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BRIEF NOTES 

Thermal effects in plastic-time phenomena 

Z. BYCHA WSKI (RZESZOW) 

THE constitutive equations for rheological media in conditions of large deformations and tem
perature field are derived. The concept of derivation of these equations is based, on the one hand, 
on the generalized superposition of the reaction of the material and this leads to the non-linear 
functionals. On the other hand, using the functional differential form, by the assumption of the 
integrability conditions for this form the result analogous to the previous one is obtained. The inte
grability conditions couple the effects of a physical reaction of the material expressed in terms 
of the functions characterizing their rheological properties in the conditions of a temperature 
field. 

IN the presence of temperature field the behaviour of a rheological body is influenced by 
its thermodynamic state. In order to establish an appropriate constitutive equation de
scribing such a state, it is then necessary to introduce into consideration temperature as an 
independent state variable and find its derivation on the thermodynamical basis. If the 
body behaves non-linearly as regards its physical properties and exhibits large deformations, 
the problem of thermomechanical coupling arises as that of main importance. The coupling 
of effects has in the case considered a double meaning. One side of the problem lies in 
the coupling defined by the equation of heat conduction. It indicates the appearance of 
heat flux . due to deformation process. On the other hand, all specified responses of the 
body should be coupled as being temperature -dependent. The latter coupling expresses 
the fact that "all phenomena occuring contribute to all effects resulting" in accordance 
with the principle of equipresence. Therefore, the approach, consisting in postulating or 
generalizing the corresponding constitutive equation on the basis of premises valid for 
a linear theory, is not always convincing as regards the physical aspects. In particular, 
that remark may be referred to the methods using certain generalized rheological models 
containing additive non-linear devices to derive constitutive relations of thermo-rheologi
cal processes. 

In some previous papers [ 1, 2] we proposed a method of generalized superposition to 
obtain the forms of constitutive functionals and also stated some additional postulates 
concerned with their non-linearity and its physical significance. It is clear that the proce- · 
dure of superposing deformational constributions should be performed in full accordance 
with the general principles of mechanics. The method has been also discussed in connection 
with the considerations of possible forms of constitutive relations containing time- · 
dependent temperature at the differential level [3, 4]. 

In the present paper the idea of deriving non-linear constitutive functionals describing 
thermo-rheological processes by applying the generalized superposition principle is adop- · 
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ted. It is assumed that the body considered undergoes an arbitrary deformation state in 
the presence of time-dependent temperature field. On the other hand, it is shown which 
are the necessary conditions to be satisfied in order to be able to obtain equivalent results, 
if we set up an alternative theory on the differential level. These are the integrability con
ditions which thus furnish some additional constitutive relations indicating clearly the effect 
of thermo-mechanical coupling due to non-linearity. Moreover, they point out the signif
icance of the principle of equipresence. 

1 

We restrain our considerations to a certain-class of rheological bodies exhibiting instan
taneous as well as time-dependent responses, partly of plastic character. They are assumed 
to be isotropic, homogeneous and mechanically incompressible. Thus, in the isothermal 
·Conditions the bodies in question cannot undergo the change of volume due to mechanical 
loading. 

We apply the material description of the process and consider two configurations 
of the body referred to the two time instants t0 and t, respectively. By assuming the con
vected coordinate system (}k (k = 1 , 2, 3), we observe a particular element of material 
through the succession of deformational states within the time interval Q = [t0 , t]. The 
straining process of the particle is then given by the contravariant strain tensor eii being 
a function of time 

(1.1) eii - J w(t T t )deii(t -r) = _!__ J~ dAii 
- ' ' 0 ' 2 ' 

D D 

where we put 

(1.2) eii = eii (Ob t, t0 ), li = (- oo, oo), 

Aii denotiq the metric tensor of convected system and 

(1.3) w = O(t- -r)O(t- t0 ), 

the multiplier contposed of the unit distributions 0. 
As the change of time is continuous, the Eq. (1.1) implicates the differential form 

(1.4) wde(t, -r) = wcJ>ii(t, -r)dt, 

if (/>ii is assumed as convected time-derivative of a certain physical tensor functions. 
As follows from the Eq. (1.4), the constitutive differential is expressed through a "com

pact" form being responsible for a complex response of the material within the interval 
defined by w. On the other hand, the Eq. (1.1) indicates the manner of superposing strain 
contributions in Q performed in accordance with the principle of determinism and the as
sumed rule of summation. Moreover, it imposes the possibility of summing up the responses 
of the particle at different time instants according to the procedure of convected integration. 

The variability of the metric tensor in time is seen from the Eq. (1.1 ). However, as follows 
from the definition of convected strain tensor, 

. . 1 . . . . 
e'J((}b t, 10 ) = 2[A'J((}k, 10 )-A'J((}k, t)], 
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this quantity is defined "potentially". It means that its value depends on the difference 
of the metric tensors referred to the time instants t0 and t, respectively. Hence, in accordance 
with such a notion of strain measure, strain tensor does not depend on the intermediate values 
of metric tensor in Q. Therefore, as the variability of Aii in Q does not matter, the final 
result depending on the difference in the Eq. (1.4), we may conclude that the value of strain 
is independent of the "time-path". 

2 

In considering the influence of thermal phenomena on the rheological behaviour of the 
bodies in question, we shall assume stress deviator and temperature as independent phys
ical variables. Thus, all the physical functions appearing in the superposed constitutive 
form will be dependent on the stress deviator invariants and temperature. In general, 
it may happen that it will be necessary to take into consideration also the pressure as 
a dynamical variable. It may appear due to the effect of temperature changes in the pres
ence of geometrical constraints. Introducing the symbol sk (k = I , 2, 3) to denote the 
triplet of quantities, we reserve for the sake of generality the notation s1 for the possible 
pressure, since the first invariant equals zero. 

In observing the deformed particle, let us denote by L1e~i strain tensor increment 
related to the instant t caused by the simultaneous increments of independent variables 
L1s!i and T<n> within the subinterval Qn = [tn_ 1 , tn], Qn E Q. In such a way we are able to 
define the contribution of partial state in Qn to the total deformation observed at t, if the 
physical weights are prescribed to the latter increments. Thus, by founding the assumptions 
on the physical premises, we write 

(2.1) 

where 

(2.2) 
K = K {t, t:, sk[ -c:, T(t:)], T( -c:)}, 

ij - ij { * * ( * ( * } D - D -en, sd-cn, T-en)], T-en) , 

denote the generalized memory function and the dilatation tensor dependent on the spec
ified arguments and -c: E!Jn is an intermediate instant chosen. In general, stress deviator 
is temperature dependent too, as it is impossible to evaluate and separate stress shares 
due to external loading and temperature changes in the presence of the coupling effect. 

As follows from the physical premises the function K must be temperature dependent, 
if we consider the thermal state of reference. Since every of such states may be regarded as 
isothermal, all of them are defined by different physical functions as regards memory. 
On the other hand, since independently of the state of thermal reference we speak about 
the same material, its characteristic must be temperature dependent. 

The thermal member in the Eq. (2.1) is put apart because of the physical premise. 
Temperature is the measure of changes of internal energy and the presence of its field 
creates strain and stress states which may be independent of mechanical causes. In the case 
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of simultaneous action of mechanical and temperature fields the effects are coupled. 
It means that one cannot specify them naturally. 

The contributions of the Eq. (2.1) we sum within the interval {J and by passing to the 
limit we obtain 

(2.3) eii(t) = eii(t, t0 )+ Jxdsii[-r, T(-r)]+ J DiidT(-r). 
fJ fJ 

Here we put 

(2.4) 

Carrying out integration by parts in the Eq. (2.3) we find 

(2.5) eii(t) = J sii d"'[-0((--r)K]+ f Td"'[-O(t--r)Dii]. 
u• u• 

The above form corresponds to that of a non-linear tensor functional where {J* = 
= [10 , t +].In the consequence of generalized superposition we obtain an additive expression 
for strain tensor. Each of the two terms figuring in the Eq. (2.5) may be split into the three 
ones. The first are related to discontinuity points as given by the instantaneous response 
contained in K and similarly in Dii. The second terms correspond to the absolutely contin
uous distributions of effects as regards time-dependent strain state and dilatation changes. 
The third terms as representing singular distributions are here neglected due to the lack 
of physical interpretation. 

Thus, in accordance with the physical premises, the Eq. (2.5) takes the final form 

(2.6) e11 (t) = f!Jsii- f sii oTK d-r + Dii T- f T aT D'1 d-r' 
fJ fJ 

where we denote 

(2.7) K = (}){-r, sk[-r, T(-r)], T(-r)}+H{t, T, sk[-r, T(-r)], T(-r)}, 

(}) being responsible for the instantaneous responses of the body considered and H repre
senting the generalized creep function. In the Eq. (2.6) we make use of the evident condition 

(2.8) K/T=t = (}), 

as for T = t we must have 

(2.9) . H/T=t = 0. 

In accordance with the previous assumption that the body in question is isotropic, 
the dilatation tensor Dil should be expressed through the isotropic tensor (jil. Thus, we put 

(2.10) Dii = {a+C{t,s~c[t, T(t)], T(t)}}CJii, 

where a is the thermal constant. 
In the absence of external loading and constraints the body deforms freely due to 

temperature changes. Since in this case we have an isotropic expansion defined by 

(2.11) 
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the metric tensor referred to the instant t becomes 

[

12e- T 0 0 J 2 

A1i(t)= 0 1-2er 0 =v-3(}1i, 
· 0 0 1-2er 

(2.12) 

where v denotes the volumetric deformation. The latter gives the ratio of particle volumes 
at the time instants t and t0 , respectively, 

(2.13) v = (eT)- 3, 

the value of eT being given by the Eqs. (2.6) and (2.10) as follows 

(2.14) eT(t) = (a+C)T- f TiJla+C)d-r. 
D 

It is evident that in the case considered the function C does not depend on the invariants s1 • 

3 

We shall point out that the form of the Eq. (2.6) can also be obtained by setting up 
the theory on the differential level. Thus we assume the differential form of constitutive 
equation for a non-linear material deforming in the temperature field as follows 

(3.1) 

Here the notations used are the same as previously. 
The Eq. (3.1) can be put into the alternative differential representation taking into 

account the distinction of independent physical variables 

(3.2) 

where by identification we find 

(3.3) 

As we postulate the Eq. (3.1) to be a total differential, we should have 

(3.4) 

On the other hand, by assuming differentiability of the independent variables with respect 
to the parameter T, we can write instead of the Eq. (3.1) 

(3.5) 

Since, according to our assumption the Eq. (3.4) holds, by integrating the Eq. (3.2), or, 
alternatively, the Eq. (3.5), we obtain the final result as being analogous to the Eq. (2.6) 

(3.6) e1i(t) = f/J ii- J siiiJ-r K d -r+ J Dii d-rT d-r. 
D D 

It follows from the form of the Eqs. (3.4) and (3.6) that "all phenomena occuring 
contribute to all effects resulting" as emphasized especially by the integrability condi
tions. On the other hand, the latter gives an additional constitutive relation between phys
ical functions characterizing non-linear thermo-rheological behaviour. 
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