 
two corresponding intervals 

(1.7) 
v-2 
--~ n ~ 0, 

2v 
V 1 

---~m~ --
2 

and m> 0, n > 1. 
v+2 

If the condition of self-similarity (1.6) is satisfied, the Navier-Stokes equations reduce, 
by virtue of (1.4), to the form 

dr;R'-VR'-RV'-(v-1)RV/r; = 0, 

4 [ ( V- 1 )]' V- 1 ( 1 ) R[(d-1)V-dr;V'+VV']+R'N+RN' = JX N" V'-2f}V +2-'YJ-xN" V'-1jV' 

(1.8) 

[ 
v-1 1 ('v-1 )

2

] +2(u-1)xN" V' 2 +---:;j2V2
- 3 -r;-V+V' . 

The dimensionless coefficient a in (1.3) can always be selected so that r;1 = ar1 /rP = 1. 
Then, instead of (1.2) we obtain the conditions 

(1.9) 
R(l) = 1, P(l) = N(1) = V(1) = 0, 

u(]- 1xN"(a)N'(a) = 0, V(a) =ad. 

These conditions, together with the Eqs. (1.8), ensure complete formal interpretation of the 
self-similar problem of a piston in a viscous heat-conducting gas. The constant dimension
less parameter x [Eq. (1.5)] vanishes together with the coefficient of viscosity and for 
a finite Prandtl number (] it may be used as a criterion for the combined influence of visco
sity and heat conduction. 

2 

To solve the boundary-value problem it is necessary to describe in a more accprate 
manner the behaviour of the integral curves in the neighbourhood of the singular point 
'YJ = 1, that is in the neighbourhood of the perturbation front. As was observed in Ref. 
[6], the form of the expansion in the neighbourhood of that point and the number of terms 
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necessary to obtain a "free" parameter, depends on the physical characteristics of the gas, 
or, more rigorously speaking, on the power exponent n and the quantity 

(2.1) c = !: . 
Let us consider the case of a piston, the velocity of which varies according to the law 

(1.1) and m = 5. By setting n = 1.1 we can ensure the satisfaction of the self-similarity 
condition (1.6). The case considered is that of uniform initial density (e 1 = const) and, 
if we set C = 3/2 (that is " = 2a), then, according to [6], use can be made, for small values 
of z = 1- 'YJ, of the following asymptotic representations 

V= Avzl0/11 + BvzlS/11' N = 2Avzl0/11 + BNzl0/11' 

(2.2) 

The Eqs. (1.8) will be satisfied in an approximate manner by the Eqs. (2.2) for any 
value of B0 , so that there is some arbitrariness which is necessary to satisfy the boundary 
conditions (1.9) at both ends of the interval a ~ 'YJ ~ 1 considered. 

In practice the computation is started from a certain arbitrary value B!0 >, which is in
troduced into the formulae (2.2), thus enabling us to determine the values of the sought-for 
variables at the original point 'YJo = 1- e (e ~ 1). Numerical integration of the Eqs. (1.8) 
is performed by negative steps, starting from the point 'YJ = 'YJo and ending at that point 'YJ = 
= a<0> where the condition V(a<0 >) = a<O> c5 is satisfied. Then, a simple algorithm enaples us 
to vary the value of Rv in such a manner, that the second of the conditions (1.9) established 
at the point 'YJ = a should be satisfied with a prescribed accuracy. The value of a is deter
mined at the same time. 

On the basis of the above method and following the standard Runge-Kutta procedure, 
computations were performed for a plane piston (v = 1), for the values " = 1.4, 0' = 0.7, 
m = 5, n = 1.1. Let us emphasize once again the fact that the values of m and n are inter
related by the self-similarity condition (1.6) and the value of n selected enables us to ensure 
satisfactory approximation to the real law of viscosity variation at a certain, sufficiently 
large temperature interval. It is also worth while observing that the kindred variant 
of the self-similarity problem of the piston, for m = 1 , n = 3/2, was considered by 
V. V. SYCHEV and N. C. AvANESOVA [7]. 

The patterns of variation of velocity, density and temperature in the region between the 
surface of the piston and the perturbation front are shown in Figs. 1 to 3, respectively. 
Each of the diagrams shows curves found by numerical integration of the Eqs. (1.10). 
The figures express the values of the parameter X· In the case of x = 0 the computation 
was carried out using equations obtained from (1.8), but the external boundary of the flow 
region is not a perturbation front but a shock wave with a relevant modification of the 
bouqdary conditions (see [1]). As is seen from the diagrams, the weakening of the influence 
of viscosity and heat conduction, that is the reduction in x, is manifested first by a narrower 
perturbation region. Second, as x decreases, the profiles of the gas-dynamic parameters 
approach discontinuous profiles of adiabatic motion. Nevertheless, even for a very small 
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FIG. 3. 

value of x, different from zero, the perturbation front is a surface of weak discontinuity, 
not strong. In addition, for any x > 0, the temperature and the density at the surface of the 
piston are finite and different from zero, whereas for the "adiabatic" case the temperature 
at the surface is equal to zero and the density is infinite. 

3 

From the above it follows that at the limit x --+ 0 there is a transition from a continuous 
motion to a motion with a strong discontinuity (shock wave). The case in which the Prandtl 
number tends to zero with the parameter x and 

(3.1) lim (~) = XT = const 
x-+0, ~--o a 

is of particular interest. If it is borne in mind that the quantity x is proportional to the 
coefficient of viscosity p, and the Prandtl number is equal, according to a definition, to 
a = p,cp/ A, it · is clear that the condition (3.1) is satisfied, if the gas is in viscid but heat
conducting. Then, the parameter XT is, of course, in direct proportion to the coefficient 
of heat conduction of the gas A. 

Assuming that the heat conduction is related with the temperature by a power-law of the 
same type as hitherto assumed for the viscosity, that is 

(3.2) 
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we can generalize, in a formal manner, many former results to the limiting case consideredh 
In particular, the conditions (1.6) and (1.7) are invariable. The independent variable (1.3} 
may also remain in the former form. Next, from the (I .8) we dbtain, by setting x = 0 ,. 

"'XI(f = XT• 

(3.3) 

~'YJR'-VR'-RV'-(v-1)RV/'YJ = 0, 

R[(~-I)V-~'YJV'+VV']+RN'+R'N = 0, 

R[2(~-1)N- ~'YJN' + VN']+("'-I)RN[V' +(v-1)Vf'YJ] 

= XT[(N"N')' + (v-I)N"N' /'Y}] •. 

By preserving the condition of zero heat transfer at the surface of the piston, we obtain,. 
instead of (1 .9), 

(3.4) 
R(1) = 1, P(1) = N(l) = V(l) = 0, 

XTN"(a)N'(a) = 0, V(a) =a~. 

Despite the external identity with the Eqs. (1.8), the Eqs. (3.3) with the boundary· 
conditions (3.4) have no continuous solution similar to that described in Sect. 2. This can 
easily be explained by taking into consideration the fact that the gas considered is inviscid,. 
but can also be confirmed by a purely formal analysis of the behaviour of the solution in the
neighbourhood of the point 'YJ = 1 in the case of (f ~ 0, in agreement with the general 
method [6]. 

A qualitative study of propagation of perturbations in a heat-conducting gas having zero 
temperature of the unperturbed volume was given in the book [8]. The result of that study 
reduces to a statement of necessity of occurrence of a strong discontinuity at a certain point 
'YJ = 1Js, a < 'YJs < 1 and due to a heat conduction the temperature of transition through 
the discontinuity should vary in a continuous manner. More accurate studies of motions. 
with isothermal discontinuities were carried out by I. 0. BEZHAEV [9] and V. E. NEUVAZ
HAEV [10], who gave also examples of computation. 

The conditions at the isothermal discontinuity have, in dimensional symbols, the form 

(3.5) 

e+(v+ -cs) = e-cv- -cs), 

e+(v+-c,)2 +("'-I)e+e = e-cv--c,)2 +("'-1)e-e, 

1 
2 e+ (v+ -cs)v+ 2 + ("'-1)e+v+ E- O.fcv)(oe/or)+ 

1 
= 2 e-cv- -cs)v- 2 + ("'-1)e_v_ E- ().fc")(oefor)-,. . 

the symbol cs denoting the velocity of displacement of the discontinuity surface and the· 
upper indices + and - denote values behind and before the discontinuity, respectively. 

By virtue of self-similarity at the surface of discontinuity we have 'YJs = const and from 
the formula (1.3) it follows that 

c 6 
r, = (ii) 'Yj,t , 

dr, U ..Q 

c, = dt = ~v'Yj,, 
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-so that the dimensionless equivalent of the velocity c, is a quantity ~'YJ,. Making use of the 
result obtained, the relations (3.5) can be written in a dimensionless form. On solving 
them for the values behind the discontinuity we find 

R+ = R-(v- -'YJ,~)2/N, v+ = 'YJ,~+N/(V- -'YJ,~), 

(3.6) 
(N+)' = (N-y- 2;;~. R-(V- -1J,W [ 1- (V- ~~.d)' l 

The introduction of the discontinuity surface at the point 'YJ = 'YJs enables us to obtain 
the solution of the Eqs. (3.3) satisfying all the conditions (3.4) for 'YJ = 1 and the condition 
V(a) = ~a. In addition, the unknown value of 'YJs is the "free" parameter, by variation 

-<>f which we can also satisfy the second condition at 'YJ = a, that is we can solve in a com
plete manner the boundary-value problem which has been stated. 

In the case of a plane piston ('v = 1) and for the same values of m, nand" as in Sect. 2, 
the computational results are shown in a diagrammatic form in Figs. 4 to 6. The figures 
marking particular curves express the values of the parameter of heat conduction XT. 
Similarly to the case of combined action of viscosity and heat conduction, the reduced 
influence of heat condution manifested by a decrease in the parameter 'YJT, leads to a narrower 
perturbation region. As regards profiles of gas-dynamic parameters it is of particular 
interest to study the velocity profile (Fig. 4) and the temperature profile (Fig. 6). It is 
-obvious that if we do not take into account the region before the shock wave, the character 
-of the velocity profile in heat-conducting gas approaches more closely that of the "adiabatic" 
profile than the previous profile Fig. 1. On the contrary, the temperature profiles of a heat
-conducting gas resemble more · closely the profiles shown in Fig. 3 taking into considera-

FIG. 4. 
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tion the simultaneous influence of viscosity and heat conduction. Thus, it may be stated 
that the variation of velocity of a viscous heat-conducting gas driven by a piston is deter
mined above all by the mechanism of viscosity, while a principal role in the variation 
of the temperature is played by the mechanism of molecular heat conduction. 

4 Arch. Mech. Stos. nr 1/76 
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