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[The principal integral or principal function.]
(Jan. 20, 1836.)

[1.] In general let
aS=0(2, @, .. @y, de da st ol day);

this function ® being homogeneous of the first dimension with respect to dz, ,d,, ...

3dS 8dS 8dS
dS d 18d z, d Qm‘*‘-..'l‘dxi'—o\?dx—i.
Then, by the first expression for dsS,
8dsS 3dS SdS 3d8S
8d8_8—8 1t 5 Sz, +5dn 1Sd 1t . +8d ddx,;
and, by the second expression for dS,
8dS 3dS 8dS SdS
8dS=dx188d 1+ +dz188dx Sda 1‘o‘d y+ .. Sd s5—0dx;;
and therefore, by comparing these equations, we find
3dS 8dsS 3d8 8dS
0—5; ZI—Sde dx 1+ EL s St , oz ;= S%dxt
Also, by (3),
3dS 3dS
58 = deS A(Bd oyt + g )

8dS ,8dS 8dS ,8dS
+J‘{(8—x1—d8d—xl) 8271+ vor (g:—d—-—dei) 8:1:1-},

SZS— stands for the partial derivative of dS with respect to dz; :]
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The first method may be used without forming the pa.rtla.l differential equation.
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1] XIII. CALCULUS OF PRINCIPAL RELATIONS 333

and if we establish the ¢ equations

3dS ,8dS 3dS ,8dS
E=d8Tx1’ ""S—xfdm’ (7)
(which are, by (5), equivalent only to 7 — 1 distinct equations, because the general relation (5)
s e 8dS 8d8 5dS . 8dS
o g 74 e R g+
the variation 88 of the integral [dS will take the simplest possible form, (as being that form
which is most independent of the variations éx,, 8z,, ..., dz;, since it depends only on their

extreme and not on their intermediate values,) namely the form

3dS 3d8
SS A(Sd 18 +-..+m8x¢) (8)
We shall call the integral S = [dS, determined in this way, the principal integral* of the given
element dS, or of the function @, in equation (1) and shall denote it, for distinction, by the

symbolic expression
S=J.d8=f® (21,0, day .l da), (9)

drawing a stroke under the sign [ of integration.
If we denote by a, , a,, ..., a; the initial values (or values at the first limit of the integral) of
the ¢ variables ,, @,, ..., #;, if also we put for abridgement
8dsS 8dsS 8dS
_SE:%’ mf%: ey m=yt
and denote the initial values of y,, ..., ¥; by by, ..., b;, we may consider the principal integral,
8=[dS, as a function of 2, z,, ..., #;, @, ay, ..., a;, of which the variation is

(10)

SS SS SS SS
=y18x1+ -.-+y‘8x.t bISal—...—bﬁa‘, (11)
so that we have the 2 following equations:
88 88
yl"—'s—xl: ) yi"sa: (12)
88 88
b1=_§a—1’ O —a. (13)

If the form of the function 8, as depending on z,, ..., #;, @, ..., @;, were known, we could
substitute it in the 7 equations (13) and thus transform them into ¢ relations between the ¢
varying or final quantities 2, , ..., #;, and the 2i initial data a,, ..., a;, b, ..., b;, which ¢ relations,
with 2i arbitrary constants, would be forms for the ¢ integrals of the ¢ ordinary differential
equations of the second order (7). And therefore the 7 relations between the 3¢ quantities
Tyy ooy &gy Ay s ouny Qg by, oo, by, which might be found in one way by integrating the ¢ ordinary
differential equations of the second order (7), may also be deduced in another way from the one
principal relation between the principal function S and the 2¢ quantities z,, ..., #;, ay, ..., a; by

* [The definition of 8 is, of course, exactly analogous to that of the principal function in dynamics, to which,
in fact, it would reduce if ® = Ldt, where L is the Lagrangian of the dynamical system.]
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334 XIII. CALCULUS OF PRINCIPAL RELATIONS 1,2

taking the partial differential coefficients (of the first order) of that one principal function with
respect to the initial variables a,, ..., @; and then equating these coefficients to —b,, ..., —b;
respectively; which is my chief result respecting the properties of this principal integral S, con-
sidered as depending on its limits, and my chief reason for calling that integral a principal func-
tion; and for giving to that new branch of Algebra, which proposes by new methods to find and
to use the form of this principal function, the name of the CALoULUS oF PRINCIPAL RELATIONS.

[The partial differential equation satisfied by the principal function.]

(Jan. 215, 1836.)

[2.] Among the chief methods for finding the form of the Principal Function § is the follow-
ing, by a partial differential equation of the first order or by a pair of such equations. Since
Y15 Y, ---» Y; are functions only of the ratios of dz,, ..., dz;, we can in general eliminate these
¢ — 1 ratios and obtain one relation between ¥, ..., ¥;, involving also in general z,, ..., ; and
depending for its form upon the form of dS or of the function @ in (1); and we may represent
this relation as follows:

O=Wig5, ooy Ygays oo g} (14)
In like manner we have by considering initial values
0=‘P‘(b1, ...,b{,al,...,a,‘), (15)

the form of the function ¥ being the same as in (14). And if in these relations we substitute for
Y1y -y Yzand by, ..., b; their values (12) and (13), we obtain the two partial differential equations

38 o8
O=IF(8—x1, coey S_Z_i’ Xyy seey :vi) (16)
o8 o8
and 0=‘I"(—871, L —a, G55 vy ai). (17)

In integrating these equations we are to determine the arbitrary functions which may present
themselves by the following conditions.

First, S must vanish when 2, —a,, ¥,—a,, ..., z;—a; all vanish—at least that form of §
which corresponds to moderate values of those increments, and indeed every form of § ex-
cepting those cases of periodicity in which z,, z,, ..., #;, being considered as functions of some
one indefinitely and continuously increasing variable ¢, acquire all together the same values
@y, ..., a; for some new value ¢t=t, which they had for the old or original value {=¢,. For,
generally, ifz,, 2,, ..., z; be considered as so many functions of ¢ while @, , @,, ... a; are considered
as the values to which those functions reduce when ¢ is made equal to 0, and if therefore the
principal integral S be put under the form

ty
S’=J D250y 2, 21, ooy )L, (18)
b
‘ . I__dxl I_dx'i
in which Ti=gp =g (19)

then the function S by its integral nature must vanish when ¢=¢,. It is important to observe
that the value of the integral § is not affected by the arbitrary form of z; as a function of ¢, if
the forms of z,, ..., ;_; be deduced from this by the differential equaticns (7) and if the con-
ditions at the limits be satisfied.
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2, 3] XIII. CALCULUS OF PRINCIPAL RELATIONS 335

Secondly, at the origin of the progression, that is, when ¢ =#¢,, the general values of the partial

differential coeﬂiclen’cs SS o and at the same time those of — o iy i must reduce to

" 8, da " ba,
those functions of @, , ... a and of the ratiosofx;, —a,,...,2;—a; whichlmay be otﬁerwme deduced
from the general values of by, ..., b; by changing the ratios of da, , ..., da, to the ratios of 2, —a,,
., &;— a;, or from the general values of ,, ..., ¥; by changing the ratios of dz,, ..., dx; to those
of z,—a,, ..., x;—a; and at the same time changing #,, ..., ; to a,, ..., a;.

Thirdly—and this condition includes the two former ones—at the origin of the progression
or first limit of the integration (¢ =#,) the principal function or integral S must bear the (nascent)
ratio of unity or equality to the function formed from dS by changing the differentials dz,, ...,

dz; to the increments , —a,, ..., ¥;—a; and by changing %, ..., ¥; themselves to a,, ..., a;;
that is,
lim§=]jm(l>(a1,a2, ...ai,xl_al, ...,w"—ai), (20)
bty B Y Gty ¢ ¢
or, in other symbols,
P 1=lim : : (21)
t=t, © (@, oovy @y, By —ay, oo, 23— ay)

[Solution of the partial differential equation by successive approximation.*]

: : ) z,—a Xy_y— 0y
[8.] We may in general consider S as a function of a,, @y, ..., @;_y, @5, 2, ..., —=2 =1

Ty — Oy Ty —ay
z;—a;, and for small or moderate values of ¢ —¢, and of z, —a,, ..., #;—a; we may in general
develope this function according to ascending integer powers of the small or moderate increment

x;—a; (setting aside singular exceptions) in a series of the form

S=A(x;—a;)+ B(w;—a;)*+ C (x;— ;) + &e., (22)
which may also be thus written, more simply and symmetrically,
8=8,+8,+ 83+ &c., (23)

8, being a homogeneous function of the nth dimension of the 7 increments z, —a,,..., z; —a;,
involving also in general a,, ..., @;. We may now conceive this expression substituted in the
partial differential equation (16) so as to give an equation of the following form:

88, 88, ssl 88, 88, 88,

0=‘F{8 1+—1+& 8x2+& 52 ¢+3x¢+&c"

“1"'(”1—‘11)’ e ai+(xi_a’i)}’ (24)
in which Sik is a homogeneous function of dimension n — 1 of the increments z; —a, ..., #;—a;.
And we may in general develope this equation (24) by Taylor’s theorem as follows:

0=Y,+¥,+¥,+¥;+&c., (25)
in which ¥, is homogeneous of dimension » with respect to the increments z;, —a,, ..., ;—a;;

and then may deduce from it the following indefinite series of separate equations in partial
differential coefficients of the first order,

0=",, 0=%,, 0=Y,, 0=Y,, G&o. (26)
* [See Appendix, Note 9, p. 631.]
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336 XIII. CALCULUS OF PRINCIPAL RELATIONS [3

To develope these equations, let us write generally
W (by+ By bg+ By ves by+ By a3+ 0ty G+, oo, @+ )
=W (b1, by, .oes by, 01, Qg ey @) + By (09) + By W (By) + ..o + B 'Y (by)
oy W (ay) + oV (@) + ... + o W (@) + $BTY” (by) + By B W (b1, bg) + 3B (Bo) + -
+ 3BT (by) + 3BT B Y™ (b, by) + 3B B3 (b1, by) + &e. A (27)

Adopting this notation which has been already used for similar purposes by Lagrange and other
mathematicians, this second side of equation (24) may be thus developed:

88, , 8 58, 88,
IF(§_1+8_6’: &e., o :+8—+&c a4+, —ay, ...,ai+x‘_ai)
‘lv
£ 38, 381 38,
—lP.(le sz -g&;,al,az, ""ai)

P (ay) (04— )+ (0g) (2 — ) + ..+ ¥ (2 (53— )
,(88:\ (68, 88, w (081) (88, , 885 , (88 85’2 333 )
0 (52) (3o o) + ¥ (3) (st g+ 50 o (550) (G g 00
+3Y (@) (21— 0,2+ "' (21, @p) (21— @;) (Xp — @p) + ... + FV" (@) (2, —@;)?

88 38, 88 38,
g, (9P1 2 " g, 1§91 2
+¥ (le,al) (8 -i-&c)(x1 a,)+W (le ,az) (8 1+&c) (2 —as)

+T"'(§8%,a2) (ZS + &e. ) (2g—a,) + &c.

(B5) (B o) e (350, 385) (B ) (380, )
+%\F (8—951) (ss—c;'*'&c- +\F (81191, sz 8x1+& e +&0

0 +Jﬁf"(8‘g ) (SS +&c) +&c.; (28)
dx;) \ 8

and thus the three first partial differential equations of the series (28) may be developed as

follows:

o (¥ =)T(881 88, 88,

S—%,S—x—z—,...,a—%,al,az,...,ai); (29)
g e 88,\ 88, , 881) 882 ,(SSI) 88,
0~ ¥ () et () st + (5 |

+ W (@) (2, — @)+ (ag) (g —ap) + ... + ¥ () (2; —a;); (30)

38;\ 88, SSI\) 88, , (88, SS
—8-—)8_1 - (sz 8, Fek X (Sxi) dz;

+3P (88 ) (SS ) L (SSl SSI) 38, 882 L1 (s,g ) (3_% )z

oz, ) \ bz, dx,’ 8xy) 8z, sz dx; | \ dx;

s (B a) R m— e (3, 2)882<x2—a2>+ A () S e-a)
% dx, dx;’ ') dx;

+ 37 (@) (2 — a2+ V" (g, @) (@ — @y) (B3 — @g) + ... + F17 (a)) (2, — @5)%; (31)
and the others may be similarly developed.

o=(‘{f2=)11f'(
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3] XIII. CALCULUS OF PRINCIPAL RELATIONS 337

We have next to integrate these equations; at least to discover functions S, S,, S;, &c.
which shall satisfy them. It might seem that this integration would introduce in general an
arbitrary function for every differential equation; and thus an infinite number of arbitrary
functions into the general expression of the sum S;+ 8,+ 83+ &c.=8; but the conditions
already mentioned enable us to foresee that the form of S, required for our present purpose
must be

Sy=D(ay, g, ..., @y, Xy — 3, Ty— Ay, ..., Ty—y), (32)

which form accordingly may be easily shown to satisfy the partial differential equation (29)
(see below); and then the remaining functions S,, §;, &c. may be determined, as we are about
to prove, by the remaining equations (30), (31) ... without any new integrations being required
—a result of great importance in the Calculus of Principal Relations as enabling us to develope
the Principal Function without ambiguity for the case of moderate increments of the variables
M B T

To show first of all that the form (32) for 8, satisfies equation (29), we may observe that this

form gives by partial differentiation for 88——? A gc—l the same functions of @, ..., @; and of the
Ty i
ratios of z; —a,, ..., ¥;— a,, which might be otherwise deduced from the expressions for b, , ..., b;

by changing the ratios of da,, ..., da; to the ratios of z, —a,, ..., ;—a,; since then we had,
independently of the ratios of da, , ..., da;, the relation (15) between b, , ..., b;, a,, ..., @; we must

also have, independently of the ratios of #;—a,, ..., ;—a;, the relation (29) between
88, 38,
8_2,‘1, essy _8?1-’ Ayy eeey Qg

(Again, the equation (5) shows that the variations 8z, , ..., 8x;, 8y, , ..., 8y; are connected by
the relation

' O=§£?1§'8xl—dx18y1+...+88%f’8xi—dxi8yi, (33)
which may by (7) be put in the form
0=dy, 8z, —dx, 8y, + ... + dy, dx; — dx;8y,; (34)
since then, by (14), we have
0=""(2,) 02y + V' (1) 8y + ... + V" () 2, + V" (y;) By, (35)
and since these two last expressions must both be satisfied independently of any other relation
between 8z, ..., 8z; and 8y, ..., 8y;, we see that we must have, separately,
V(y)= —Lay, V' (yo)=—Lag, ..., V' (y;)= — La, (36)

21, ete. having the meanings (19) and L being some common multiplier; and in like manner, L
being still the same common multiplier, we have
W (@)= +Ly;, V' (%)= +Lys, ..., V'(x)=+Ly, (37)
in which ‘
, d bl
yi="2, ..., yi=2t (38)

We might proceed in this way to determine the ratios of ¥ (g—fl) R TR 2 (%—%) and to show
' 1 i

HMPII : 43
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338 XIII. CALCULUS OF PRINCIPAL RELATIONS [3

that they are the same as the ratios of z,—a,, ..., #;—a,;, but the following method is more
simple.)
Since 8, is a homogeneous function of the first dimension of #,—a,, ..., #;—a;, it must
satisfy the condition
38 SS
Sl=(x1_a1) 1+(x2 “2) 8 + +( &% 1,) 1 (39)
which gives, by being varied with respect [ R R b
38, 38
0= (xl—al)S-—S—1+( )88 o+ (2 — )88—1, (40)
Zg L2
the quantities a,, ..., a; being treated as constants. But on this last supposition, the equation
(29) gives
38, « 68, 38, 881 38, 88,
4 = 8 7 41
ol (8“’1) 8x1+IF (8952) Sy g (8 ) Say’ )
: : : S 88, 38,
and since these two linear relations (40) and (41) between the variations § < Sz, 7,8 Sz, ! must in
1 %

general hold together and be equivalent only to one relation, the coefficients in the one must be
proportional to those in the other; so that, in general,
, (884 . (384 , (38,
L (le) = (2= ag)i ( ) )\(xz 8 T (le) Az —ay), (42)
A being some common multiplier of which the form can be found when those of S; and 1" are
known.

Whatever this form of A may be, we see now that

T A T 58, . (58,) 58,
‘F(s )81 ‘F(sz)az ‘F(Sx)ém

=d{(x;—a,) —1‘+ (xz—a2)§&”+ vt (2, — @) % =MS,, (43)
S, Oy dx;

on account of the homogeneous form of §,,. Hence the equations (30), (31) and the other similar
equations for S, S;, &c. will determine (in general) the several functions S,, S3, S,, S5, &ec.
without anyintegration being required after the form of S; has been found by the equation (32):
which is one of the most useful theorems in this Calculus.

In particular, equation (30) gives !
]' ’ ’
8= — 2 {V (a) (2, —a) + ¥ (a5) (X — ap) + ... + 'V (a;) (2, — @)} (44)

To transform this expression for the first correction S, of the first approximate value S; of S,
we may observe that the equation (39) gives, when varied with respect to all the quantities
z,, &c. and a,, &c.,

B A 68, 88, (88, 388, 88, 88, !
O_(xl al)Sle +... +(x,;—ai)8 —8*&; (le Sal) da L/ (8$:+87%) 8“@': (45)
while the equation (32) gives in like manner
O II}I (881) SSI ‘P" SSI) 8‘8“* +\Fl (a1)8a1+ +\Ifl (a )8a1,’ (46)
8z, ) 8w 1 dx; ) S,
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3, 4] XIII. CALCULUS OF PRINCIPAL RELATIONS 339

and since these two last equations must coincide, we have in general along with the relations
(42) the following other relations:

; 5 38, 88, % _ 3 (981,88, g 88, :8&)
N ()= —A(gx—l-'-%)’ Y (@)= —A (8x2+§iz)’ by B, == —A(S—xi+ 5a,) (47)

And thus the expreésion (44) transforms itself into the following:

Sy=1%(2,—ay) (8—814'278:) +4 (@y—ay) (S—SI"‘S—SI) ot i@ —ay) (%ﬂl‘f'%

day oxy “dagy x; oa;

) . (48)

If then we neglect only terms which are of the third dimension with respect to the small
increments #, —a,, ..., ¥; — a;, the principal function S may be thus expressed :

S=f(l) (py 24 +o0, 2 ), dargy o dd;)

i 38, 88, 38, 88,
=S b ) (g g+ + @0 (50 + 5 (49)
in which, by (32),

S;=0(a,, ag, ..., @, Xy —ay, Ta—ay, ..., T;—a;).

And it is remarkable that in the same order of approximation this expression (49) for the
principal function § may be transformed as follows:
z +a, Zy+a, Z;+a;
B e

S=®(

s By — @y, Xy— g, ...,x,-—ai). (50)

[4n alternative method of approximation.]

[4.] Before proceeding further in this integtation of the partial differential equation (16),
let us observe that if we consider z as an independent and continuously flowing variable on
which all the rest depend, and which is =0 at the beginning and =z at the end of the progres-
sion, we may in general denote the principal function or integral § as follows:

) s 5 dz, dz, dz; ’
S—fa¢ (zl, Rgy eeey zi’EZ‘,E’ caey E;)dz, (51)
24, 29, ..., 2; being functions of z which may be thus denoted
2 =f1(2), 22=[3(2), ..., 2;=[; (2), (52)

and which satisfy the 7 initial conditions «

fil@)=ay, fy(a)=ay, ..., fi(@)=a;, (53)
and the ¢ final conditions

fl(x)—_'xl’fz(x):xz’ "'rfi(x)':xi' (54)

And if, as a first approximation, we make the supposition of uniformly flowing values, or linear
forms, of the functions z,, 2,, ..., 2; so as to suppose

\

2, —a Zy— X, —a;
7=+ (z—a) ;_al, zz=“2+(2—a);—_a—2, e zi=“«c+(Z—a)ﬁ, (65)
and
dz, 2, —a, dz, Zo— dz; x;—ay;
—2=f! = st PL = erey = y Mg itifio 038 56
dz fl(z) gt dz fz(z) —a.’ *d fz(zl T—a ( )
43-2

www.rcin.org.pl



340 XIII. CALCULUS OF PRINCIPAL RELATIONS [4, 5
and therefore by (51)

z —_— —a —— Xy~ X1—C z;,—a
S=f(l)(a1+z—ah—l, TR . b 6, ou i ‘)dz; (57)
g X

r—a r—a r—a

we find, by developing the coefficient under the integral sign as far as the first power inclusive
of z—a,

dS_(I)(a1+z P ur Wi S ai+z—axi—a", o< o SR xi_ai)
dz x—a r—a’ z—a z—a
2, —a X—a;\ z2—a ., é
=(D(a1, Ny ;—al’ 4. ;_at)_{_x_a{d) (@) (y—ay) + ... + @ (a;) (2, —a;)}, (58)
; 3 4 : X —Q Ty—a z,—a
@’ (a,), ..., D’ (a;) being here formedbyva,rymg(b(al,az,...,a,-, :;—-al’ ;_az, e ;—ai)
if x;%al , etc. were constants; and therefore, by integration,
x—a z;—a
S=(x——a)(D(al, STy 91;—a1’ W a: ai)
+3(@—a){®' (a) (&, —ay) + ... + D' (@) (;— ai)} (59)
that is, S8=0(a,, @y, ..., @, T, — 0y, Ta— g, ..., T;— ;)
2, —a, (8 3
+—12—1 (SE;+8_3:1) D (@, Ay, oeey Bgy By — By, Xg—qg,y oovy Ty—a;)
+ &c.
x;—a; (8 3
+re 87,i+8x D (ay, gy ooey Wy Ty —Ayy Ty— by, ony Ti—Ay); (60)

which agrees with the expressmn (49) and is therefore accurate as far as the second dimension

d Sl t(li— are not accurate as far as the first dimension inclusive with
respect to the small quantities #; —a,, xy—a,, ..., ;—a;. The theory of this fact will soon be
fully explained.*

inclusive, although —=

[The first method may be used without forming the partial differential equation.]
(Jan. 227, 1836.)

[5.1 Proceeding now to equation (31) and seeking to vransform the expression which it
gives for 8, into one more commodious and especially into one more closely connected with the
form of the original function ® in the expression for the element dS in (1), we may suppose in

general that the equation (29) has been so prepared, by resolving it with respect to — ne , as to

8a;’
be of the form
o 88’1 38; 88, 88, )
0= — 8 +f (-8—:5,872, .“’S;i—_]:’ Ays Aoy ooy Uy 1, A5 (61)

* [This alternative method of finding an approximate expression for § is very similar to that adopted by various
writers on Rayleigh’s Principle (Rayleigh, Phil. Trans. (1870), A, cLx1, p. 77; Ritz, Crelle (1908), cxxxv, p. 1).
Approximate values which satisfy the end conditions (53) and (54) are substituted for 2,, ..., 2, in the integral (57)
and an approximate value thus found for the principal value, which can then be used to soive the original set of
differential equations (7).]
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5] XIII. CALCULUS OF PRINCIPAL RELATIONS 341

and then we shall have
L T
¥ (5)- -1 o
o (5_31) =0, ¥’ (8_31 éEl):(), ‘I’(% §§l) =0, ...,
oz, oz, ’ ox, oy’ O, (63)
s (88, n (381 2\ _o.
¥ (Sxi’al) G 47 (Sx‘, ai)—'o;

and ¥ (gfl) ey il (gxi ,a ) very ¥ (a@,), ... will be the partial differential coefficients of the
1

second order of 'y ! considered as a function of !, &c. If then we put for abbreviation
Ty

3 - g 59,
82:1 =75, —8—:;;—'02, ey 'S;"—v,‘, (64)

we shall have besides (62) and (63) the expressions
yr (88’) _ Sy 3 (BSI) 3v; Uk ‘I"( SSI)___ dv;

oz, ) Oy’ Sxy)  Svy’ 82ia) B0y (65)
. SSI) dv; 3 SS) Bv‘ g (SSI) v |
5a,) “bay’ * \bay) T2y \5a,) Toa/

gv‘ 22‘1 &c. denoting here the partial differential coefficients of the function v;, taken with
V1

respect to v,, @,, &c.: we have, too,
o (s_sl\, B, (asl SS) - 8% q,,( ssl) S )

o, ] Su2’ 8w, ’ 8xy)  Sv dvy” T 8r,_,) &,
., (38 | _ 8w, 88, )_ S,
" (ﬁ ; al) " 8v,8a,” " il (Sxi—l i vy 0a;’ > (66)
” 82”{ ’r s 820{ ” _S%i
¥ (%)—W, v (a, aa)—m, ooy (‘%)—87“%: ]

and it remains to calculate these differential coefficients of the function v; from those of the
function @, or §,, in the expression (1), or (32).

It may somewhat simplify the proceeding if we put for abridgement

By—Qy=Uy, Tg— Qg ="TUg, +0r, Tz —A;="Uy, (67)
and therefore by (32)
S;=0 (ay, ag, ..., @3, Uy, Ug, ..., Uy). (68)
This function is homogeneous of the first dimension (as we have seen) with respect to u,, u,, ...
u;; we have therefore the relation :

S =0y UV + ea + U0y, (69)
because by (64) we have
38, SSI
= ——= { —_— = ’ & 70
v, 5, D (a8 )iy i D’ (u;) (70)
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342 XIII. CALCULUS OF PRINCIPAL RELATIONS [5

Eliminating the ratios of u;,u,, ..., ; between these last expressions, we might deduce as before
a relation of the form
0=" (D" (u,), D' (ug), ..., D' (u;), @y, Gy, ..., @)=Y (vy, vy, ..., v, @3, Cg, ..., &); (71)

and might then deduce from this the sought partial differential coefficients g:-‘ : g:)—)f , +-.. Without
1 2

actually performing this elimination (which we cannot perform while we leave the form of ®
undetermined) we may still deduce these differential coefficients as follows:

The complete variation of 8, is, by (68) and (70),
88y =0, 8uy +v,8uy + ... +v,;0u; + D’ (a,) Sa, + D’ (ay) day+ ... + D' (a;) da;; (72)
and comparing this with the variation of the expression (69) we find

0=, 8v; + Uy 80y + ... +u;00; — D' (@,) 82, — D' (a,) day— ... — D’ (@) Sa;, (73)
which gives
dv, u, oYy o S, Uy 4
£ S S o LA YR RS =—-—1= 4
dv, u;” dvy U, vy ug @4

and
B_v@_ =q), (al) 8ﬂ=®’ (a2) %=(D, (ai) : (75)
R T " T

In this manner then the partial differential coefficients of v; of the first order are determined.

Proceeding to the second order, how is 887%: to be calculated? By supposing éa,=0, ...,
1

da;=0, 8v,=0, ..., dv;_;=0, then taking the variation of g%j: —:%: and dividing it by 6év;.
We are therefore to put, by (70),

0=0"" (uy, uy) Sty + D" (ug) Suy+ D"’ (uy, ug)dug+ ...+ 0" (uy, u;) duy,

0=0"" (uy, ug) duy+ D"’ (uy, us) dug+ D" (ug) Sug+ ... + 0"’ (ug, u;) duy,

0=0"" (uy, u;_y)du; + D" (ug, u;_y) g+ ... + D' (wy_y, u;)du;,
establishing thus 7 — 2 relations between du,, du,, ..., du; or rather between their ¢ — 1 ratios,
which leave one of these ratios undetermined. We have also
vy, = D" (uy) duy + D"’ (uy, us) duy+ ... + 0" (uy, u;)du;,
and
;="' (uy, u;) uy + D" (ug, u;)dug+ ... + D" (u;) duy;

and hence, by elimination, we can in general express du, — 7—; du; as a linear function of dv,, dv,,
i

also & o0, = —81 and therefore finally calculate 8—%‘
ov, Uy ov3
In general the 7 equations ;
S0, = 8D’ (uy), Svy=8D' (uy), ..., 0, =80 (u;), (76)
or any ¢— 1 of them, enable us by elimination to express 8%, B 83‘;;1 and consequently

(] 1
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5] XIII. CALCULUS OF PRINCIPAL RELATIONS 343

Suy— My, ..., du;—du; (where A is any arbitrary multiplier) as linear functions of dvy, ..., dv;,
day, ..., da;; and then the values thus found for du,, ..., du; are to be substituted in the following
expression, which is deduced from (73) and which may be shown (by (73) and by the homo-
geneous forms of @’ (a,), ..., ®’ (a;)) not to contain the arbitrary multiplier A:

S*v¢=—;:;{81(.181)1+8u,8v,+...+8u¢801—8fb’(a1)8a1—...—Sfb’(ai)Sai}. (77)

It only remains therefore to simplify and perform the elimination between the equations (76),
which may be thus expanded:
Svy =@ (uy) duy + D"’ (uy, Ug) Sty + ... + D" (g, ug) S+ P’ (g, @) 8ay)
+oen + 9" (uy, a;) day,
vy =D (uy, uy) duy + D" (ug) Sty + ... + "' (g, u;) du;+ D"’ (uy, a,)da,
b+ O (g, a) 00,0 (T9)

Bvy= D" (g, ) Sty + D" (g, g) Sthg+ .. + D" (205) Sy + D (g, a,) 80y
ook O (g, ay) B

For this purpose we may employ the relations which result from the homogeneous form of @,
namely,

D =, @ (0y) + g @' (14g) + oo+ 20y D (1); (79)
O’ () =u, D" (ay, uy) +u, @' (ay, ug) + ... +u;, @' (a,, u,), iR
;1;;.(;;).;;1‘!1’»’ (a;, uy)+u, @' (qi, Ug) + ... +u;, D' (ay, ui);} i

o 0=u,®" (u,) +uy @' (uy, ug) + .0o +u; "' (uy, uy),
0=u1¢”(u1, ug) + up D' (Ug, )+ oo +u; O (ui).} o

Besides, if we take as the arbitrary multiplier A in the expressions du, — Au,, &c. the following
(see (72)):

1 & ; 1
A=;§;{8SI_ (b (a]) 3(11-— aen —(D (a«i) sa‘} =:§; (1)18?.514- ) +'vi8'u¢), (82}

we shall have, by (69), the relation
0=, (Bu; — Auy) + v, (Suy — Atg) + ... + v (du; — Auy). (83)

We are therefore to determine by elimination, if we can, the ¢ expressions du, — A, , ..., u, — Au;
as linear functions of v, dv,, ..., dv;, da,, da,, ..., da; by means of this last relation and any
i— 1, or all, of the 7 equations fellowing:
o0y = D" (uy) (Buy — Auy) + ... + D" (uy, u;) (Buy —Auy) + D"’ (ay, u,)da,
+.. + 0" (a5, uy) Bay,

...............

(84)
v, = D" (uy, w;) (duy—Auy) + ... + D (u;) (du; — Au;) + O’ (ay, u;)da,
+... ‘|"(1)"I‘jl (a‘, u;)Saf.
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344 XIII. CALCULUS OF PRINCIPAL RELATIONS [5,6

If we put for abridgement
8‘“1-—)-‘“1=8'ul, sney Sﬂi—aﬂ'@:S’u‘, (85)
and
o0y — "' (ay, uy) da; — ... — D" (a;, uy) 8a;=20"v,,
............... (86)
B0y — O (ay, Ug) By — ... — B (a;, 1) B2y ="y,
The i + 1relations (83) and (84), equivalent only to ¢ distinct ones, will take these simpler forms:
0=v,8"u, +v,8"ug+ ... +v;8'u;, (87)
and
vy =0" (uy) 8'uy + D' (uy, up) 8y + ... + D" (u,, u;) S'ui,}
............... (88)
8y =0"" (uy, ;) 8'uy + D' (ug, ug) 8'ug + ... + B () 8'u,

in which the coefficients are connected by the conditions of homogeneity (81).
[The case of two variables.]

[6.] Consider first the case of only two variables x, , x, (i = 2) with two corresponding vari-
ables u,, u,, &c. We have now to deduce 8'u, , 8'u,, from the three relations following, or from
any two of them: :

and _
8'vy =B (uy) 8"uy + D' (uy, Ug) 8’“2,} (90)
3wy =D"" (uy, ug)duy+ D" (uy) 8 us:
and the coefficients are connected by the 2 relations
0=u, 0" (u) +u, D" (uy, uy), 0=u, D" (uy, uy) +u, 0" (uy); (91)
we have also

By (90), we have

Uy 80y — Uy 80y = {Ug®” (0y) — Uy @' (w0, Up)} 8"ty + {Ug®"" (w0, Ug) — uy D" (wp)} 3'ug; (93)
therefore, by (89), we have the following expressions for &"u, , 8"u,:
Vg (U 8'0y — U, 8'0,)

O'u, = 0 T (G W L]
1 s (gD (1) — Uy D" (g, Ug)) — Oy (g ®" (g, Ug) — Uy ®” (tg)} u
Pl — vy (ug8"vy —u, 80y
2 0y {ug®" (uy) — uy @' (g, Ug)}— vy {us®@" (0, Ug) =, D (wg)}
In the common denominator, we have by (91)
O ) _ 0" (g, ) " () _ 0" (1) + O (1) R
uj Uy Uy uj ui+ui  ’
and therefore
0" ()= 0% (o, )= a0 ) O e 1ok
—Ug®"" (Ug, Up) + Uy @ (up) =2y {O” (uy) + D" (u,)},

so that the common denominator is (uyv,+u,v;){®” (u;)+ D" (u,)}, and the expressions (94)
become (attending to (92))

’ »
1.’2 uga t’l—‘ula ”2

AFL B8 il MR el ‘Ul 'uls 3’1.?1 g w ‘ul S’vg
00" (u) + 0" (ug)’

i T D" (uy) 7O (utg)”

&'y = (97)
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6] XIII. CALCULUS OF PRINCIPAL RELATIONS 345

Hence
Ve b DR % Y 3'v; +v,8'vy
O () + O () D7 () + D" (ug)’ =
Bl Slac L SN 180T 000
D" (ug) + 0" (ug) D D" (uy) + D" (uy)’
and therefore by the meanings (85) of 8'u,, 8'u,, ...
U OUy — Uy Sty = Uy 8" Uy — Uy &'y = St 0y WA Y, | (99)

Q" (uy) + @ (uy)’
an expression which might also have been deduced more immediately from (94). Hence, by
the meanings (86) of 8'v;, 8'v,,

Uy OV; — Uy OV uy @' (ay, uy) —u, @' (ay, uy)
usu_u8u=”2l 1”2_2 1”s1 }’ 1> 28a
TR 07 (uy) + D7 (uy) D (uy) + D (ug) ¢
uy @"' (ag, ;) —u, @"' (2, ’“2)8
- . 5 s, (100
@ (uy) § 0 (1) %)
In general the equation (77) may be put under the form
B, -5 (3080, + 1y, .. 4 30 3'0y) 480, (101)
i i
8’ referring only to the variations of a,, a,, ..., a;; so that, since
0=2u,8"v; +uy8'vy + ... +u;8'v;, (102)
we have
3= — 1% (8%, 8'vy + 8'ug 8" vy + ... + 8"u;8'v; — 8"2D), (103) -
i
in which we may, by (102), introduce or suppress any set of terms in 8"u,, 8"us, ..., "u;, which
are proportional to u,, u,, ..., %;.
In the particular case 7= 2, we have therefore by (98)
1 §'v3+8"v3 1
=—— —= 2 1 __3§%% 104
oy Uy D7 (uy) + O (u,) & g ) (o8
in which
8'vy =80, = @"' (ay, uy) 82y — D" (ay, uy) 31, ’} (105)
vy =08v,— @' (ay, uy) 8@, — D"’ (ag, uy) day;
also
Uy 80y + Uy 8"y = 0. (106)

If we do not choose to suppose 82, =0, then instead of (104) we have the more symmetrical
relation
8'v3+8'v3

s O (uy) + D" (uy)
Comparing these two last equations (106), (107), of which the former may be thus written

0 =1u, 8v, + u,0v, — @’ (a,) da; — D' (a,) a,, (108)

0 =1u, 8%, + uy 8%, + — 82D, (107)

with the two following:
0=38Y (vy, vy, Ay, ag) =¥ (v,) 8v, + V" (vy) S0, + V' (a,) 82, + V" (a,) 3a,, (109)

HMPII _ 44
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and
0=382Y="" (v;) 8%, + V"' (vy) 8%y + V" (v,) 80} + 2¥"+' (v, v,) 8, vy + V" (v,) S0}

+2¥" (vy, @y) 8, 8a, + 29"’ (vy, a,) Sv, 8ay+ 2W"' (vy, a;) Sv,8a, + 29"’ (vy, a,) Sv,8a,

+¥" (a,) 8a? + 21"’ (a,, a,) 8a,8a,+ ¥ (a,) 8a3, (110)
we find that
V' (v;) W' (v,) ol (al) W (a,)
- e =2, 111
Uy Uy o (“1) o (as) o
v} +8'v3

3 = A (u, 8%, + u,8%,) + +2(V, 80, + V, v, + A, 8a, + A, da,)

Q" (uy) + D" (up)
X {ty Sy + Uy S, — D’ (@) day, — D’ (a,) Say}, (112)

A having the same meaning as in (111), and V;, V,, 4,, 4, being multipliers to be determined

by the condition that this last equation shall hold good independently of the variations &v, , 8v,,

da,, da,, 8%,, 8%v,. Taking therefore the four partial differential coefficients of the equation

(112) with respect to dv,, 8v,, da,, da,, we find

W A8'v,

s S o edeied SO
ov; D (uy) +D" (up)

+uy V00, + Vy 00, + 4, 80, + A, 5a,)
+ Vi {u, 8v; +uydv, - D’ (a,) da, — D' (a,) da,}, (113)

o A8'v,

a=m+uz( ......... )+ Vafeenennnn. } (114)
b A I ’ v ’ 3 r& ’
55—“1= _(D”—(%W(u—z){(p (@, Uy) 80y + D" (0, Uy) 80y} —8 Sal—(p (@) (V1801 +...)

+ A4, {u, v, +...}, (115)

o A > " 5.
85&; ~ O ()10 ){(I) "(ag, uy) 8'v, + D' (ay, uy) 8'vy} — 8 ——(D 2 ety )

+A2{ ......... Bl 1

We could thus express the partial differential coefficients of the first and second orders of ¥ by
means of those of @, the expressions of these differential coefficients of V" involving also the
5 arbitrary multipliers A, V;, V,, 4,, 4,, which cannot be determined without assuming some
new condition, such as that contained in the form (61). But without making such assumption
we can transform the two equations of the form (30) and (31), namely,

55,
Su;
0= W'(vl)—w( Ssawi’" 1>( ) LV (o, 2)88288%%‘1’” »(88”)

0="" (v) =—+7%' (vz)i—-i:-*-?" (@) uy + ¥ (ay) u,, (117)

+¥% '(”1’ a1) '”'1+1F' "(vy, a2)8 2ug+ " (v,, a’l) Sty 1"’1‘*“{}’ " (vg, “2) 8

+ 3V (a,) ud + ‘P"' (@, ¥) Uy uy + 3V () 3, ( 118)
80 as to eliminate the differential coefficients of ¥ and introduce those of ®@ in their stead.
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6] XIII. CALCULUS OF PRINCIPAL RELATIONS 347
For it is evident that the equation (117) may be formed from the equation

S¥=0 . (119)
38, 8;5’2
by merely changing 8v,, 8v,, 8a,, 8a, to < S’ , %y, Uy respectively, and that the equation
1
(118) may be formed from
82 =0 (120)
by making the changes just mentioned and changing also 8%, , 8%, to 2 SSSS Sis since then,
2
by (111), we have
W = A {u, 80y +uy8v, — D’ (a,) da, — D’ (ay) day}, (121)
the equation (117) gives independently of A
38, 38, ) .
0=u, ey . 5u, —u D' (ay) — uy @' (ay), (122)

that is, on account of the homogeneous form of S,,
Sy =3 {u, @’ (ay) +u, @' (a,)}, (123)
a result agreeing with (48); and, in like manner, (118) gives, by (112),
i 88, 88, A'vi+A'v3 38, 08, )
0250+, R (G e N

38, 1 88 ; ;
g gl =10 ()~ (@), (124

) A+

in which the part involving the arbitrary multiplier vanishes by (122), and in which

A'vy= 28, —u, @' (ay, uy) —uy @' (@g, uy), A'vy= = —u, @"' (ay, ug) —uy @' (ay, uy). (125)
Su, Oy
The expressioﬁ (123) gives
SS X,
=30 (ay) + §u, @ (ay, uy) + Ju, D"’ (ay, ul)’
s S (126)
Su, =30 (ay) + Ju, O"' (ay, up) + Jus @' (ay, u,).
Therefore i
Ay = HO' (@) —u, @ (ay, uy) —uy @' (ag, %)}, } (127)
A'vy=3{D' (ag) —u, D"’ (ay, ug) —us @’ (ag, uy)},

in which, by (80),
D' (@) =u, D"’ (@y, uy) +u @' (ay, uy), D' (ay)=u, D"’ (ag, uy) +us @' (ag, uy); (128)
therefore
A'vy=Juy {0 (ay, ug) @' (g, w))}, A'vy==Ju, {®" (ay, up) "' (ap, uy)}; (129)
so that, on account of the homogeneous form and dimension (= 3) of Sy, the equation (124) gives

1 u%—'_ug ’, e 2
TR (uy) £ O (ug) T (@1 ) =@ (a3, )]

+ 3 {ud " (a,) + 2uu, @' (ay, ay) + u3 D" (ay)}, (130)
44-2

8y=
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because in (124) we are to make

A2D = u3®” (ay) + 2uyuy @' (ay, ag) +ulD” (a,). (131)
< : 2+ ud
We may substitute, if we choose, for the factor ,,ul—z,,— any one of the other forms (95
o O () +0” (a) ™Y et
which are more simple but less symmetric, except indeed the form "% which might

) i 5 (g, ug)
be substituted with advantage.

We have then, to the accuracy of the 3rd order inclusive, for the case 7 = 2, this expression
for the principal function S:

(11=ax+;un Zy= g+ Us)
f Y (-’1?1 s Lgs dxl ’ dxz) =0 (a'l s Qg Uy, uz) o %{ul(pl (al) +u2®' (az)}

(1=, Ty=0as)

+ ${u3 D" (ay) + 2uy uy @' (ay, @) +u3D” (ay)} (132)
e s (0 (i, )~ 0" (0, w)
; ; u$ + ul Uy U
oty -ttbi e
[Ezamples.]
[7.] For example, if* @ (z,, @,, dz,, dx2)=2dTaj2 +f (%) dc,y, (133)
then D (a,, ay, u,, u2)=2lt——qi +f (@) uy (134)

and consequently @' (a)) =uyf" (ay), P’ (ay) =0,
D (ay) =uaf" (@1), @' (ay, ag)=0, D"(ay)=0,
D" (ay, wg)=f" (@), @' (ag, uy)=0, (135)
O ()=, O (ug) =
U Us
therefore the general approximate expression (132), for the case ¢ =2, gives here
(=, +u,, ar¢=a,+u.>{ dx%

8= ﬁ—xz'*‘f(%)dxz}

J(@r=as, 2,=a,)

~ g+ (00) s (o) + oo (@)~ Feud (@) (130

In this example the general differential equations (7) become

g o da?
= @, algh—fe)=0; (137)
equations which are obviously compatible with each other, and which concur in giving
da}
EE%“ 2f (%) = b3 — 2f (a,), (138)

* [This is the dynamical problem of the linear motion of a particle of unit mass whose coordinate is z, at
time 2,, the force potential being — f(x;).]
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b, denoting, as in page 333, the initial value of —— . , which is here dﬁ hence if we suppose

ddz, dz,’
Z 1> 0, we shall have
dx,
Z 139
" VR (@) 2f (ay) + 01 vt
and
S =fal+u‘ 2f(x1) _f(al) + %b% dxl (140)
V2f (@) — 2f (a,) + b3
rigorously. Change here z; to a, +u, and we get approximately
J@)=f(ay+uy)=f(a) +u, f' (ar) + $ulf" (a,) (141)

and therefore

" (@)}
{2f (1) — 2f (@) + b3} = b2 {1+ 2qu (al) Lot ,f‘;"}

=b1'—b7 {u f’ (al) +3ulf” (@)} + §07%03{f" (a))}%,  (142)
therefore, by (139),

= [ (21 )~ 2f (a0) b3 oy = [t w) -2 @) +oayian,

=b31u, — b3 {3l f’ (ay) + §ui f” (@)} + 30753 {f" (a1)}?,  (143)
b1=* 307%uz MR [ (aq) — §b7%ug W f 7 (@y) + b7z W {f (@)} (144)

hence as a ﬁrst approximation

b, - (145)
as a second approximation :
; b1=:%1—%'“2f' (ay); : (146)
and as a third approximation ;
b1=:-1 —$uy f' (@) { 1 +:T§f' (ay) } duyuy f7 (ay) +t3 i {f (@)}
2 1
=l,:’i1"‘%“2f' (“1);%u1uzf” (ay); (147)
also
2f (a1 +uy) = f (ay) + 303 =363+ f (@) + 2uy f' (1) + 43 f" (1), (148)
therefore

2f (@, +uy) — f (ay) + 302 3 1+f(a1) i (‘11){ 1 f(al)}

V2f (@) — 2f (ay) + b3 ol TR0 GINE NN

oAl er-a((4e) s (5 5
=%b1+f(,,‘j‘)+u1f' ;a) {g _f(czl)} ut {% £ (a2 (f <a1>)

Ll @ sy (L)) as
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hence
_ [“% (@ +u,) —f(ay) + 303 ! (al) 38 fla)) W
S_fo V2f(xl)_2f(a1);b§ f“ (2f( ) )}(+ f)f(a:){fbsﬂba) £2< 1\ 2)
3f"(a a a a a a ug,
+{Z bll‘E( bll) % T3 bll( b‘l)}3’ (150)
in which, by (147), oy uluz , ulus s s
T—z‘u—z— f(a)— f 1),

L)y (@) {1 g 1 ) =" (ao}

1

—uaf (@) (1453 £ ) + 31 @)+ ol @} (152)

3f'(“1) = Suyuf’ (al){l+ f’(al)} (153)

Al v ‘“I’f (“1) o fa)f @) 1+ 5 @), (154)
(e st @y (aoGJ; (@) f(al){;;s(al)}“’} |

=1uduy " (ay) — 753 [5{f" (@)} + 2f (ay) f" (ay)] + $udui®f (@) {f' (ay)}*; (155)
therefore, adding these last five expressions,

i
8= f +uy f(a,)

—1
2"/1

fla)f' (ay)

% () + B 10,1 () + 220 P (0
“1“2f (ay) + 2f (a)f" (ag) + 2% 1f<a1){f'<a1>}2+—*{f (@) - 3“2“1 fla) {f' (@)}

'“21

fla){f' (@)}

u U 4 ’
A 2f (ay) - 2f (@) f" (a;)— 2{f (@)} +
=2—ulz+’“2f (@) + 2281 (a) + 8 (0) — B @y, (156)
as in (136).
This has been a complicated process: its most essential part, after the deduction of the

rigorous intermediate integral equation (138), has been the approximate elimination of b,
between the two rigorous expressions

G i 143
3 f Vi +2f (ay +uy) — 2f (a,) {ind

and

s %bz oy 2f (al + ul) f(a‘l) (150)
1 ’
0 Vb3 +2f (a; +uy) — 2f(a1)
giving the approximate result (136) through the medium of the approximate expression (147),
deduced from (143).
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In the present example we have, by (133),

3dS _dw,, 3dS 1 d_ar:_!)2 .
=5de, da, V25, = 5(z) e e
so that the general equation (14), 0=" (¥, ..., ¥;, &y, ..., ¥;), may here be put under the form
0=3yi+ys—f (), (158)
and the general partial differential equation (16), which may always be thus written
38 38
0= \F(Sul ..,%,al+ul,...,ai+ui), (159)
becomes in the present example
1/88\2 388
0=3(5) *5u S+ (160)
and gives
38 38

If we take the upper sign, the complete and general integral of this partial differential equation
(161) is given by the following equations:

Uy
S=f T i b il ok SO e i
# f (@ +uy) gty +byuy + ¢ (by) 3T 0 V2f (@, + u;) — 2b, ¢’ (by), (162)
# (b,) being an arbitrary function of b, and ¢’ (b,) being its derived function, but b, being
treated as constant in effecting the two definite integrations; and in the present question this
arbitrary function ¢ (b,) and therefore also ¢’ (b,) must be supposed to be identically equal to
zero, because S vanishes with %, and %, independently of the auxiliary quantity b,, which may

easily be shown to be equal to — - and to be constant in the progression of u, u, S; we may then

Sy
rigorously determine the form of the principal function S by eliminating b, between the two
equations

... |3 e S=f"‘ B t®) b 5. (163)
0 V2f (a, +u,) — 2b, 2f (@y +uy) — 2by
which may easily be seen to coincide with the equations (143) and (150).

(Jan. 237, 1836.)
As another example,* let

D (2, 24, day, dx2)=02"x1( Zx +gdx2) (164)

h and g being any arbltra,ry constants and e being the napierian base. Then
\ O (ay, Qg Uy, u2)=3”w‘ (h;l+yu,); ; (165)

2
2

@' (@) =2rD, D' (a,)=0, D' (u,)=2h %‘ ethay @’ (u,) =2 (g ~h :%) PR 166)
2 2

* [Problem of the fall of a heavy body in a medium resisting as the square of the velocity.]
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352 XIII. CALCULUS OF PRINCIPAL RELATIONS (7
O (a,) = 412D, D" (a,,a,)=0, D"(ay)=0,

2
D"’ (ay, u,)=4h? :{l e¥ha  @'(a;,u,)=2h (g —h :{-»;) eBay D5 (ay,4,)=0,
2 2

2 167
0" (ay, =0, (%7
. 2h A 2hu " 2hu?
hfl Ut B _7-3_16%’ O () == e
w43 wuy .
" e thmei® v o ) 168
& )+ )~ O (g ) 2 e
and the general approximate expression (132) becomes
Ty =03+ Uy, Ty=Og+ Uy 2
S= '. e ™ (h %+9dxz)
o Ty=i, Ty=0y 2
2 2 _ pa2)2
= (1+ bty + 3h2u2) e (h%+gu,) - %ﬁ hethar,  (169)
2
In this example the general differential equations (7) become
da} dz da}
ghae, |5 271 A 2ha, 1 A il B 1
o e I e i~ i
and both agree in giving
dz, da}

as the ordinary differential equation of the second order between z, and x,. The second equation
(170) gives, as an intermediate integral,

dxs
e, (g -h E;) =b, = const., (172)
2
b, denoting as usual the initial value of ®’ (dz,) or of g—gég ; therefore
2
dzg J— i o :
&z~ N gt o
and hence, taking the upper sign,
ay du
=Vh e e 174
» v_jo Vg —bye—2hlartn) s
da?
- SR ¢ N
E-—G l(g'{"km)-——%{im‘%—bs, (175)
therefore
Uy 2h (@) +uy) du
2%2 2g 0 \/g’—bse'%(al'””l) ( )
that is, by the expression for u,,
: [ 2R (ay+uy) _
Badh | e e (177)

0 Vg—bye2hiatn)
The equations (174), (177) are rigorous and the approximate elimination of b, between them
ought to conduct to the expression (169).
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7] XIII. CALCULUS OF PRINCIPAL RELATIONS 353

To effect this approximate elimination, we shall first develope the reciprocal of the radical.
We have

g —bye @t =g b, e~ g=2hy = g — h, e~ (1 — 2hu, + 2h%u3), (178)
therefore
{g — bye—htartu}t — ghay {ge2hay _ b, 4 2b, hu, — 2b, h2u2)
4 2byhu -1
= et gehen— by H 14 T (1|
g R RO 1_balml(l—-hul) 3b3h%u?
7 iy { gen—by  (geha—by)*
=(g— bze_m)—* —uy €M byh (ge*h — bz)_*
+udehn b, h? (geas + 1b,) (geha — b,y F;  (179)
therefore
wVh . w} hethe \b g hethay |\
Uy = \_/‘qbﬁ 9 ¢ e~2har b, (gcahT_b) 31 M“‘bz(gezh““*'i‘bz)( o2ha; — ) (180)
hence, as a first approximation,
N e (181)
Uy
and so (cf. (172))
2
b,=(g—hﬁ;) ethay (182)
Uy
and since in this approximation
( he2hay \} Uy
= bz) e (183)
we have as a second approximation
N L
ul"/g—bze—zh‘h_'uz'*' 2u, z (184)
that is,
Ug) g —bye~hn 943
("h) h - S Uy
or
—2ha Gt gu3 ui
bye x=g—h;t—g 1+hu1-—u—1}=(g—h;g)(l+hu1). (185)

Consequently, as a third approximation,

U h u2 — hu? 1
lA/g 5 e_zhal_l_l_g 2 1{1+hu1+ (gui— hu%)}—@—%(guﬁ—huﬁ)wgug—hug)

2uy
RS TR ] 150
z_gg - bzhe_zha‘ =14 kuﬁ;lgug { 1+ hu,+ 2%,1 (gui— hu%)} H 44% (gus — hu3)?
—;72 (gud — hul) (3gui —hu2), (187)
bye~muf

A=k =14 hu, +h2u3 + 3h (qud — hud) - (3gu, —huf) =1+ hu; + 75h*i — tghug,  (188)

HMPII
45
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354 XIII. CALCULUS OF PRINCIPAL RELATIONS [7

2
and by =t (g—h:—é) {14 hu,y + 503 — tghu3}. (189)

Again, we have by what precedes

h h h L
b —2h PRI
A/ g — bye—Bhayti) A/ g—bye-Pm uy byem (g b e_zhal)

+utbye s g+ foe-tin) (-2 )'s (190)

also
2ge2h — b, e=2h = 2g — b, e~ + dghu, + 4gh®uf; (191)

therefore, by (177) and (180), o
' h
Se—2ha; — Uy (2g -_ b26—2ha’1) + (29;&%% + %ghzu’;) (Wa’l)

1
— Sghud bye2n (—l’_—) . (192)

g—bye~ta
in which
. ui | (Pl 7
Uy (29 — bye—2h4) = gu, + h&— o~ (hwy + 5h*u} — tghu3), (193)
2 2
2ghu? (1 + 2hu )J—’—"—:2ghu uy | 14 hu +%gqig) (194)
1 gy g— bye—2ha; 1Y% T3 )’
and i
h
iy %gku?bz e‘z’“‘l (m) = — %ghug (gug - hu?). (195)
Therefore, adding the three last expressions, we find
hu? 7. Bou}
Se-2hay — (_- T gtig) (14 Baty) + = 2V | Bonsaes — A gthud, (196)
U 12 u,

agreeing with (169).
It would however have been simpler, in this example, to have put the differential equation
of the second order (171) under the form:

@y =g—hay?, (197)
and then to have deduced from it by differentiation
@l = — 2ha} @ = — 2ha, (g — haj?), (198)
and therefore _
a;=g—haj, (199)
ay = —2ha; (9 —has®), (200)

21, @7, 7 being differential coefficients of #; considered as a function of z,, and a5, a7, a7 being
their values when z,=a,, #; =a,. For thus we should obtain, by Taylor’s theorem,

Uy =ajuy+ fajui + jajul, (201)
that is, {
Uy = ay Uy + $u3 (9 — hay®) (1 - §haju,), (202)
which gives as a first approximation
’ ul
oL 203
1 u29 ( )
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7] XIII. CALCULUS OF PRINCIPAL RELATIONS 355

as a second approximation

Y ul).
al _,uz P) (g h ug) ’ (204)
therefore
2
) ha'z—( h%:) (1+hu,), (205)
and X
(1+hu,) (1 — Zhajuy) =14 Shu, . (206)
As a third approximation
bt B, _kug) 1+3k 207
]._,u/2 2 g ;% ( +% ul)' ( )
Also
B ez’“‘lf ez (ha®+g) dus,, (208)
0
in which
@y =ay +a u, + jayuj (209)
and
e =1 + 2hu, + 2h*u} =1+ 2haju, + (2h%as® + hal) ul; (210)
therefore

e (hay® + g) = (hay® + g) {1 + 2hay uy + (2h%a ® + ha’) u3} + 2hay ay {u, + 2hajud} +

+h(ai+ajaf)u, (211)
and

8-t = (a2 +.) [ + g+ (22 + ) ]+ g (uf + $haf )+ § 052+ afa) o
= (hai®+g) ug + 2gha; uf + Yhug{(g + hai®)* + g* — hPai}
= (hay®+g) uy (1+ $ghu3) + 2ghajui, . (212)
in which, by (207),
! hu} hu2 »
(ha12+g)u2=—u—+gu2~—hu1u2 g (1+§hu1)+ g h )
: 2
fghui (has®+g) = %ghuz (bt +gu3), : (213)
2
2ghayui = 2ghu, uy — ghus3 (g —h :%) 5
2
therefore, adding these three last expressions, we find for the principal function S this expres-
sion, agreeing with (196) and with (169):
hui THU 5 20,0 1,278 o2k
S = . T (1+hu1)+1—27 + Sgh*udu, — {59%hu3 e, (214)
2 2
It is worth observing that the differential equation of the second order (197) is that of the
fall of a heavy body in a medium which resists as the square of the velocity; so that the integral

of this equation can be rigorously expressed by the method of the principal function.
As a third example* put
\ 12
a8 =9 (x,, x;, de,, dx2)=%+gxldx2, (215)
g being any arbitrary constant. Then 3
2
D (ay, aq, uy, u2)=2u—1+ga1u2; (216)
Uy

* [Particular case of example on page 348.]
45-2
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therefore

2
O (@) =gus, V(a)=0, O (u)=1t, O (ug)=ga,—5
Ug 2%2
and
D" (a,)=0, Q%' (ay,a3) =0, D (a)=0,
0" (ay,u)=0, @' (ay,up)=g, D" (ag,u)=0, " (ag,up)=0,
” 1 N U ” uz'
@ (u1)=1—‘;, ol (up'“a):‘;%’ o (uz)=,;é,
hence

ui+uj PN i 5
D" (uy) + D" (uy) D" (uy, up)

=ug’

so that the general approximate expression (132) becomes in this example

T1= 01t Usy Ty= ety 2 u2
S= it oy SN —dgus.
f 2dz, + g dzy 2u, + g0y Uy + 39Uy Uy — 55973

Ty =0, Tg=0ay

In this particular example,
_bdS _day
h= ddz, dz,’

3ds8 dat
yz=W2=9x1—”2ax—g»
also
8dS

E—"—gd‘”zs

and

oz,
thus the differential equations (7) become here

da, _ ldxi)_
dd—%_gdxz, d(gxl—id—xg '—O:

and they concur in giving as the complete integral with two arbitrary constants:

T =ay + a; (¥ —ay) + 39 (22— @p)?,
that is,
Uy =y Uy + §gu3.
Hence, rigorously,

U
’ 1

Ay =——350Uqy.
1 Uy ‘}92
Also

i ;7 ’
—=q w
Z 1+ 9U;y
and

2
1(%21)? |, g, = gay + 3ai2 + 290y + gu;
2 \dz,
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(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(229)

(230)
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therefore

Us 1 dx1 2 ’ / 3
4 =f {é (d_) +gx1}dua=(ga1+;alz>uz+ga1u%+&g%z
0 T

rigorously, or
8 = ga, uy + Juy (a1 + gug)® — §9°ui

2
=ga, Uy + $u, (%: " ‘}9“2) — §g%ud

u?
=00, Uy + 2_1:2 + 3gu, up — 359l

357

(231)

(232)

rigorously, as deduced in (220) from the generally approximate expression (132), which in this

example is more than approximate.
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