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Basic static problems of elastic micropolar-media 

T. G. GEGELIA and R. K. CHICHINADZE (TBILISI) 

BY the method of singular integral equations and singular potentials some static boundary· 
value problems .of the moment theory of elasticity are studied. The case under consideration is.. 
that in which the normal displacement and rotation components are given as well as tangentiar 
force and couple stress components, or the case in which normal force and couple stress compo
nents and tangential displacement and rotation components are prescribed. Such problems 
arise as a result of contact between elastic micropolar media and may be of interest from the 
point of view of mechanics. They are interesting also from the mathematical point of view because 
they can be reduced to singular integral equations with complicated kernels. 

Niekt6re statyczne zagadnienia brzegowe momentowej teorii spr~zystosci byly badane metod(l 
osobliwych r6wnan calkowych i osobliwych potencjal6w. Rozwai:any jest przypadek, w kt6rym. 
dane S(l zar6wno skladowe przemieszczenia w kierunku normalnym i obr6t, jak i sila styczna 
i skladowe napr~zen momentowych b(ldi przypadek, w kt6rym dane S'l sila normalna i skladowe 
napr~zen momentowych oraz przemieszczenie w kierunku stycznym i obr6t. Problemy tego typu 
wyst~puj(l w trakcie kontaktu spr~zystych osrodk6w mikropolarnych i budZ(l stale zaintere
sowanie mechanik6w. S(l one r6wniez atrakcyjne z matematycznego punktu widzenia, gdyi: 
prowadZ(l do osobliwych r6wnan calkowych ze zlozonymi j(ldrami. 

MeTO~OM CHHrymipHbiX HHTerpaJibH;biX ypaBHeH;m1: H CHHrymlpHbiX llOTeHQHaJIOB HCCJie

~yroTCH rpaHH'tiHhie 3a~aq}i CTaTHKH MOMeH;TH;OH TeOpHH ynpyrOCTH, I<Or~a Ha rpaHHQe cpe~hl 
3a~aHbl HOpMaJibH;hie COCTaBJI.ffiOIQHe CMeiQeHHH H BpaiQeHHH H I<acaTeJihHbie COCTaBJIHIOIQHe 

CHJIOBOI"O H MOMeHTHOI"O HanpH>I<eHHH HJIH I<Or~a 3a~aHbl HOpMaJibHbie COCTaBJIHIOIQHe CHJIO

BOrO H MOMeHTHOrO mmpH>I<eHHH H I<acaTeJibHhie COCTaBJI.ffiOIQHe CMeiQeHHH H BpaiQeHHH. 3a-. 

~aq}i Tai<oro po~a B03Hm<aiOT npH conpm<ocHoBeH:HH ynpyrHX Mm<pononHpHhiX cpe~ H MoryT 

HMeTb HHTepec C TOtii<H 3peHHH MeXaHHKH. 3TH 3a~aq}i HHTepeCHhl H C TOtii<H 3peH;HH MaTeMa

THI<H, Tal< I<ai< Henocpe~CTBeH;H;Oe CBe~eHHe HX I< HHTerpaJibHbiM ypaBHeH;HHM, npHBO~T · 

I< CHHrynHpHbiM ypaBHeHHHM BeCbMa CJIO>I<HOH CTpYJ<TYpbl. 

1. Static state of a micropolar medium 

IN the study of the moment theory of elasticity sometimes referred to as the micropolar
or asymmetric theory the point of departure are the following axioms(!): 

A homogeneous isotropic elastic medium having a centre of elastic symmetry is a region 
~ in a three-dimensional Euclidean space £ 3 and an ordered set of seven real numbers. 
e, A., fl, a, E, v, fJ satisfying the conditions 

(1.1) e > 0, ft > 0, 3.A.+2p, > 0, <X> 0, V> 0, 3s+2v > 0, {J > 0. 

This medium will be denoted by ~ (e, A., 1-l, a, s, v, {1) or simply, if a mistake is exclu-

(1) The foundations of the moment theory of elasticity are discussed in many works, of which let us. 
mention Refs. [1 to 6] and the monograph [7]. Detailed historical information can also be found in those: 
references 
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ded, by fJ. The quantity e will be referred to as the density of the medium fJ, the remaining 
quantities being elastic constants. 

In this work we shall consider a homogeneous and isotropic elastic body having 
.a centre of elastic symmetry, therefore the usual term, which is somewhat lengthy, will be 
replaced by that of "elastic medium". 

Let' = (' 1 , §' 2, ' 3) and t§ = (t§ 1 , t§ 2, t§ 3) be real vectors defined in the region fJ. 
The static state of the elastic medium fl(e, )., f-l, tx, e, v, f:J) corresponding to a mass 

force' and a mass moment t§, is an ordered set of four numbers [u, w, T, fJ,], where 
I) u = (u1 , u2 , u3) and w = (ro1 , w2 , ro3) are real vectors and T = IIT11 II3x 3 and 

p = lll"'t1ll 3 x 3 are real matrices, defined in the region fJ. 

(1.2) 

(1.2') 

(1.3) 

(1.3') 

OTt 
Ill)~ +e§'1 = o, 

ux, 

Of-ltJ 
-~- +e11k T11 +et§1 = 0, j = 1, 2, 3; 
ux, 

ou" OUJ ou, 
IV) TIJ = ).~11 -~- + (p, + tx) !I + (p,- tx) ~ - 2txeiJ1 ro1 ; 

uXk uX1 UXj 

owk owj aw, 
l"'tJ = e~iJ-~-+(v+f:J)~ +(v-{J)-

8 
, i,j = 1, 2, 3, 

UXJ; . UXj Xj 

where ~u is K.ronecker delta, e111-the Levi-Civita symbol and x = (x 1, x2, x3)-a 
point in the space £ 3. 

The Eqs. (1.2) and (1.2') are the fundamental equations of static state and (1.3) and 
(1.3') express Hooke law of the moment theory of elasticity(l). The quantities u, w, T 

.and!"' are the vector of displacement and rotation and the tensor of force stress and moment 
stress, respectively. 

It should be observed that the relation 2ro = rotu between the vectors of displacement 
.and rotation known from the classical theory and sometimes assumed in the moment 
theory of elasticity is not assumed in the present paper. 

l. Basic equations in displacement and rotation components. The stress tensor 

On substituting (1.3) into (1.3') and (1.2) into (1.2') we obtain the general equations 
.of static state of the elastic medium !»(e, ;., f-l, tx, e, v, f:J) in components of displacement 
and rotation due to the mass force~ and the mass moment rJ: 

(2.1) 

(2.1') 

(p,+tx)Liu+(A+fJ,-tx) graddivro+2tx rotu+e§' = 0, 

(v+ f:J)Liw + (e+v- f:J)grad divro +2txrotu-4txro+e~ = 0, 

where Ll is the Laplacian operator. 

l2
) Repeated Latin index in a term means summation with respect to that . index from 1 to 3. Re

peated Greek index does not mean summation. 
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If [u, w, T, ,u] is the static state of the elastic body FJ(e, A., ,u, a, e, v, {J), u and w belong 

to the class C2 (FJ) n C1 (~) and satisfy the relations (1.3) and (1.3'). The inverse statement 
is also valid if u and ware determined from the relations (2.I) and (2.1') and belong to the 

class C2 (FJ) n C1 (~), then [u, w, T, ,u], where the matrices T and ,u have been determined 
from (1.3) and (1.3') represent the static state of the medium FJ(e, A., ,u, a, e, v, {J). 

Thus, the problem of determining the static state, which is the fundamental problem 
of the present paper, reduces to that of determining a pair of vectors, ,u and w, of the class 

C2 (FJ) n C1 (~), from the relations (2.I) and (2.I'). 
The Eqs. (2.1) and (2.1') can be written ·in a matricial form. Let us introduce the 

following differential matrix operator 

and represent it in the form 

where 

Now (2.1), (2.I') can be written in the form 

where d/1 = (d/1 1 , ... ,d/16),.1'f = (Jf1 , ••• ,Jf'6), d/1 1 = u, i =I, 2, 3 and U, = w,_J, 
i = 4, 5, 6; .1ft = ~, i = I, 2, 3 and Jf1 = <§j_ 3 , i = 4, 5, 6. d/1 and Jf will sometimes 
be written in the form d/1 = (u, w), Jf = (fF, <§). 

Let n = (n1 , n2 , n3 ) denote any unit vector. The force stress at a point x in the direction 
n is a vector r(l•> = (r~">, r~">, r)">) where r<j>(x) = r 11(x)n1 and the moment stress at 
a point x in the direction n is a vector ,u<"> = (p.\">, p,~">, p,~">) where pj">(x) = ,u11(x)n,. 

Let [u, w, T, ,u] be the static state of the elastic body FJ(e, A., p,, a, e, v, {J). Then, 
from (1.3) and (1.3') we find 

(2 3) (n) , ~ d" {.. ) OUj { •• ) au, 2 
• Tt = llnj IVU+V"'-<X ~ n}+\JA'+ <X ~ n1 + <XEtjlnjWkJ 

uXi UXj 
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Let us introduce the differential matrix operator 

(2.4) 

where 

(2.5) 

r<2>(o:"' n) 11 

TC4 >(ax, n) ' 

r<k>(ax,n) = IIT<1>(ax,n)ll3x3, k = 1,2,3,4; 

Tlj>(ax, n) = .An, :::,
0 + (u-a)n1 :;:,a +(u+a)<511 :;:,a , 

· u~ uX; un 

(2.6) T,)2>(ax, n) = -2ae;1knb 1f~3>(ox, n) = 0, 

(2.7) 

and 

-r<n>(x) = T<1>(iJx, n)u(x)+T<2>(ax, n)w(x), 

-rfn>(x) = [T(ax, n)ifl(x)]1, for i = 1, 2, 3, 
(2.8) 

(2.9) 
p,<n>(x) = T<4 >(o;c' n)w(x), 

,u~n>(x) = [T(a;c, n)if/(x)]1+3 , for i = l, 2, 3, 

T and T<k> will be termed stress operators. 

3. Basic problems 

There are in the moment theory sixteen problems corresponding to the four problems 
of the classical theory of elasticity. These problems are formulated thus: 

Find the static state [u, w, -r, ~-tl of an elastic body !'}(e, A, J.t, a, e, v, {J) if a displace
ment vector and a rotation vector are prescribed at the boundary of that body [prob
lem (I .I)] or the vector of moment stress [problem (I.II)], or the normal component of the 
rotation vector and the tangential components of the vector of moment stress [problem 
(I. ID)], or the normal component of the vector of moment strain and tangential components 
of the rotation vector [problem (I.IV)]. 

The problems (11.1) to (II.IV) are formulated in an analogous manner, the stress vector 
being prescribed instead of the displacement vector. In the problems (111.1) to (III.IV) 
the normal component of the displacement vector and the tangential components of the 
vector of force stress are prescribed instead of the displacement vector. In the problems 
(IV.I) to (IV.IV) the displacement vector is replaced by the tangential components of the 
displacement vector and the normal component of the force stress vector. 

A method for investigating the fundamental problems of the classical theory of elastic
ity and thermoelasticity with the use of the theory of singular integral equations is descri
bed in [8]. This method can be used to study all the problems above. The construction 
of fundamental solutions and certain elastic potentials is explained in the monograph [7]. 
The problems (I.I), (II.II), (1.11), (11.1) are studied in Refs. [9, 10, 11]. 

http://rcin.org.pl
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In the present paper we shall study the problems (III.IIQ and (IV.IV), to which cor
respond the third and the fourth problem of the classical theory of elasticity (see [12, 13]). 
Similarly to the classical case their study comes up against certain difficulties. 

In what follows a finite region in E 3 will be denoted by !!J+, its boundary by Sand the 
complement of the set !!J+ u S by !!J-. 

The above problems will be studied for the elastic body !!J+(e, A., p,, a, e, v, f:J) and 
!!J- (e, A., p,, a, e, v, {:J) as \Veil. In the first case the problem is termed internal and will 
be denoted by the symbol (p, q)+ (p, q = I, 11, Ill, IV) and in the second case-external 
and will be denoted by the symbol (p, q)- (p, q = I, 11, Ill, IV). 

In addition to being of interest for themselves, external problems occur, with the meth
od used in the present paper, as auxiliary problems for the solution of internal problems. 
The same may be said for the internal problems, which occur as auxiliary problems for the 
solution of external problems. 

Let us observe that, for the statement of the problems (p, q)± (p, q = I, 11, HI, IV), 
the vectors of displacement and rotation u(z) and m(z) and the vectors of force and moment 
stress r<">(z) and p,<">(z), when x e S, are considered to constitute the following limits(l) 

[u(x)]± = limu(z), [m(x)]± = limm(z), 
!f13Z-+X !J± ;)Z-+X 

[ r<">(x)]± = lim r<">(z), [p<">(x)]± = limp,(JI>(z), 
!f ±3z_.,x !I± 3Z_..X 

where r<">(z) and p,<">(z) are to be found from (2.8) and (2.9) and n is a unit vector normal 
to the surface Sat a point x external with reference to !!J+. 

The problems (Ill. Ill)± and (IV. IV)± to be studied in the present paper are equivalent 
to the following problems. 

The problem (Ill. Ill)±. In a region !!J± find vectors u = (u1 , u2 , u3 ) and m(m 1 , m2, m3) 

or a vector tfl = (u, m) of the class C 2 (!!J±) t1 C1 (~±) satisfying the relation (2.2) in the 
region !'J± and the boundary conditions V 

1 
e S: 

(3.1) [TU>( a,, n)u(y)+T<2>(o,, n)m(y)-n{T<l)(o,, n)u(y)+T<2> (o,, n)m(y)},.]± = ju>(y), 

(3.1') [u(y)],; = ii1>(y), 

(3.2) 

(3.2') 

[T<4>(o,, n)m(y)-n{T<4 >(o1 , n)m(y)},.]± = j<2>(y), 

[m(y)]i = jp>(y), 

where jp> and i,<2> (i = 1, 2, 3, 4) are real functions prescribed on S. 
The problem (IV. IV)±. In a region !!J± find vectors u = (u1 , u2 , u3 ) and m = (m1 ,m2 ,m3) 

or a vector tfl = (u, m) of the class C2 (!!J±) t1 C1 (~±), satisfying the relation {2.2) in the 
reg~on !!J± and the boundary conditions Vy e S 

(3.3) [u(y)-n{u(y)},.]± = g(l>(y), 

(3.3') [T<l)(o,, n)u(y)+T<2>(o,, n)m(y)]i = ii1>(y), 

(3.4) [m(y)-n{m(y)},.]± = g< 2>(y), 

(3.4') [T<4>(o,, n)m(y)]i = ii2>(y), 

where g~1 > and gf2
> (i = 1, 2, 3, 4) are real functions prescribed on S. 

Cl) When there is a double symbol ± or + in a statement it should be understood as an abbreviated 
expression of two statements, for the upper and the lower symbols. 

http://rcin.org.pl



94 T. G. GEGEUA AND R.K . CmCHINADZE 

Using the notations of the foregoing section the problems (III.III)± and (IV.IV)± 
can be formulated thus. Find in the region !iJ± a six-component vector 'fl of the class 
C2 (!iJ±) n C1(~±) satisfying the equation (2.2) in the region !iJ± and the boundary con
dition (3.1)-(3.2') in the case (Ill. Ill) and (3.3)-(3.4') in the case (IV. IV)± in which 
ui = d/Ji and wi = cf/1+3 (i = 1, 2, 3). 

4. Uniqueness theorems 

Let us assume that cfi=(u,w), u=(u1 ,u2 ,u3),m=(m1 ,m2 ,m3), SeJI1 (a), 

ex ~ 0, d/1 e C2 (!»±) n C1 (.§±) and Jl(o::c)"ll is absolutely integrable over the region !iJ±. 
Then, the following formula is valid 

(4.1) J {d/JJI(o::c)d/1 +E("ll, "11) }dx = J {[u-n(n · u)]+ [T<1>u+ r< 2>w-n(nr< 1>u 
g+ s 

+nT<l>w)]+ + [m-n(nro)]+ [T<4 >w-n(nT<4 >w)]+ +[nu]+ [nT<l)u+nT<2>w]+ 

+ [nro]+ [nT<4 >ro]+ }dS, 
where 

3A.+2.u ( ou,)
2 

+ !!___ ~(OUt + ou, _2(jij OU~c) 2 

3 ox, 2 L.J ox, oxi 3 OX~c 
I, J=l 

(4.2) 

ex 23 

( ou1 ou1 2 )
2 

3e+2v ( om1)
2 

+- ---+ B~c·tWk + -
2 ox, OXj J 3 ox, 

l,j =1 

+ ~ ~ ( ow, + OWj - ~ (ji} 0(1)" )
2 

+ f!_ ( OWj - owi )
2 

2 L.J ox, OXt 3 ox" 2 ox, OXj 
1,)=1 

The formula (4.1) will be referred to as Green formula. It can easily be proved by 
means of the Gauss-Ostrogrodzki theorem. Let us observe that, under the condition 
(1.1), we have E("ll, "11) ~ 0. 

Let now "11 = (u, ro) be a solution of the equation Jt ( o::c)"ll = 0 in the region !»-, 

of class C2 (!»-) nC1(~-) satisfying, in the neighbourhood of an infinitely remote point, 
the conditions 

(4.3) 

(4.3') 

uj(x) = O(lxl- 1
), 

a~;:) = o(lxl- 1), 

wj(x) = o(Jxl- 1
), j = 1, 2, 3; 

omj(x) = O(lxl- 1), i,j = 1, 2, 3, 
ox, 

where lxl = Jlx~+x~+x~. 
Under these conditions, by applying the Eq. (4.1) in the region !»- n {x e E 3 jlxl < R}, 

where R is a sufficiently large number, and passing to the limit for R __... oo, we obtain 

(4.4) f E("ll,"ll)dx =- f {[u-n(nu)]- [r< 1>u+r<2>w-n(n T(l>u+nT< 2>w)]-
g- s 

+ [ro- n(n ro)]- [r<4 >ro.;.... n(n T<4 >ro)]- +[nu]- [n r< 1>u+n r<2 >m]

+ [n m]- (n T<4 >mt} dS, 
which will also be termed Green formula. 
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From (4.2) it follows that any solution of the equation E(d/1, d/1) = 0 of class C1(!')±)r 
is given by the formula 

u ·= [axx]+b, w =a, 

where a = (a 1 , a2 , a3 ), b = (b1 , b2 , b3 ) are arbitrary constant vectors. 
Hence we can easily prove the following theorems: 

THEOREM 4.1. The problems (Ill. nn+ and (IV. IV)+ have no more than one so/utionr 

THEOREM 4.2. The problems (Ill. III)- and (IV. IV)- have no more than one solution 
satisfying the conditions ( 4.3) and ( 4.3'). 

S. The volume potential 

The term of volume potential will be used to denote the integral 

(5.1) W(Jf)(x) = ~ J qf(x-y)Jf'(y)dy, 
!J+ 

where qf(x) is the fundamental solution of the equation .ll(o.x)dll = 0 (see [7]) 

~U>(x) = ~"i [~ _1_ _ <X exp(- <12lxi)J + _1 _ __ o_2 
_ [_(A+ p)lxl 

"1 2n f-t lxl p(f-t +<X) lxl 2np ox" ox1 2(A + 2p) 

fJ+v exp ( -<12lxi)J 
+4;;- lxl " 

·(5.2) 

lT/(2)( ) , ~(3)( ) 1 0 1-eXp(-0'2IXI) 
T"Jr,j X = lr,j X = -4- Ejlr,p-~- I I np uXp X 

~<~>(x) = _~"l__ exp( -<12lxl) + _1 ___ o_2 
_ x 

"
1 2n(fJ +v) lxl 8ft. Ox~cOXJ 

x[exp(-<1tlxl)-exp(-<12lxD _ exp(-<12!xl)-1 ]~ 
<XIxl plxl 

( 
4<X ).!. 

O't = e+2v 
2

' ( )

1 
4<X 2 

0'2 = {!-'+<X) (/J+v) . 

We shall prove the following theorem: 
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THEOREM. 5.1. If Jff E C0 ·« (!iJ+), then We C2 (!iJ+) n C1 (ffi+) and 

{5.3) Jt(o~) W(Jff)+eJff = o 
in the region PJ+. If Jff e C0 ·«(!iJ-) and Jff is a finite-value function, the integral 

(5.4) W(Jff) (x) = ~ J 'P(x-y) Jff (y)dy 
!1-

.is a solution of the Eq. (5.3) in the region PJ- and, belongs to the class C 2 (!iJ-) n C1 (.~-) 
~nd satisfies the conditions (4.3) and (4.3'). 

If follows that if V is a solution of (2.2) in the region PJ±, diJ = V- W(Jff) is a solution 
()f the homogeneous equation Jt(o~)d/1 = 0 in the same region. In addition, if V satisfies 
the conditions (4.3) and (4.3'), the same conditions are satisfied by d/1. 

The boundary conditions for dJt will involve the volume potential and its derivatives 
()n S. Such a variation of the boundary data does not change their regularity character 
assumed in the present work (see Sect. 6). 

Thus, the problems (Ill. Ill)± and (IV. IV)± reduce for Jff = 0 to (111.111)* and 
{IV.IV)*, respectively. Let us observe that the problems (Ill, III)- and (IV. IV)-, with 
the additional conditions (4.3), (4.3'), reduce for Jff = 0 to (III.III)- and (IV.IV)- with 
the same additional conditions. 

In what follows it will be assumed, without limiting the generality of the considerations, 
that Jff = 0. Let us observe that the volume potential (5.4) satisfies the conditions (4.3) 
.and (4.3') for weaker limitations than that of finite-value of Jff. 

6. Transformation of the bonndary conditions 

In what follows it will be assumed (without repeating that assumption each time 
verbally) that 

(6.1) 
sE JI2(h'), 0 < h' ~ I, ju>,jc2>, ;~·>' gi,2> E C1·"(S); 

0 < h < h'. 

We shall express the boundary conditions of the problems (lfl.III)* and (IV.IV):t 
in a form more convenient for further considerations. It is easy to see that the following 
relationships hold 

(6.2) n rc2>(o7 , n)w = -2a.eu"n,w1 = 0, 

(6.3) OUJ ou, 
nr-;---~ = [nxrotu]t, ux1 un 

{6.4) ru>(o,,n)u = 2p :: +Andivu+(,u-a.)[nxrotu], 

{6.4') n ru>(a,, n)u = 2pn :: + ,ldivu, 

.(6.5) T<l)(a,, n)u-n(n T<l)(a,, n)u) = 2p[ ~: -n(n ~:)] +(/1-at)[n x rotu]. 
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By virtue of (6.2) and (6.5) the boundary condition (3.1) takes the form 

(6.6) [ {p- oc)[lt X rotu(y)) + 2p { O~~) -+ O~~;) )} +2a(n X w(y))r = i<'>(y). 

Let us consider the sets 

III±(y; d)= III(y; d) n ~±, S(y; d)= III(y; d)nS, 

where ill{y; d) is a spherical region, with its centre at the point y, its radius being d, and d 

denoting the Lapunov radius. 
Let x be any point in Ill (y; d). Let us pass a straight line through the point x, parallel 

to the normal n(y). This straight line will intersect S(y; d) at a single point which will be 
denoted by x'. Let us determine in ill(y; d) a function vi (i = I, 2, 3) such that vi(x) = 

= ni(x'). Let v = (v 1 ,v2 ,v3 ). We have, of course veC1(ill(y;d) and Vxeiii(y;d): 
vi(x)+vi(x)+vHx) = I. 

The condition (6.6) can now be written by means of the limit 

(6.6') lim {{p,- et}[v(x) x rotu(x)] + 2p,[ ~~((;)~ -v(x)(v(x) ~~((;)) )] 
Ill±(y;d)3X--+Y 

+ 2a[v(x) x w(x)J} = j<"(y). 
By virtue of the identities 

(6.7) 

(6.8) 

au(x) a avi (x) 
v(x) • av(x) = av(x) [u(x)],.(X) -Uj(X) av(x) ' 

au(x) 
av(x) = - (v(x) X rotu(x)] +vj(x)graduj(X), 

vi (x) grad ui(x) = grad [u(.~ )],x- ui (x) grad vi(x), 

the expression (6.6') can be rewritten thus 

lim {- (p, + et)[v(x) x rotu(x)] + 2p,(grad -v(x) :, ) (u(x)],.<x> 
lli±(y;d)3X--+Y 

-2pu;(x)( grad-v(x) ilv~x) )•;(x)+2a[v(x) xw(x)]} = j<•>(y). 

If we observe that 

( 
a ) a a 

grad -v(x) av(x) k = axk -vk(x) av(x) = !l}k. 

where !lJk is the Giinther operator (see [8]), we have from (3.1 ') the equation 

lim (grad-'V(X) a a( )) [u(x)],.(X) = (grad-n})iil)(y) 
m±(y;d):~x .... y "' x n 

by virtue of which the boundary condition (3.1) takes the form 

[ (p+a)[n x rotu(y)] +2pu;(y)(grad-n :
11 

)n;-2oc[n xro(y)]T 

= -i(l>(y) +2p(grad- n :n) j.[t•(y). 

7 Arch. Mech. Stos. nr 1176 
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The condition (3.2) can be transformed in the same manner. 
Thus, the boundary conditions of the problem (III.III)± take the form 

(6.9) [(/<+a)( 11;-~~ -11; ~;;) +2,UUj @knj -2ae,ljl1tWj r = J.''>, [11; uJ± = /Jl), 

(6.10) [ (v+ /1)( n; ~;~ - nr:;) +2vwi !1i!,nJ = /?1
, (k = I, 2, 3), [nJ wi)± = /1'1. 

where 

/'(2) - /<2) 
}4 - }4 • 

The boundary condition of the problem (IV .IV)± can be transformed in an analogous 
manner. We have 

k=1,2,3; 

k=1,2,3; 

where 

g<n = gcn, g,p> = iit> +2p ~ii?>, g<2> = gC2>' gi2> = gi2< +2v ~igJl>. 

where 

HO>= JJH~J>//4x3, R<l) = J/RWJJ4x3• f= 1,2,3,4; 

H~J> = [ (.u+ a)n; a~, -(#+a) b,; :n +2,u !1i!,n;] (1- ~,.)+n; b,4 , 

H#> = 2asyi;n;(I- ~y4), H~]> = 0, 

H~j> = [ (v+fl)n; a~, - (v+fl) b,; :n +2v!1i!,n;] (1- b,.) +n; b,4 , 

~) > = ( b,;-n,n;)(l - b,4 ) + [(A+ 2,u) a~; - 2,un; ( !1i!1n1) J b,4 , ~f' = 0, 

~J> = 0, ~j> = (b,;-n,n;) (1- b,4 ) + [ (e+2v) a~; -2vn;(!1i!1n1) J b,4 (
4
). 

----
(4) In these formulae and everywhere in what follows the values of ~"' n,., ftiJ and ofoy" will be 

considered for k = 4, to be the same as for k = 1. 
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With these notations the problems (III.III)± and (IV .IV)± can be formulated as follows. 
Find in the region fi2± a vector UIJ = (u, w) of class C 2 (fi2±) n C 1 (.@±) which satisfies 

the equation ..lt(cx)UIJ = 0 and, in the case of the problem (III.III)+ the boundary con

dition 

or, in the case of the problem (IV .IV)±,- the boundary condition 

where f = (/1 , ... ,/s), g = (g 1 , ... , g 8 ) are real vectors prescribed on S, of class ct.h(S), 
satisfying the conditions 

fknk = 0, f4+knk = 0, gknk= 0 , g4+knk = 0. 

These problems will be denoted in what follows by the symbols (III.III)j, (IV.IV)i, 
respectively. 

7. The potentials and their properties 

Let us consider the following vectors of the potential type 

(7.1) V(<p) (x) = J [R(l\ , n)t{l(y -x)]'<p(y)d}'S, 
s 

(7.2) W(<p)(x) = J [H((\, n)t{l(y-x)]'<p(y)dyS, 
s 

where <p = <p 1 , ••• , <p8 • [ )'denotes the transposed matrix in square brackets. 
Bearing in mind the identity [t{l(y-x)]' = t{l(x-y) it can be shown that if <p E L(S), 

then V(<p) and W(<p) belong to the class C00 (fi2±), satisfy the conditions (4.3) and (4.3') 
and 

Let us observe that the value of the potential V(<p)[W(<p)] does not vary if the density 

<pis replaced by x, wherex = (Xt• ... , xs) and Xk = <pk-nkni<pi, X4+k = <p4+k-nkni<p4+i • 
k = 1 , 2, 3; X4 = <p4 , Xs = <p8 • This can easily be found from the equations 

(7.3) n,R~j>(oy, n) = 0, [n1H,<t>(oy, n) = 0], m= 1, 2, 3, 4; J = 1, 2, 3. 

It is obvious that nk Xk = 0, nk X4+k = 0. It is concluded that, without changing the value 
of the potential V(<p)[W(<p)], we can assume that the conditions 

(7.4) 

are satisfied. 
We shall now demonstrate the following theorems 

7* 
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THEOREM 7.1. If cp E C0·h(S) and satisfies the conditions (7.4) then, for any z E S, there 
exist [H(oz, v) V(cp)(z)]± and [R(oz, v) W(cp)(z)]± belonging to the class C0 •h(S) and 

[H(oz, v)V(cp)(z)]± = + cp(z)+ ( H(vz, v) [R(oy, n)P(y-z)]' cp(y)dyS, 
s 

[R(oz, v) W(cp)(z)]± = ±cp(z)+ J R(oz, v)[H(oy, n)P(y-z)]'cp(y)d,.S, 
s 

where v = n(z), n = n(y) and the integrals in the right-hand members an? understood in the 
sense of their principal value. 

If cp E C1·h(S) then V(cp) and W(q:;) belong to the class C 1 (.@+)[C 1 (.@-)]. 

THEOREM 7.2. If cp E C 0 ·h(S) and satisfies the conditions (7.4), there exist [R(oz, v) V(q;)(z)] 
and [R(oz, v) V(cp)(z)] belonging to the class C 0 ·"(S) and equal to each other. 

8. Integral equations 

Solution of the boundary value problems (III.III)± and (IV.IV)± will be sought for 
in the form (7.1) and (7.2), respectively, with the sought for density cp of class C0 ·h(S) and 
satisfying the conditions (7.4). Then, bearing in mind the Theorem 7.1 we obtain the inte
gral equations 

+ cp(z)+ J H(oz,v)[R(o.v,n)P(y-z)]'cp(y)dyS =f(z), (Ill. III)J 
s 

± q;(z)+ _( R(oz, 1')[H(l3y, n)P(y-z)]' cp(y)d,.S = g(z), (IV. IV)i. 
s 

By (Ill.lfi)+ we denote the operator, generated by the left-hand member of the equation 
(III.III)J. The notations (III.III)- and (IV.IV)± will have an analogous sense. 

THEOREM 8.1. The operators (III.III)+, (IV .IV)-, (III.III)- and (IV .IV)+ in the spaces 

L~8 >(s) and L~~>(S) where 
1
- + -~ = I are adjoint. 

p p 

This statement follows from the identity 

(8.1) [R(oz, v)[H(oy, n)P(z-y)]']' = H(oy, n)[R(oz, v)P(y-z)]', 

which can easily be verified. The symbol L~8>(S) denotes the space of vectors having the 
form v = (v 1 , ... , v8 ) summed over Sin the p-th power, the norm being 

8 

{ J ( \' )P/2 }1/P llvll = ~ (lvd 2 dyS . 
s i=l 
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Let us investigate the singular integral equations obtained. For this purpose it is neces
sary to write expressions for the operators (ITI.III)± and (IV .IV)±. 

Let us represent the fundamental solution (5.2) in the form 

l.JI< 1>( _ 1 [(J A+2,u+a 1 }.+,u-a xkxi] <1> _ 
ki x)- 4n- ki (,u+a)(A+2,u) lXI + (,u+a)().+2,u) lxl 3-- + Xki (.x), 

1Tf(2)( ) _ IX Xp (2)( -) 
(8.2) rki x - 2n(,u+a)(v+,B)skjplXT +Xki x , 

p<4:>(x) = _l_[(J . s+2v+,B ___!_ + s+v-,8 xkxi] + q>(:x-
kJ 4n kJ (v+,B)(s+2v) lxl (v+,B)(s+2v) lxl 3 XkJ · ), 

where xg>, x1J> and x~}> are functions continuous at every point of the space £ 3 . These 
functions have their first derivatives bounded in £ 3

. Their second derivatives have a singu
larity at the origin of coordinates only, of order not higher than I x l- 1

. 

By means of the expression of the fundamental solution (8.2) just obtained it is easy 
to write the singular part of the kernels of the operators (III.III)± and (IV .IV)±. We have 

(8.3) H(oz, v) [R(ay, n) P(y-z)]' = &(y, z) + .,q(y, z), 

where 

[

g><1>(y, z) 
&(y, z) = [&,q(y, z)]sxs = g>< 3>(y,z) 

m=1,2,3,4, 

&)~>(y' z) = -2
1 

-(1- (Jj4)( 1 - b,4) [cv,- n,v, n,) a~ -1 -
1
-1 + (n,nj- (Jj,) aa -1 -

1
-1] 

n ""i y-z v y-z 

+ E.(l- CJ·4) (J 4[(P}inJ(n·-!_ _!___ -v1 n 1 -~ - 1
--)- _!.._ _l_(P} v·)] 

n J i' J av IY- zl az j IY- zl azi IY- zl i' I 

b,4 bj4 a 
-~Tvly-zl' 

&'j~>(y, z) is expressed in exactly the same manner as &Ji>(y, z) except that ,u is replaced 
by v. ,q(y, z) is a matrix having the form [~ik(Y, z)]8 x s, where ~ik(Y, z) is a kernel of 
weak singularity. More exactly (see [8]) ~ikE G(l, h, h) is Sx S. 

From the identity (8.1) it follows that an analogous expression is valid for the kernel 

R(az, v)[H(ay, n)P(y-z)]'. 

By means of the expression (8.3) it is easy to evaluate the determinant of the symbolic 
matrix eA. of the operator 

(Ill III)t(<p)(z) = -<p(z)+.A. J H(az;,v)[R(ay,n)P(y-z)]'<p(y)dyS, 
s 

where .A. is a complex parameter. We find det f9;, = 1. 
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It follows (see [8]) that the Fredholm theorems are valid for the operator (III.III)+ 
in the space L18 >(S). For the operator (III.Ili)- in the space L18 >(S) the same can be shown 
in an analogous manner. Now from the theorem (see [8], p. 166) we have the following 

THEOREM 8.2. /ff belongs to the class C 0 ·h(S)[C 1·h(S)] any solution of the equations 

(III.III)j and (IV.IV)j of the class L18 >(S) belongs to the class C 0 ·"(S)[C 1·h(S)]. 
Thus, we have the following 

THEOREM. 8.3. The equations (111.111)6 and (IV.IV)6 have a finite number of linearly 

independent solutions in the space C 0 ·h(S)[C 1·"(S)]. The equations (111.111)6 and (IV.IV)0 
and also (III.III)0 and (IV.IV)t have the same number of linearly independent solutions 
ill the space C 0 ·h(S)[C 1·h(S). If/E C 0 'h(S) [g E Cl,l'(S)] then, for solvabilty of the Eq. 

(III.III)j [(IV.IV)i] in the space C 0 ·h(S) it is necessary and sufficient that the conditions 

f (f· qP>)dS = 0, [J (g · 11P>)ds = o], 
s s 

are satisfied, where cp<k>['IJ.'<k>]- is the complete set of linearly independent solutions of the 

equation (IV.IV)6, [(III.IIIn]. 

9. The homogeneous integral equations 

Let us investigate the homogeneous singular integral equations (111.111)6 and (IV.IV)6. 
From the Eqs. (7.3) we easily obtain the following 

THEOREM 9.1. Every solution cp of the homogeneous equation (III.III)6 [(IV.IV)6)] of 

class C0 ·h(S) satisfies the conditions (7.4). 

THEOREM 9.2. Th~ equations (III.III)6 and (IV.IV)6 have only a trivial solution in the 
space C0 ·h(S). 

P r o o f. Let us assume that the equation (III.III)6 has a non-trivial solution cp of class 
co.h (S). Then cp satisfies the conditions (7.4) [see (9.1)]. Let us consider the potential 
V(cp) [see (7.1)]. From the Theorem 7.1 it follows that 

[H(oz, v) V(cp)(z)]+ = -cp(z)+ J H(oz, v)[R(oy, n)P(y-=)]'cp(y)dyS, 
s 

and, since cp is a solution of the equation (111.111)6, 

Vz E S: [H(oz, v) V(cp) (z)]+ = 0. 

It follows that V(cp) is a solution of the problem (III.III)t. But the problem (III.IIn~ 
has only the trivial solution Vx E !?}+: V(cp)(x) = 0. From the equation it follows that 
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But, by virtue of the Theorem 7.2, 

\fz E S:[R(oz, v) V(q:>)(z)]- = 0. 

Let us consider the potential V(q:>) in the region~-. By virtue of (9.1) V(q:>), is a solution 
of the problem (IV.Iv)-. This problem has only the trivial solution Vx E ~-: V(q:>)(x) = 0. 

From the Theorem 7.1 we find 

\fz E S:2q:>(z) = [H(oz, v) V(q:>) (z)]-- [H(oz, v) V(q:>) (z)]+ = 0. 

The contradiction obtained shows that the equation (III.IIDt has only a trivial solution 
in the space C 0 ·h(S). Similarly it can be shown that the equation (III.III)(; has only a triv
ial solution in the space C 0 ·h(S). It follows (see Theorem 8.2) the equations (IV.IV)~ 
and (IV.IV)~ have only a trivial solution. 

10. The existence of solutions of boundary value problems 

From what was shown above it follows that: 

THEOREM 10.1. The problem (III.III)j [(III.III).f] has a solution for any vectro 
f E ct.h (S) and it is unique. This solution can be represented in the form (7.1) where g> 

is determined from the integral equation (III.III)/ [(IV.IV).f]. 

THEOREM 10.2. The problem (IV.IV); [(IV.IV);] has a solution for any vector 
g E Ci·h(S) and it is unique. This solution can be represented in the form (7.2) where g> 

is to be determined from the integral equation (IV .IV); [(IV. IV);l. 

All the theorems above could have been demonstrated with much weaker limitations 

* * on the limiting functions, namely for f<l>, g~> E co,h (S) (see Sect. 6) and fi1>, g<'>e c1.h (S) 

(l = I, 2), but this has not be done, for the sake of simplicity. 
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