XIII.

CALCULUS OF PRINCIPAL RELATIONS

[1836.]
[Note Book 42.]
[CONTENTS

1. The principal integral or principal function.
2. The partial differential equation satisfied by the principal function. 334
3. Solution of the partial differential equation by successive approximation. . . . 335
4. An alternative method of approximation. 339
5. The first method may be used without forming the partial differential equation. . . 340
6. The case of two variables. 344
7. Examples.] 348
[The principal integral or principal function.]
(Jan. 20 $\left.{ }^{\text {th }}, 1836.\right)$
[1.] In general let

$$
\begin{equation*}
d S=\Phi\left(x_{1}, x_{2}, \ldots, x_{i}, d x_{1}, d x_{2}, \ldots, d x_{i}\right) \tag{1}
\end{equation*}
$$

this function Φ being homogeneous of the first dimension with respect to $d x_{1}, d x_{2}, \ldots, d x_{i}$, so that*

$$
\begin{equation*}
d S=d x_{1} \frac{\delta d S}{\delta d x_{1}}+d x_{2} \frac{\delta d S}{\delta d x_{2}}+\ldots+d x_{i} \frac{\delta d S}{\delta d x_{i}} \tag{2}
\end{equation*}
$$

Then, by the first expression for $d S$,

$$
\begin{equation*}
\delta d S=\frac{\delta d S}{\delta x_{1}} \delta x_{1}+\ldots+\frac{\delta d S}{\delta x_{i}} \delta x_{i}+\frac{\delta d S}{\delta d x_{1}} \delta d x_{1}+\ldots+\frac{\delta d S}{\delta d x_{i}} \delta d x_{i} \tag{3}
\end{equation*}
$$

and, by the second expression for $d S$,

$$
\begin{equation*}
\delta d S=d x_{1} \delta \frac{\delta d S}{\delta d x_{1}}+\ldots+d x_{i} \delta \frac{\delta d S}{\delta d x_{i}}+\frac{\delta d S}{\delta d x_{1}} \delta d x_{1}+\ldots+\frac{\delta d S}{\delta d x_{i}} \delta d x_{i} \tag{4}
\end{equation*}
$$

and therefore, by comparing these equations, we find

Also, by (3),

$$
\begin{equation*}
0=\frac{\delta d S}{\delta x_{1}} \delta x_{1}-\delta \frac{\delta d S}{\delta d x_{1}} d x_{1}+\ldots+\frac{\delta d S}{\delta x_{i}} \delta x_{i}-\delta \frac{\delta d S}{\delta d x_{i}} d x_{i} \tag{5}
\end{equation*}
$$

$$
\left.\left.\begin{array}{rl}
\delta S=\int \delta d S & =\Delta\left(\frac{\delta d S}{\delta d x_{1}} \delta x_{1}+\ldots+\frac{\delta d S}{\delta d x_{i}} \delta x_{i}\right) \\
& +\int\left\{\left(\frac{\delta d S}{\delta x_{1}}-d^{\delta d S}\right.\right. \tag{6}\\
\delta d x_{1}
\end{array}\right) \delta x_{1}+\ldots+\left(\frac{\delta d S}{\delta x_{i}}-d \frac{\delta d S}{\delta d x_{i}}\right) \delta x_{i}\right\} ;
$$

* $\left[\frac{\delta d S}{\delta d x_{i}}\right.$ stands for the partial derivative of $d S$ with respect to $\left.d x_{i}.\right]$
and if we establish the i equations

$$
\begin{equation*}
\frac{\delta d S}{\delta x_{1}}=d \frac{\delta d S}{\delta d x_{1}}, \ldots, \frac{\delta d S}{\delta x_{i}}=d \frac{\delta d S}{\delta d x_{i}}, \tag{7}
\end{equation*}
$$

(which are, by (5), equivalent only to $i-1$ distinct equations, because the general relation (5) gives, in particular,

$$
\left.0=\left(\frac{\delta d S}{\delta x_{1}}-d \frac{\delta d S}{\delta d x_{1}}\right) d x_{1}+\ldots+\left(\frac{\delta d S}{\delta x_{i}}-d \frac{\delta d S}{\delta d x_{i}}\right) d x_{i}\right),
$$

the variation δS of the integral $\int d S$ will take the simplest possible form, (as being that form which is most independent of the variations $\delta x_{1}, \delta x_{2}, \ldots, \delta x_{i}$, since it depends only on their extreme and not on their intermediate values,) namely the form

$$
\begin{equation*}
\delta S=\Delta\left(\frac{\delta d S}{\delta d x_{1}} \delta x_{1}+\ldots+\frac{\delta d S}{\delta d x_{i}} \delta x_{i}\right) \tag{8}
\end{equation*}
$$

We shall call the integral $S=\int d S$, determined in this way, the principal integral* of the given element $d S$, or of the function Φ, in equation (1) and shall denote it, for distinction, by the symbolic expression

$$
\begin{equation*}
S=\int d S S=\int_{-} \Phi\left(x_{1}, \ldots, x_{i}, d x_{1}, \ldots, d x_{i}\right), \tag{9}
\end{equation*}
$$

drawing a stroke under the sign \int of integration.
If we denote by $a_{1}, a_{2}, \ldots, a_{i}$ the initial values (or values at the first limit of the integral) of the i variables $x_{1}, x_{2}, \ldots, x_{i}$, if also we put for abridgement

$$
\begin{equation*}
\frac{\delta d S}{\delta d x_{1}}=y_{1}, \frac{\delta d S}{\delta d x_{2}}=y_{2}, \ldots, \frac{\delta d S}{\delta d x_{i}}=y_{i} \tag{10}
\end{equation*}
$$

and denote the initial values of y_{1}, \ldots, y_{i} by b_{1}, \ldots, b_{i}, we may consider the principal integral, $S=\int=\int S$, as a function of $x_{1}, x_{2}, \ldots, x_{i}, a_{1}, a_{2}, \ldots, a_{i}$, of which the variation is

$$
\begin{align*}
\delta S & =\frac{\delta S}{\delta x_{1}} \delta x_{1}+\ldots+\frac{\delta S}{\delta x_{i}} \delta x_{i}+\frac{\delta S}{\delta a_{1}} \delta a_{1}+\ldots+\frac{\delta S}{\delta a_{i}} \delta a_{i} \\
& =y_{1} \delta x_{1}+\ldots+y_{i} \delta x_{i}-b_{1} \delta a_{1}-\ldots-b_{i} \delta a_{i} ; \tag{11}
\end{align*}
$$

so that we have the $2 i$ following equations:

$$
\begin{gather*}
y_{1}=\frac{\delta S}{\delta x_{1}}, \ldots, y_{i}=\frac{\delta S}{\delta x_{i}}, \tag{12}\\
b_{1}=-\frac{\delta S}{\delta a_{1}}, \ldots, b_{i}=-\frac{\delta S}{\delta a_{i}} . \tag{13}
\end{gather*}
$$

If the form of the function S, as depending on $x_{1}, \ldots, x_{i}, a_{1}, \ldots, a_{i}$, were known, we could substitute it in the i equations (13) and thus transform them into i relations between the i varying or final quantities x_{1}, \ldots, x_{i}, and the $2 i$ initial data $a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{i}$, which i relations, with $2 i$ arbitrary constants, would be forms for the i integrals of the i ordinary differential equations of the second order (7). And therefore the i relations between the $3 i$ quantities $x_{1}, \ldots, x_{i}, a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{i}$, which might be found in one way by integrating the i ordinary differential equations of the second order (7), may also be deduced in another way from the one principal relation between the principal function S and the $2 i$ quantities $x_{1}, \ldots, x_{i}, a_{1}, \ldots, a_{i}$ by

* [The definition of S is, of course, exactly analogous to that of the principal function in dynamics, to which, in fact, it would reduce if $\Phi=L d t$, where L is the Lagrangian of the dynamical system.]
taking the partial differential coefficients (of the first order) of that one principal function with respect to the initial variables a_{1}, \ldots, a_{i} and then equating these coefficients to $-b_{1}, \ldots,-b_{i}$ respectively; which is my chief result respecting the properties of this principal integral S, considered as depending on its limits, and my chief reason for calling that integral a principal function; and for giving to that new branch of Algebra, which proposes by new methods to find and to use the form of this principal function, the name of the Calculus of Principal Relations.

[The partial differential equation satisfied by the principal function.]

(Jan. $\left.21^{\text {st }}, 1836.\right)$
[2.] Among the chief methods for finding the form of the Principal Function S is the following, by a partial differential equation of the first order or by a pair of such equations. Since $y_{1}, y_{2}, \ldots, y_{i}$ are functions only of the ratios of $d x_{1}, \ldots, d x_{i}$, we can in general eliminate these $i-1$ ratios and obtain one relation between y_{1}, \ldots, y_{i}, involving also in general x_{1}, \ldots, x_{i} and depending for its form upon the form of $d S$ or of the function Φ in (1); and we may represent this relation as follows:

$$
\begin{equation*}
0=\Psi\left(y_{1}, \ldots, y_{i}, x_{1}, \ldots, x_{i}\right) \tag{14}
\end{equation*}
$$

In like manner we have by considering initial values

$$
\begin{equation*}
0=\Psi\left(b_{1}, \ldots, b_{i}, a_{1}, \ldots, a_{i}\right), \tag{15}
\end{equation*}
$$

the form of the function Ψ being the same as in (14). And if in these relations we substitute for y_{1}, \ldots, y_{i} and b_{1}, \ldots, b_{i} their values (12) and (13), we obtain the two partial differential equations
and

$$
\begin{gather*}
0=\Psi\left(\frac{\delta S}{\delta x_{1}}, \ldots, \frac{\delta S}{\delta x_{i}}, x_{1}, \ldots, x_{i}\right) \tag{16}\\
0=\Psi\left(-\frac{\delta S}{\delta a_{1}}, \ldots,-\frac{\delta S}{\delta a_{i}}, a_{1}, \ldots, a_{i}\right) \tag{17}
\end{gather*}
$$

In integrating these equations we are to determine the arbitrary functions which may present themselves by the following conditions.

First, S must vanish when $x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}$ all vanish-at least that form of S which corresponds to moderate values of those increments, and indeed every form of S excepting those cases of periodicity in which $x_{1}, x_{2}, \ldots, x_{i}$, being considered as functions of some one indefinitely and continuously increasing variable t, acquire all together the same values a_{1}, \ldots, a_{i} for some new value $t=t_{2}$ which they had for the old or original value $t=t_{1}$. For, generally, if $x_{1}, x_{2}, \ldots, x_{i}$ be considered as so many functions of t while $a_{1}, a_{2}, \ldots a_{i}$ are considered as the values to which those functions reduce when t is made equal to 0 , and if therefore the principal integral S be put under the form
in which

$$
\begin{gather*}
S=\int_{t_{1}}^{t_{2}} \Phi\left(x_{1}, \ldots, x_{i}, x_{1}^{\prime}, \ldots, x_{i}^{\prime}\right) d t \tag{18}\\
x_{1}^{\prime}=\frac{d x_{1}}{d t}, \ldots, x_{i}^{\prime}=\frac{d x_{i}}{d t} \tag{19}
\end{gather*}
$$

then the function S by its integral nature must vanish when $t=t_{1}$. It is important to observe that the value of the integral S is not affected by the arbitrary form of x_{i} as a function of t, if the forms of x_{1}, \ldots, x_{i-1} be deduced from this by the differential equations (7) and if the conditions at the limits be satisfied.

Secondly, at the origin of the progression, that is, when $t=t_{1}$, the general values of the partial differential coefficients $\frac{\delta S}{\delta x_{1}}, \ldots, \frac{\delta S}{\delta x_{i}}$ and at the same time those of $-\frac{\delta S}{\delta a_{1}}, \ldots,-\frac{\delta S}{\delta a_{i}}$ must reduce to those functions of a_{1}, \ldots, a_{i} and of the ratios of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$ which may be otherwise deduced from the general values of b_{1}, \ldots, b_{i} by changing the ratios of $d a_{1}, \ldots, d a_{i}$ to the ratios of $x_{1}-a_{1}$, $\ldots, x_{i}-a_{i}$, or from the general values of y_{1}, \ldots, y_{i} by changing the ratios of $d x_{1}, \ldots, d x_{i}$ to those of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$ and at the same time changing x_{1}, \ldots, x_{i} to a_{1}, \ldots, a_{i}.

Thirdly-and this condition includes the two former ones-at the origin of the progression or first limit of the integration $\left(t=t_{1}\right)$ the principal function or integral S must bear the (nascent) ratio of unity or equality to the function formed from $d S$ by changing the differentials $d x_{1}, \ldots$, $d x_{i}$ to the increments $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$ and by changing x_{1}, \ldots, x_{i} themselves to a_{1}, \ldots, a_{i}; that is,

$$
\begin{equation*}
\lim _{t=t_{1}} \frac{S}{t}=\lim _{t=t_{1}} \Phi\left(a_{1}, a_{2}, \ldots a_{i}, \frac{x_{1}-a_{1}}{t}, \ldots, \frac{x_{i}-a_{i}}{t}\right) \tag{20}
\end{equation*}
$$

or, in other symbols,

$$
\begin{equation*}
1=\lim _{t=t_{1}} \frac{S}{\Phi\left(a_{1}, \ldots, a_{i}, x_{1}-a_{1}, \ldots, x_{i}-a_{i}\right)} \tag{21}
\end{equation*}
$$

[Solution of the partial differential equation by successive approximation.*]

[3.] We may in general consider S as a function of $a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}, \frac{x_{1}-a_{1}}{x_{i}-a_{i}}, \ldots, \frac{x_{i-1}-a_{i-1}}{x_{i}-a_{i}}$, $x_{i}-a_{i}$, and for small or moderate values of $t-t_{1}$ and of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$ we may in general develope this function according to ascending integer powers of the small or moderate increment $x_{i}-a_{i}$ (setting aside singular exceptions) in a series of the form

$$
\begin{equation*}
S=A\left(x_{i}-a_{i}\right)+B\left(x_{i}-a_{i}\right)^{2}+C\left(x_{i}-a_{i}\right)^{3}+\& c \tag{22}
\end{equation*}
$$

which may also be thus written, more simply and symmetrically,

$$
\begin{equation*}
S=S_{1}+S_{2}+S_{3}+\& c \tag{23}
\end{equation*}
$$

S_{n} being a homogeneous function of the nth dimension of the i increments $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, involving also in general a_{1}, \ldots, a_{i}. We may now conceive this expression substituted in the partial differential equation (16) so as to give an equation of the following form:

$$
\begin{array}{r}
0=\Psi\left\{\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{2}}{\delta x_{1}}+\& c ., \ldots, \frac{\delta S_{1}}{\delta x_{2}}+\frac{\delta S_{2}}{\delta x_{2}}+\& c ., \ldots, \frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{2}}{\delta x_{i}}+\& c .\right. \\
\left.a_{1}+\left(x_{1}-a_{1}\right), \ldots, a_{i}+\left(x_{i}-a_{i}\right)\right\} \tag{24}
\end{array}
$$

in which $\frac{\delta S_{n}}{\delta x_{k}}$ is a homogeneous function of dimension $n-1$ of the increments $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$. And we may in general develope this equation (24) by Taylor's theorem as follows:

$$
\begin{equation*}
0=\Psi_{0}+\Psi_{1}+\Psi_{2}+\Psi_{3}+\& c \tag{25}
\end{equation*}
$$

in which Ψ_{n} is homogeneous of dimension n with respect to the increments $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$; and then may deduce from it the following indefinite series of separate equations in partial differential coefficients of the first order,

$$
\begin{equation*}
0=\Psi_{0}, \quad 0=\Psi_{1}, \quad 0=\Psi_{2}, \quad 0=\Psi_{3}, \quad \& c \tag{26}
\end{equation*}
$$

* [See Appendix, Note 9, p. 631.]

To develope these equations, let us write generally

$$
\begin{align*}
& \Psi\left(b_{1}+\beta_{1}, b_{2}+\beta_{2}, \ldots, b_{i}+\beta_{i}, a_{1}+\alpha_{1}, a_{2}+\alpha_{2}, \ldots, a_{i}+\alpha_{i}\right) \\
&= \Psi\left(b_{1}, b_{2}, \ldots, b_{i}, a_{1}, a_{2}, \ldots, a_{i}\right)+\beta_{1} \Psi^{\prime}\left(b_{1}\right)+\beta_{2} \Psi^{\prime \prime}\left(b_{2}\right)+\ldots+\beta_{i} \Psi^{\prime \prime}\left(b_{i}\right) \\
&+\alpha_{1} \Psi^{\prime \prime}\left(a_{1}\right)+\alpha_{2} \Psi^{\prime \prime}\left(a_{2}\right)+\ldots+\alpha_{i} \Psi^{\prime \prime}\left(a_{i}\right)+\frac{1}{2} \beta_{1}^{2} \Psi^{\prime \prime \prime}\left(b_{1}\right)+\beta_{1} \beta_{2} \Psi^{\prime \prime}, \prime\left(b_{1}, b_{2}\right)+\frac{1}{2} \beta_{2}^{2} \Psi^{\prime \prime \prime}\left(b_{2}\right)+\ldots \\
&+\frac{1}{6} \beta_{1}^{3} \Psi^{\prime \prime \prime \prime}\left(b_{1}\right)+\frac{1}{2} \beta_{1}^{2} \beta_{2} \Psi^{\prime \prime \prime},\left(b_{1}, b_{2}\right)+\frac{1}{2} \beta_{1} \beta_{2}^{2} \Psi^{\prime \prime}, \prime \prime \tag{27}\\
&\left(b_{1}, b_{2}\right)+\& c .
\end{align*}
$$

Adopting this notation which has been already used for similar purposes by Lagrange and other mathematicians, this second side of equation (24) may be thus developed:

$$
\begin{align*}
& \Psi\left(\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{2}}{\delta x_{1}}+\& c ., \ldots, \frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{2}}{\delta x_{i}}+\& c ., a_{1}+x_{1}-a_{1}, \ldots, a_{i}+x_{i}-a_{i}\right) \\
&= \Psi^{\prime}\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}, \ldots, \frac{\delta S_{1}}{\delta x_{i}}, a_{1}, a_{2}, \ldots, a_{i}\right) \\
&+\Psi^{\prime \prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)+\Psi^{\prime \prime}\left(a_{2}\right)\left(x_{2}-a_{2}\right)+\ldots+\Psi^{\prime \prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right) \\
&+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}+\frac{\delta S_{3}}{\delta x_{1}}+\& c .\right)+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right)\left(\frac{\delta S_{2}}{\delta x_{2}}+\frac{\delta S_{3}}{\delta x_{2}}+\& c .\right)+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right)\left(\frac{\delta S_{2}}{\delta x_{i}}+\frac{\delta S_{3}}{\delta x_{i}}+\& c .\right) \\
&++^{\prime \frac{1}{2} \Psi^{\prime \prime \prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)^{2}+\Psi^{\prime \prime}, \prime\left(a_{1}, a_{2}\right)\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)+\ldots+\frac{1}{2} \Psi^{\prime \prime \prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right)^{2}} \\
&+\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{1}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}+\& c .\right)\left(x_{1}-a_{1}\right)+\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{2}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}+\& c .\right)\left(x_{2}-a_{2}\right) \\
&+\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{2}}, a_{2}\right)\left(\frac{\delta S_{2}}{\delta x_{2}}+\& c .\right)\left(x_{2}-a_{2}\right)+\& c . \\
&+\frac{1}{2} \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}+\& c .\right)^{2}+\Psi^{\prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}+\& c .\right)\left(\frac{\delta S_{2}}{\delta x_{2}}+\& c .\right)
\end{align*}
$$

and thus the three first partial differential equations of the series (28) may be developed as follows:

$$
\begin{align*}
0= & \left(\Psi_{0}=\right) \Psi\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}, \ldots, \frac{\delta S_{1}}{\delta x_{i}}, a_{1}, a_{2}, \ldots, a_{i}\right) \tag{29}\\
0= & \left(\Psi_{1}=\right) \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right) \frac{\delta S_{2}}{\delta x_{1}}+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right) \frac{\delta S_{2}}{\delta x_{2}}+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right) \frac{\delta S_{2}}{\delta x_{i}} \\
& +\Psi^{\prime \prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)+\Psi^{\prime \prime}\left(a_{2}\right)\left(x_{2}-a_{2}\right)+\ldots+\Psi^{\prime \prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right) \tag{30}\\
0= & \left(\Psi_{2}=\right) \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right) \frac{\delta S_{3}}{\delta x_{1}}+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right) \frac{\delta S_{3}}{\delta x_{2}}+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right) \frac{\delta S_{3}}{\delta x_{i}} \\
& +\frac{1}{2} \Psi^{\prime \prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)\left(\frac{\delta S_{2}}{\delta x_{1}}\right)^{2}+\Psi^{\prime}, \prime\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}\right) \frac{\delta S_{2}}{\delta x_{1}} \frac{\delta S_{2}}{\delta x_{2}}+\ldots+\frac{1}{2} \Psi^{\prime \prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right)\left(\frac{\delta S_{2}}{\delta x_{i}}\right)^{2} \\
& +\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{1}\right) \frac{\delta S_{2}}{\delta x_{1}}\left(x_{1}-a_{1}\right)+\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{2}\right) \frac{\delta S_{2}}{\delta x_{2}}\left(x_{2}-a_{2}\right)+\ldots+\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{i}}, a_{i}\right) \frac{\delta S_{2}}{\delta x_{i}}\left(x_{i}-a_{i}\right) \\
& +\frac{1}{2} \Psi^{\prime \prime \prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)^{2}+\Psi^{\prime \prime}, \prime\left(a_{1}, a_{2}\right)\left(x_{1}-a_{1}\right)\left(x_{2}-a_{2}\right)+\ldots+\frac{1}{2} \Psi^{\prime \prime \prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right)^{2} \tag{31}
\end{align*}
$$

and the others may be similarly developed.

We have next to integrate these equations; at least to discover functions S_{1}, S_{2}, S_{3}, \&c. which shall satisfy them. It might seem that this integration would introduce in general an arbitrary function for every differential equation; and thus an infinite number of arbitrary functions into the general expression of the sum $S_{1}+S_{2}+S_{3}+\& c .=S$; but the conditions already mentioned enable us to foresee that the form of S_{1} required for our present purpose must be

$$
\begin{equation*}
S_{1}=\Phi\left(a_{1}, a_{2}, \ldots, a_{i}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right), \tag{32}
\end{equation*}
$$

which form accordingly may be easily shown to satisfy the partial differential equation (29) (see below); and then the remaining functions S_{2}, S_{3}, \&c. may be determined, as we are about to prove, by the remaining equations (30), (31) ... without any new integrations being required -a result of great importance in the Calculus of Principal Relations as enabling us to develope the Principal Function without ambiguity for the case of moderate increments of the variables x_{1}, \ldots, x_{i}.

To show first of all that the form (32) for S_{1} satisfies equation (29), we may observe that this form gives by partial differentiation for $\frac{\delta S_{1}}{\delta x_{1}}, \ldots, \frac{\delta S_{1}}{\delta x_{i}}$ the same functions of a_{1}, \ldots, a_{i} and of the ratios of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, which might be otherwise deduced from the expressions for b_{1}, \ldots, b_{i} by changing the ratios of $d a_{1}, \ldots, d a_{i}$ to the ratios of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$; since then we had, independently of the ratios of $d a_{1}, \ldots, d a_{i}$, the relation (15) between $b_{1}, \ldots, b_{i}, a_{1}, \ldots, a_{i}$ we must also have, independently of the ratios of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, the relation (29) between

$$
\frac{\delta S_{1}}{\delta x_{1}}, \ldots, \frac{\delta S_{1}}{\delta x_{i}}, a_{1}, \ldots, a_{i} .
$$

(Again, the equation (5) shows that the variations $\delta x_{1}, \ldots, \delta x_{i}, \delta y_{1}, \ldots, \delta y_{i}$ are connected by the relation

$$
\begin{equation*}
0=\frac{\delta d S}{\delta x_{1}} \delta x_{1}-d x_{1} \delta y_{1}+\ldots+\frac{\delta d S}{\delta x_{i}} \delta x_{i}-d x_{i} \delta y_{i}, \tag{33}
\end{equation*}
$$

which may by (7) be put in the form

$$
\begin{equation*}
0=d y_{1} \delta x_{1}-d x_{1} \delta y_{1}+\ldots+d y_{i} \delta x_{i}-d x_{i} \delta y_{i} ; \tag{34}
\end{equation*}
$$

since then, by (14), we have

$$
\begin{equation*}
0=\Psi^{\prime \prime}\left(x_{1}\right) \delta x_{1}+\Psi^{\prime \prime}\left(y_{1}\right) \delta y_{1}+\ldots+\Psi^{\prime}\left(x_{i}\right) \delta x_{i}+\Psi^{\prime}\left(y_{i}\right) \delta y_{i}, \tag{35}
\end{equation*}
$$

and since these two last expressions must both be satisfied independently of any other relation between $\delta x_{1}, \ldots, \delta x_{i}$ and $\delta y_{1}, \ldots, \delta y_{i}$, we see that we must have, separately,

$$
\begin{equation*}
\Psi^{\prime}\left(y_{1}\right)=-L x_{1}^{\prime}, \quad \Psi^{\prime \prime}\left(y_{2}\right)=-L x_{2}^{\prime}, \quad \ldots, \Psi^{\prime}\left(y_{i}\right)=-L x_{i}^{\prime}, \tag{36}
\end{equation*}
$$

x_{1}^{\prime}, etc. having the meanings (19) and L being some common multiplier; and in like manner, L being still the same common multiplier, we have

$$
\begin{equation*}
\Psi^{\prime}\left(x_{1}\right)=+L y_{1}^{\prime}, \quad \Psi^{\prime \prime}\left(x_{2}\right)=+L y_{2}^{\prime}, \quad \ldots, \quad \Psi^{\prime \prime}\left(x_{i}\right)=+L y_{i}^{\prime}, \tag{37}
\end{equation*}
$$

in which

$$
\begin{equation*}
y_{1}^{\prime}=\frac{d y_{1}}{d t}, \ldots, y_{i}^{\prime}=\frac{d y_{i}}{d t} . \tag{38}
\end{equation*}
$$

We might proceed in this way to determine the ratios of $\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right), \ldots, \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right)$ and to show
that they are the same as the ratios of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, but the following method is more simple.)

Since S_{1} is a homogeneous function of the first dimension of $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, it must satisfy the condition

$$
\begin{equation*}
S_{1}=\left(x_{1}-a_{1}\right) \frac{\delta S_{1}}{\delta x_{1}}+\left(x_{2}-a_{2}\right) \frac{\delta S_{1}}{\delta x_{2}}+\ldots+\left(x_{i}-a_{i}\right) \frac{\delta S_{1}}{\delta x_{i}} \tag{39}
\end{equation*}
$$

which gives, by being varied with respect to x_{1}, \ldots, x_{i},

$$
\begin{equation*}
0=\left(x_{1}-a_{1}\right) \delta \frac{\delta S_{1}}{\delta x_{1}}+\left(x_{2}-a_{2}\right) \delta \frac{\delta S_{1}}{\delta x_{2}}+\ldots+\left(x_{i}-a_{i}\right) \delta \frac{\delta S_{1}}{\delta x_{i}}, \tag{40}
\end{equation*}
$$

the quantities a_{1}, \ldots, a_{i} being treated as constants. But on this last supposition, the equation (29) gives

$$
\begin{equation*}
0=\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right) \delta \frac{\delta S_{1}}{\delta x_{1}}+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right) \delta \frac{\delta S_{1}}{\delta x_{2}}+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right) \delta \frac{\delta S_{1}}{\delta x_{i}} \tag{41}
\end{equation*}
$$

and since these two linear relations (40) and (41) between the variations $\delta \frac{\delta S_{1}}{\delta x_{1}}, \ldots, \delta \frac{\delta S_{1}}{\delta x_{i}}$ must in general hold together and be equivalent only to one relation, the coefficients in the one must be proportional to those in the other; so that, in general,

$$
\begin{equation*}
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)=\lambda\left(x_{1}-a_{1}\right), \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right)=\lambda\left(x_{2}-a_{2}\right), \ldots, \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right)=\lambda\left(x_{i}-a_{i}\right) \tag{42}
\end{equation*}
$$

λ being some common multiplier of which the form can be found when those of S_{1} and Ψ are known.

Whatever this form of λ may be, we see now that

$$
\begin{align*}
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right) \frac{\delta S_{n}}{\delta x_{1}}+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right) & \frac{\delta S_{n}}{\delta x_{2}}+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right) \frac{\delta S_{n}}{\delta x_{i}} \\
& =\lambda\left\{\left(x_{1}-a_{1}\right) \frac{\delta S_{n}}{\delta x_{1}}+\left(x_{2}-a_{2}\right) \frac{\delta S_{n}}{\delta x_{2}}+\ldots+\left(x_{i}-a_{i}\right) \frac{\delta S_{n}}{\delta x_{i}}\right\}=\lambda n S_{n} \tag{43}
\end{align*}
$$

on account of the homogeneous form of S_{n}. Hence the equations (30), (31) and the other similar equations for S_{4}, S_{5}, \&c. will determine (in general) the several functions $S_{2}, S_{3}, S_{4}, S_{5}$, \&c. without any integration being required after the form of S_{1} has been found by the equation (32): which is one of the most useful theorems in this Calculus.

In particular, equation (30) gives

$$
\begin{equation*}
S_{2}=-\frac{1}{2 \lambda}\left\{\Psi^{\prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)+\Psi^{\prime \prime}\left(a_{2}\right)\left(x_{2}-a_{2}\right)+\ldots+\Psi^{\prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right)\right\} \tag{44}
\end{equation*}
$$

To transform this expression for the first correction S_{2} of the first approximate value S_{1} of S, we may observe that the equation (39) gives, when varied with respect to all the quantities $x_{1}, \& c$. and a_{1}, \&c.,

$$
\begin{equation*}
0=\left(x_{1}-a_{1}\right) \delta \frac{\delta S_{1}}{\delta x_{1}}+\ldots+\left(x_{i}-a_{i}\right) \delta \frac{\delta S_{1}}{\delta x_{i}}-\left(\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{1}}{\delta a_{1}}\right) \delta a_{1}-\ldots-\left(\frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{1}}{\delta a_{i}}\right) \delta a_{i} \tag{45}
\end{equation*}
$$

while the equation (32) gives in like manner

$$
\begin{equation*}
0=\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right) \delta \frac{\delta S_{1}}{\delta x_{1}}+\ldots+\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right) \delta \frac{\delta S_{1}}{\delta x_{i}}+\Psi^{\prime \prime}\left(a_{1}\right) \delta a_{1}+\ldots+\Psi^{\prime}\left(a_{i}\right) \delta a_{i} \tag{46}
\end{equation*}
$$

and since these two last equations must coincide, we have in general along with the relations (42) the following other relations:

$$
\begin{equation*}
\Psi^{\prime}\left(a_{1}\right)=-\lambda\left(\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{1}}{\delta a_{1}}\right), \Psi^{\prime \prime}\left(a_{2}\right)=-\lambda\left(\frac{\delta S_{1}}{\delta x_{2}}+\frac{\delta S_{1}}{\delta a_{2}}\right), \ldots, \Psi^{\prime}\left(a_{i}\right)=-\lambda\left(\frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{1}}{\delta a_{i}}\right) \tag{47}
\end{equation*}
$$

And thus the expression (44) transforms itself into the following:

$$
\begin{equation*}
S_{2}=\frac{1}{2}\left(x_{1}-a_{1}\right)\left(\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{1}}{\delta a_{1}}\right)+\frac{1}{2}\left(x_{2}-a_{2}\right)\left(\frac{\delta S_{1}}{\delta x_{2}}+\frac{\delta S_{1}}{\delta a_{2}}\right)+\ldots+\frac{1}{2}\left(x_{i}-a_{i}\right)\left(\frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{1}}{\delta a_{i}}\right) \tag{48}
\end{equation*}
$$

If then we neglect only terms which are of the third dimension with respect to the small increments $x_{1}-a_{1}, \ldots, x_{i}-a_{i}$, the principal function S may be thus expressed:

$$
\begin{align*}
S & =\int \Phi\left(x_{1}, x_{2}, \ldots, x_{i}, d x_{1}, d x_{2}, \ldots, d x_{i}\right) \\
& =S_{1}+\frac{1}{2}\left(x_{1}-a_{1}\right)\left(\frac{\delta S_{1}}{\delta x_{1}}+\frac{\delta S_{1}}{\delta a_{1}}\right)+\ldots+\frac{1}{2}\left(x_{i}-a_{i}\right)\left(\frac{\delta S_{1}}{\delta x_{i}}+\frac{\delta S_{1}}{\delta a_{i}}\right), \tag{49}
\end{align*}
$$

in which, by (32),

$$
S_{1}=\Phi\left(a_{1}, a_{2}, \ldots, a_{i}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right) .
$$

And it is remarkable that in the same order of approximation this expression (49) for the principal function S may be transformed as follows:

$$
\begin{equation*}
S=\Phi\left(\frac{x_{1}+a_{1}}{2}, \frac{x_{2}+a_{2}}{2}, \ldots, \frac{x_{i}+a_{i}}{2}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right) . \tag{50}
\end{equation*}
$$

[An alternative method of approximation.]

[4.] Before proceeding further in this integration of the partial differential equation (16), let us observe that if we consider z as an independent and continuously flowing variable on which all the rest depend, and which is $=0$ at the beginning and $=x$ at the end of the progression, we may in general denote the principal function or integral S as follows:

$$
\begin{equation*}
S=\int_{a}^{x} \Phi\left(z_{1}, z_{2}, \ldots, z_{i}, \frac{d z_{1}}{d z}, \frac{d z_{2}}{d z}, \ldots, \frac{d z_{i}}{d z}\right) d z \tag{51}
\end{equation*}
$$

$z_{1}, z_{2}, \ldots, z_{i}$ being functions of z which may be thus denoted

$$
\begin{equation*}
z_{1}=f_{1}(z), z_{2}=f_{2}(z), \ldots, z_{i}=f_{i}(z), \tag{52}
\end{equation*}
$$

and which satisfy the i initial conditions -

$$
\begin{equation*}
f_{1}(a)=a_{1}, f_{2}(a)=a_{2}, \ldots, f_{i}(a)=a_{i}, \tag{53}
\end{equation*}
$$

and the i final conditions

$$
\begin{equation*}
f_{1}(x)=x_{1}, f_{2}(x)=x_{2}, \ldots, f_{i}(x)=x_{i} . \tag{54}
\end{equation*}
$$

And if, as a first approximation, we make the supposition of uniformly flowing values, or linear forms, of the functions $z_{1}, z_{2}, \ldots, z_{i}$ so as to suppose

$$
\begin{equation*}
z_{1}=a_{1}+(z-a) \frac{x_{1}-a_{1}}{x-a}, z_{2}=a_{2}+(z-a) \frac{x_{2}-a_{2}}{x-a}, \ldots, z_{i}=a_{i}+(z-a) \frac{x_{i}-a_{i}}{x-a}, \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d z_{1}}{d z}=f_{1}^{\prime}(z)=\frac{x_{1}-a_{1}}{x-a}, \frac{d z_{2}}{d z}=f_{2}^{\prime}(z)=\frac{x_{2}-a_{2}}{x-a}, \ldots, \frac{d z_{i}}{d z}=f_{i}^{\prime}(z)=\frac{x_{i}-a_{i}}{x-a} \tag{56}
\end{equation*}
$$

and therefore by (51)

$$
\begin{equation*}
S=\int_{a}^{x} \Phi\left(a_{1}+\overline{z-a} \frac{x_{1}-a_{1}}{x-a}, \ldots, a_{i}+\overline{z-a} \frac{x_{i}-a_{i}}{x-a}, \frac{x_{1}-a_{1}}{x-a}, \ldots, \frac{x_{i}-a_{i}}{x-a}\right) d z \tag{57}
\end{equation*}
$$

we find, by developing the coefficient under the integral sign as far as the first power inclusive of $z-a$,

$$
\begin{align*}
\frac{d S}{d z} & =\Phi\left(a_{1}+\overline{z-a} \frac{x_{1}-a_{1}}{x-a}, \ldots, a_{i}+\overline{z-a} \frac{x_{i}-a_{i}}{x-a}, \frac{x_{1}-a_{1}}{x-a}, \ldots, \frac{x_{i}-a_{i}}{x-a}\right) \\
& =\Phi\left(a_{1}, \ldots, a_{i}, \frac{x_{1}-a_{1}}{x-a}, \ldots, \frac{x_{i}-a_{i}}{x-a}\right)+\frac{z-a}{x-a}\left\{\Phi^{\prime}\left(a_{1}\right)\left(x_{1}-a_{1}\right)+\ldots+\Phi^{\prime}\left(a_{i}\right)\left(x_{i}-a_{i}\right)\right\} \tag{58}
\end{align*}
$$

$\Phi^{\prime}\left(a_{1}\right), \ldots, \Phi^{\prime}\left(a_{i}\right)$ being here formed by varying $\Phi\left(a_{1}, a_{2}, \ldots, a_{i}, \frac{x_{1}-a_{1}}{x-a}, \frac{x_{2}-a_{2}}{x-a}, \ldots, \frac{x_{i}-a_{i}}{x-a}\right)$ as if $\frac{x_{1}-a_{1}}{x-a}$, etc. were constants; and therefore, by integration,

$$
\begin{align*}
S & =(x-a) \Phi\left(a_{1}, \ldots, a_{i}, \frac{x_{1}-a_{1}}{x-a}, \ldots, \frac{x_{i}-a_{i}}{x-a}\right) \\
S= & \Phi\left(a_{1}, a_{2}, \ldots, a_{i}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right) \tag{59}\\
& \left.+\frac{x_{1}-a_{1}}{2}\left(\frac{\delta}{\delta a_{1}}+\frac{\delta}{\delta x_{1}}\right) \Phi\left(a_{1}, a_{2}, \ldots, a_{i}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right)\left(x_{i}-a_{i}\right)\right\} \\
& +\& c . \\
& +\frac{x_{i}-a_{i}}{2}\left(\frac{\delta}{\delta a_{i}}+\frac{\delta}{\delta x_{i}}\right) \Phi\left(a_{1}, a_{2}, \ldots, a_{i}, x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}\right)
\end{align*}
$$

that is,
which agrees with the expression (49) and is therefore accurate as far as the second dimension inclusive, although $\frac{d z_{1}}{d z}, \ldots, \frac{d z_{i}}{d z}$ are not accurate as far as the first dimension inclusive with respect to the small quantities $x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{i}-a_{i}$. The theory of this fact will soon be fully explained.*

[The first method may be used without forming the partial differential equation.]

(Jan. 22 ${ }^{\text {nd }}, 1836$.)
[5.] Proceeding now to equation (31) and seeking to uransform the expression which it gives for S_{3} into one more commodious and especially into one more closely connected with the form of the original function Φ in the expression for the element $d S$ in (1), we may suppose in general that the equation (29) has been so prepared, by resolving it with respect to $\frac{\delta S_{1}}{\delta x_{i}}$, as to be of the form

$$
\begin{equation*}
0=-\frac{\delta S_{1}}{\delta x_{i}}+\text { funct }^{\mathrm{n}}\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}, \ldots, \frac{\delta S_{1}}{\delta x_{i-1}}, a_{1}, a_{2}, \ldots, a_{i-1}, a_{i}\right) \tag{61}
\end{equation*}
$$

[^0]and then we shall have
\[

\left.$$
\begin{array}{c}
\Psi^{\prime}\left(\frac{\delta S_{1}}{\delta x_{i}}\right)=-1 \\
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)=0, \Psi^{\prime}, \prime\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{i}}\right)=0, \Psi^{\prime},\left(\frac{\delta S_{1}}{\delta x_{2}}, \frac{\delta S_{1}}{\delta x_{i}}\right)=0, \ldots, \tag{63}\\
\Psi^{\prime}, \prime\left(\frac{\delta S_{1}}{\delta x_{i}}, a_{1}\right)=0, \ldots, \Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{i}}, a_{i}\right)=0
\end{array}
$$\right\}
\]

and $\Psi^{\prime \prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right), \ldots, \Psi^{\prime}, \prime\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{1}\right), \ldots, \Psi^{\prime \prime}\left(a_{1}\right), \ldots$ will be the partial differential coefficients of the second order of $\frac{\delta S_{1}}{\delta x_{i}}$ considered as a function of $\frac{\delta S_{1}}{\delta x_{1}}$, \&c. If then we put for abbreviation

$$
\begin{equation*}
\frac{\delta S_{1}}{\delta x_{1}}=v_{1}, \frac{\delta S_{1}}{\delta x_{2}}=v_{2}, \ldots, \frac{\delta S_{1}}{\delta x_{i}}=v_{i} \tag{64}
\end{equation*}
$$

we shall have besides (62) and (63) the expressions

$$
\left.\begin{array}{l}
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)=\frac{\delta v_{i}}{\delta v_{1}}, \Psi^{\prime}\left(\frac{\delta S_{1}}{\delta x_{2}}\right)=\frac{\delta v_{i}}{\delta v_{2}}, \ldots, \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i-1}}\right)=\frac{\delta v_{i}}{\delta v_{i-1}} ; \\
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta a_{1}}\right)=\frac{\delta v_{i}}{\delta a_{1}}, \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta a_{2}}\right)=\frac{\delta v_{i}}{\delta a_{2}}, \ldots, \Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta a_{i}}\right)=\frac{\delta v_{i}}{\delta a_{i}} \tag{65}
\end{array}\right\}
$$

$\frac{\delta v_{i}}{\delta v_{1}}, \frac{\delta v_{i}}{\delta a_{1}}$, \&c. denoting here the partial differential coefficients of the function v_{i}, taken with respect to v_{1}, a_{1}, \&c.: we have, too,

$$
\left.\begin{array}{l}
\Psi^{\prime \prime}\left(\frac{\delta S_{1}}{\delta x_{1}}\right)=\frac{\delta^{2} v_{i}}{\delta v_{1}^{2}}, \Psi^{\prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, \frac{\delta S_{1}}{\delta x_{2}}\right)=\frac{\delta^{2} v_{i}}{\delta v_{1} \delta v_{2}}, \ldots, \Psi^{\prime \prime \prime}\left(\frac{\delta S_{1}}{\delta x_{i-1}}\right)=\frac{\delta^{2} v_{i}}{\delta v_{i-1}^{2}}, \\
\Psi^{\prime \prime},\left(\frac{\delta S_{1}}{\delta x_{1}}, a_{1}\right)=\frac{\delta^{2} v_{2}}{\delta v_{1} \delta a_{1}}, \ldots, \Psi^{\prime}, \prime\left(\frac{\delta S_{1}}{\delta x_{i-1}}, a_{i}\right)=\frac{\delta^{2} v_{i}}{\delta v_{i-1} \delta a_{i}}, \tag{66}\\
\Psi^{\prime \prime \prime}\left(a_{1}\right)=\frac{\delta^{2} v_{i}}{\delta a_{i}^{2}}, \Psi^{\prime \prime},\left(a_{1}, a_{2}\right)=\frac{\delta^{2} v_{i}}{\delta a_{1} \delta a_{2}}, \ldots, \Psi^{\prime \prime}\left(a_{i}\right)=\frac{\delta^{2} v_{i}}{\delta a_{i}^{2}}
\end{array}\right\}
$$

and it remains to calculate these differential coefficients of the function v_{i} from those of the function Φ, or S_{1}, in the expression (1), or (32).

It may somewhat simplify the proceeding if we put for abridgement

$$
\begin{gather*}
x_{1}-a_{1}=u_{1}, x_{2}-a_{2}=u_{2}, \ldots, x_{i}-a_{i}=u_{i} \tag{67}\\
S_{1}=\Phi\left(a_{1}, a_{2}, \ldots, a_{i}, u_{1}, u_{2}, \ldots, u_{i}\right) \tag{68}
\end{gather*}
$$

and therefore by (32)

This function is homogeneous of the first dimension (as we have seen) with respect to u_{1}, u_{2}, \ldots u_{i}; we have therefore the relation
because by (64) we have

$$
\begin{equation*}
S_{1}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{i} v_{i} \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
v_{1}=\frac{\delta S_{1}}{\delta u_{1}}=\Phi^{\prime}\left(u_{1}\right), \ldots, v_{i}=\frac{\delta S_{1}}{\delta u_{i}}=\Phi^{\prime}\left(u_{i}\right) \tag{70}
\end{equation*}
$$

Eliminating the ratios of $u_{1}, u_{2}, \ldots, u_{i}$ between these last expressions, we might deduce as before a relation of the form

$$
\begin{equation*}
0=\Psi^{\prime}\left(\Phi^{\prime}\left(u_{1}\right), \Phi^{\prime}\left(u_{2}\right), \ldots, \Phi^{\prime}\left(u_{i}\right), a_{1}, a_{2}, \ldots, a_{i}\right)=\Psi^{\prime}\left(v_{1}, v_{2}, \ldots, v_{i}, a_{1}, a_{2}, \ldots, a_{i}\right) \tag{71}
\end{equation*}
$$

and might then deduce from this the sought partial differential coefficients $\frac{\delta v_{i}}{\delta v_{1}}, \frac{\delta v_{i}}{\delta v_{2}}, \ldots$. Without actually performing this elimination (which we cannot perform while we leave the form of Φ undetermined) we may still deduce these differential coefficients as follows:

The complete variation of S_{1} is, by (68) and (70),

$$
\begin{equation*}
\delta S_{1}=v_{1} \delta u_{1}+v_{2} \delta u_{2}+\ldots+v_{i} \delta u_{i}+\Phi^{\prime}\left(a_{1}\right) \delta a_{1}+\Phi^{\prime}\left(a_{2}\right) \delta a_{2}+\ldots+\Phi^{\prime}\left(a_{i}\right) \delta a_{i} \tag{72}
\end{equation*}
$$

and comparing this with the variation of the expression (69) we find

$$
\begin{equation*}
0=u_{1} \delta v_{1}+u_{2} \delta v_{2}+\ldots+u_{i} \delta v_{i}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\Phi^{\prime}\left(a_{2}\right) \delta a_{2}-\ldots-\Phi^{\prime}\left(a_{i}\right) \delta a_{i} \tag{73}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\delta v_{i}}{\delta v_{1}}=-\frac{u_{1}}{u_{i}}, \frac{\delta v_{i}}{\delta v_{2}}=-\frac{u_{2}}{u_{i}}, \ldots, \frac{\delta v_{i}}{\delta v_{i-1}}=-\frac{u_{i-1}}{u_{i}} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\delta v_{i}}{\delta a_{1}}=\frac{\Phi^{\prime}\left(a_{1}\right)}{u_{i}}, \frac{\delta v_{i}}{\delta a_{2}}=\frac{\Phi^{\prime}\left(a_{2}\right)}{u_{i}}, \ldots, \frac{\delta v_{i}}{\delta a_{i}}=\frac{\Phi^{\prime}\left(a_{i}\right)}{u_{i}} \tag{75}
\end{equation*}
$$

In this manner then the partial differential coefficients of v_{i} of the first order are determined.
Proceeding to the second order, how is $\frac{\delta^{2} v_{i}}{\delta v_{1}^{2}}$ to be calculated? By supposing $\delta a_{1}=0, \ldots$, $\delta a_{i}=0, \delta v_{2}=0, \ldots, \delta v_{i-1}=0$, then taking the variation of $\frac{\delta v_{i}}{\delta v_{1}}=-\frac{u_{1}}{u_{i}}$ and dividing it by δv_{1}. We are therefore to put, by (70),

$$
\begin{aligned}
& 0=\Phi^{\prime \prime \prime}\left(u_{1}, u_{2}\right) \delta u_{1}+\Phi^{\prime \prime}\left(u_{2}\right) \delta u_{2}+\Phi^{\prime} \prime^{\prime}\left(u_{2}, u_{3}\right) \delta u_{3}+\ldots+\Phi^{\prime} \prime^{\prime}\left(u_{2}, u_{i}\right) \delta u_{i}, \\
& 0=\Phi^{\prime \prime \prime}\left(u_{1}, u_{3}\right) \delta u_{1}+\Phi^{\prime},^{\prime}\left(u_{2}, u_{3}\right) \delta u_{2}+\Phi^{\prime \prime}\left(u_{3}\right) \delta u_{3}+\ldots+\Phi^{\prime} \prime^{\prime}\left(u_{3}, u_{i}\right) \delta u_{i} \text {, } \\
& 0=\Phi^{\prime, \prime}\left(u_{1}, u_{i-1}\right) \delta u_{1}+\Phi^{\prime} \prime^{\prime}\left(u_{2}, u_{i-1}\right) \delta u_{2}+\ldots+\Phi^{\prime},^{\prime}\left(u_{i-1}, u_{i}\right) \delta u_{i},
\end{aligned}
$$

establishing thus $i-2$ relations between $\delta u_{1}, \delta u_{2}, \ldots, \delta u_{i}$ or rather between their $i-1$ ratios, which leave one of these ratios undetermined. We have also
and

$$
\delta v_{1}=\Phi^{\prime \prime}\left(u_{1}\right) \delta u_{1}+\Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right) \delta u_{2}+\ldots+\Phi^{\prime},\left(u_{1}, u_{i}\right) \delta u_{i}
$$

$$
\delta v_{i}=\Phi^{\prime},^{\prime}\left(u_{1}, u_{i}\right) \delta u_{1}+\Phi^{\prime},^{\prime}\left(u_{2}, u_{i}\right) \delta u_{2}+\ldots+\Phi^{\prime \prime}\left(u_{i}\right) \delta u_{i}
$$

and hence, by elimination, we can in general express $\delta u_{1}-\frac{u_{1}}{u_{i}} \delta u_{i}$ as a linear function of $\delta v_{1}, \delta v_{i}$, also $\delta \frac{\delta v_{i}}{\delta v_{1}}=-\delta \frac{u_{1}}{u_{i}}$ and therefore finally calculate $\frac{\delta^{2} v_{i}}{\delta v_{1}^{2}}$.

In general the i equations

$$
\begin{equation*}
\delta v_{1}=\delta \Phi^{\prime}\left(u_{1}\right), \delta v_{2}=\delta \Phi^{\prime}\left(u_{2}\right), \ldots, \delta v_{i}=\delta \Phi^{\prime}\left(u_{i}\right) \tag{76}
\end{equation*}
$$

or any $i-1$ of them, enable us by elimination to express $\delta \frac{u_{1}}{u_{i}}, \ldots, \delta \frac{u_{i-1}}{u_{i}}$ and consequently
$\delta u_{1}-\lambda u_{1}, \ldots, \delta u_{i}-\lambda u_{i}$ (where λ is any arbitrary multiplier) as linear functions of $\delta v_{1}, \ldots, \delta v_{i}$, $\delta a_{1}, \ldots, \delta a_{i}$; and then the values thus found for $\delta u_{1}, \ldots, \delta u_{i}$ are to be substituted in the following expression, which is deduced from (73) and which may be shown (by (73) and by the homogeneous forms of $\left.\Phi^{\prime}\left(a_{1}\right), \ldots, \Phi^{\prime}\left(a_{i}\right)\right)$ not to contain the arbitrary multiplier λ :

$$
\begin{equation*}
\delta^{2} v_{i}=-\frac{1}{u_{i}}\left\{\delta u_{1} \delta v_{1}+\delta u_{2} \delta v_{2}+\ldots+\delta u_{i} \delta v_{i}-\delta \Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\ldots-\delta \Phi^{\prime}\left(a_{i}\right) \delta a_{i}\right\} \tag{77}
\end{equation*}
$$

It only remains therefore to simplify and perform the elimination between the equations (76), which may be thus expanded:

$$
\begin{align*}
& \delta v_{1}=\Phi^{\prime \prime}\left(u_{1}\right) \delta u_{1}+\Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{2}\right) \delta u_{2}+\ldots+\Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{i}\right) \delta u_{i}+\Phi^{\prime},^{\prime}\left(u_{1}, a_{1}\right) \delta a_{1} \\
& +\ldots+\Phi^{\prime}{ }^{\prime}\left(u_{1}, a_{i}\right) \delta a_{i}, \\
& \delta v_{2}=\Phi^{\prime \prime \prime}\left(u_{1}, u_{2}\right) \delta u_{1}+\Phi^{\prime \prime}\left(u_{2}\right) \delta u_{2}+\ldots+\Phi^{\prime \prime}{ }^{\prime}\left(u_{2}, u_{i}\right) \delta u_{i}+\Phi^{\prime \prime} \prime^{\prime}\left(u_{2}, a_{1}\right) \delta a_{1} \\
& +\ldots+\Phi^{\prime}{ }^{\prime}\left(u_{2}, a_{i}\right) \delta a_{i}, \tag{78}\\
& \delta v_{i}=\Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{i}\right) \delta u_{1}+\Phi^{\prime} \prime^{\prime}\left(u_{2}, u_{i}\right) \delta u_{2}+\ldots+\Phi^{\prime \prime}\left(u_{i}\right) \delta u_{i}+\Phi^{\prime} \prime^{\prime}\left(u_{i}, a_{1}\right) \delta a_{1} \\
& +\ldots+\Phi^{\prime,}\left(u_{i}, a_{i}\right) \delta a_{i} .
\end{align*}
$$

For this purpose we may employ the relations which result from the homogeneous form of Φ, namely,

$$
\left.\begin{array}{l}
\Phi=u_{1} \Phi^{\prime}\left(u_{1}\right)+u_{2} \Phi^{\prime}\left(u_{2}\right)+\ldots+u_{i} \Phi^{\prime}\left(u_{i}\right) \\
\Phi^{\prime}\left(a_{1}\right)=u_{1} \Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{1}\right)+u_{2} \Phi^{\prime \prime} \prime^{\prime}\left(a_{1}, u_{2}\right)+\ldots+u_{i} \Phi^{\prime \prime}\left(a_{1}, u_{i}\right) \tag{80}\\
\ldots \ldots \ldots \ldots \\
\Phi^{\prime}\left(a_{i}\right)=u_{1} \Phi^{\prime, \prime}\left(a_{i}, u_{1}\right)+u_{2} \Phi^{\prime \prime \prime}\left(a_{i}, u_{2}\right)+\ldots+u_{i} \Phi^{\prime,}\left(a_{i}, u_{i}\right) ;
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
0=u_{1} \Phi^{\prime \prime}\left(u_{1}\right)+u_{2} \Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{2}\right)+\ldots+u_{i} \Phi^{\prime,}\left(u_{1}, u_{i}\right), \tag{81}\\
\cdots \cdots \cdots \cdots \cdots \\
0=u_{1} \Phi^{\prime}, \prime \\
\left(u_{1}, u_{i}\right)+u_{2} \Phi^{\prime \prime},\left(u_{2}, u_{i}\right)+\ldots+u_{i} \Phi^{\prime \prime}\left(u_{i}\right) .
\end{array}\right\}
$$

Besides, if we take as the arbitrary multiplier λ in the expressions $\delta u_{1}-\lambda u_{1}$, \&c. the following (see (72)):

$$
\begin{equation*}
\lambda=\frac{1}{S_{1}}\left\{\delta S_{1}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\ldots-\Phi^{\prime}\left(a_{i}\right) \delta a_{i}\right\}=\frac{1}{S_{1}}\left(v_{1} \delta u_{1}+\ldots+v_{i} \delta u_{i}\right) \tag{82}
\end{equation*}
$$

we shall have, by (69), the relation

$$
\begin{equation*}
0=v_{1}\left(\delta u_{1}-\lambda u_{1}\right)+v_{2}\left(\delta u_{2}-\lambda u_{2}\right)+\ldots+v_{i}\left(\delta u_{i}-\lambda u_{i}\right) . \tag{83}
\end{equation*}
$$

We are therefore to determine by elimination, if we can, the i expressions $\delta u_{1}-\lambda u_{1}, \ldots, \delta u_{i}-\lambda u_{i}$ as linear functions of $\delta v_{1}, \delta v_{2}, \ldots, \delta v_{i}, \delta a_{1}, \delta a_{2}, \ldots, \delta a_{i}$ by means of this last relation and any $i-1$, or all, of the i equations following:

$$
\begin{align*}
& \left.\delta v_{1}=\Phi^{\prime \prime}\left(u_{1}\right)\left(\delta u_{1}-\lambda u_{1}\right)+\ldots+\Phi^{\prime,}\left(u_{1}, u_{i}\right)\left(\delta u_{i}-\lambda u_{i}\right)+\Phi^{\prime},\left(a_{1}, u_{1}\right) \delta a_{1}\right) \\
& +\ldots+\Phi^{\prime},^{\prime}\left(a_{i}, u_{1}\right) \delta a_{i}, \\
& \delta v_{i}=\Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{i}\right)\left(\delta u_{1}-\lambda u_{1}\right)+\ldots+\Phi^{\prime \prime}\left(u_{i}\right)\left(\delta u_{i}-\lambda u_{i}\right)+\Phi^{\prime},^{\prime}\left(a_{1}, u_{i}\right) \delta a_{1} \tag{84}\\
& +\ldots+\Phi^{\prime},\left(a_{i}, u_{i}\right) \delta a_{i} .
\end{align*}
$$

If we put for abridgement

$$
\begin{equation*}
\delta u_{1}-\lambda u_{1}=\delta^{\prime} u_{1}, \ldots, \delta u_{i}-\lambda u_{i}=\delta^{\prime} u_{i} \tag{85}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
\delta v_{1}-\Phi^{\prime},^{\prime}\left(a_{1}, u_{1}\right) \delta a_{1}-\ldots-\Phi^{\prime} \prime^{\prime}\left(a_{i}, u_{1}\right) \delta a_{i}=\delta^{\prime} v_{1} \tag{86}\\
\ldots \cdots \cdots \cdots \cdots \\
\delta v_{i}-\Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{i}\right) \delta a_{1}-\ldots-\Phi^{\prime},^{\prime}\left(a_{i}, u_{i}\right) \delta a_{i}=\delta^{\prime} v_{i}
\end{array}\right\}
$$

The $i+1$ relations (83) and (84), equivalent only to i distinct ones, will take these simpler forms:

$$
\begin{equation*}
0=v_{1} \delta^{\prime} u_{1}+v_{2} \delta^{\prime} u_{2}+\ldots+v_{i} \delta^{\prime} u_{i}, \tag{87}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
\delta^{\prime} v_{1}=\Phi^{\prime \prime}\left(u_{1}\right) \delta^{\prime} u_{1}+\Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right) \delta^{\prime} u_{2}+\ldots+\Phi^{\prime}, \prime\left(u_{1}, u_{i}\right) \delta^{\prime} u_{i} \tag{88}\\
\cdots \cdots \cdots \cdots \cdots \\
\delta^{\prime} v_{i}=\Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{i}\right) \delta^{\prime} u_{1}+\Phi^{\prime} \prime^{\prime}\left(u_{2}, u_{i}\right) \delta^{\prime} u_{2}+\ldots+\Phi^{\prime \prime}\left(u_{i}\right) \delta^{\prime} u_{i}
\end{array}\right\}
$$

in which the coefficients are connected by the conditions of homogeneity (81).

[The case of two variables.]

[6.] Consider first the case of only two variables $x_{1}, x_{2}(i=2)$ with two corresponding variables u_{1}, u_{2}, \&c. We have now to deduce $\delta^{\prime} u_{1}, \delta^{\prime} u_{2}$, from the three relations following, or from any two of them:

$$
\begin{equation*}
0=v_{1} \delta^{\prime} u_{1}+v_{2} \delta^{\prime} u_{2} \tag{89}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
\delta^{\prime} v_{1}=\Phi^{\prime \prime}\left(u_{1}\right) \delta^{\prime} u_{1}+\Phi^{\prime \prime}\left(u_{1}, u_{2}\right) \delta^{\prime} u_{2}, \tag{90}\\
\delta^{\prime} v_{2}=\Phi^{\prime}, \prime\left(u_{1}, u_{2}\right) \delta^{\prime} u_{1}+\Phi^{\prime \prime}\left(u_{2}\right) \delta^{\prime} u_{2}
\end{array}\right\}
$$

and the coefficients are connected by the 2 relations

$$
\begin{equation*}
0=u_{1} \Phi^{\prime \prime}\left(u_{1}\right)+u_{2} \Phi^{\prime \prime} \prime^{\prime}\left(u_{1}, u_{2}\right), \quad 0=u_{1} \Phi^{\prime \prime \prime}\left(u_{1}, u_{2}\right)+u_{2} \Phi^{\prime \prime}\left(u_{2}\right) ; \tag{91}
\end{equation*}
$$

we have also
By (90), we have

$$
\begin{equation*}
u_{1} v_{1}+u_{2} v_{2}=\Phi=S_{1} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}=\left\{u_{2} \Phi^{\prime \prime}\left(u_{1}\right)-u_{1} \Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{2}\right)\right\} \delta^{\prime} u_{1}+\left\{u_{2} \Phi^{\prime},\left(u_{1}, u_{2}\right)-u_{1} \Phi^{\prime \prime}\left(u_{2}\right)\right\} \delta^{\prime} u_{2} \tag{93}
\end{equation*}
$$

therefore, by (89), we have the following expressions for $\delta^{\prime} u_{1}, \delta^{\prime} u_{2}$:

$$
\left.\begin{array}{l}
\delta^{\prime} u_{1}=\frac{v_{2}\left(u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}\right)}{v_{2}\left\{u_{2} \Phi^{\prime \prime}\left(u_{1}\right)-u_{1} \Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right)\right\}-v_{1}\left\{u_{2} \Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right)-u_{1} \Phi^{\prime \prime}\left(u_{2}\right)\right\}}, \tag{94}\\
\delta^{\prime} u_{2}=\frac{-v_{1}\left(u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}\right)}{v_{2}\left\{u_{2} \Phi^{\prime \prime}\left(u_{1}\right)-u_{1} \Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right)\right\}-v_{1}\left\{u_{2} \Phi^{\prime},^{\prime}\left(u_{1}, u_{2}\right)-u_{1} \Phi^{\prime \prime}\left(u_{2}\right)\right\}},
\end{array}\right\}
$$

In the common denominator, we have by (91)

$$
\begin{equation*}
\frac{\Phi^{\prime \prime}\left(u_{1}\right)}{u_{2}^{2}}=-\frac{\Phi^{\prime},\left(u_{1}, u_{2}\right)}{u_{1} u_{2}}=\frac{\Phi^{\prime \prime}\left(u_{2}\right)}{u_{1}^{2}}=\frac{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}{u_{1}^{2}+u_{2}^{2}} ; \tag{95}
\end{equation*}
$$

and therefore

$$
\left.\left.\begin{array}{rl}
u_{2} \Phi^{\prime \prime}\left(u_{1}\right)-u_{1} \Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{2}\right) & =u_{2}\left\{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)\right\}, \\
-u_{2} \Phi^{\prime}, \tag{96}\\
\hline
\end{array} u_{1}, u_{2}\right)+u_{1} \Phi^{\prime \prime}\left(u_{2}\right)=u_{1}\left\{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)\right\},\right\}, ~ \$
$$

so that the common denominator is $\left(u_{2} v_{2}+u_{1} v_{1}\right)\left\{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)\right\}$, and the expressions (94) become (attending to (92))

$$
\begin{equation*}
\delta^{\prime} u_{1}=\frac{v_{2}}{\Phi} \cdot \frac{u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}, \quad \delta^{\prime} u_{2}=-\frac{v_{1}}{\Phi} \cdot \frac{u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)} \tag{97}
\end{equation*}
$$

Hence

$$
\left.\begin{array}{l}
\delta^{\prime} u_{1}-\frac{\delta^{\prime} v_{1}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}=-\frac{u_{1}}{\Phi} \cdot \frac{v_{1} \delta^{\prime} v_{1}+v_{2} \delta^{\prime} v_{2}}{\Phi^{\prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}, \\
\delta^{\prime} u_{2}-\frac{\delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}=-\frac{u_{2}}{\Phi} \cdot \frac{v_{1} \delta^{\prime} v_{1}+v_{2} \delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)} ; \tag{98}
\end{array}\right\}
$$

and therefore by the meanings (85) of $\delta^{\prime} u_{1}, \delta^{\prime} u_{2}, \ldots$

$$
\begin{equation*}
u_{2} \delta u_{1}-u_{1} \delta u_{2}=u_{2} \delta^{\prime} u_{1}-u_{1} \delta^{\prime} u_{2}=\frac{u_{2} \delta^{\prime} v_{1}-u_{1} \delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)} \tag{99}
\end{equation*}
$$

an expression which might also have been deduced more immediately from (94). Hence, by the meanings (86) of $\delta^{\prime} v_{1}, \delta^{\prime} v_{2}$,

$$
\begin{align*}
& u_{2} \delta u_{1}-u_{1} \delta u_{2}=\frac{u_{2} \delta v_{1}-u_{1} \delta v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}-\frac{u_{2} \Phi^{\prime},^{\prime}\left(a_{1}, u_{1}\right)-u_{1} \Phi^{\prime \prime}\left(a_{1}, u_{2}\right)}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)} \delta a_{1} \\
&-\frac{u_{2} \Phi^{\prime \prime}\left(a_{2}, u_{1}\right)-u_{1} \Phi^{\prime},\left(a_{2}, u_{2}\right)}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)} \delta a_{2} . \tag{100}
\end{align*}
$$

In general the equation (77) may be put under the form

$$
\begin{equation*}
\delta^{2} v_{i}=-\frac{1}{u_{i}}\left(\delta u_{1} \delta^{\prime} v_{1}+\delta u_{2} \delta^{\prime} v_{2}+\ldots+\delta u_{i} \delta^{\prime} v_{i}\right)+\frac{1}{u_{i}} \delta^{\prime 2} \Phi, \tag{101}
\end{equation*}
$$

δ^{\prime} referring only to the variations of $a_{1}, a_{2}, \ldots, a_{i}$; so that, since

$$
\begin{equation*}
0=u_{1} \delta^{\prime} v_{1}+u_{2} \delta^{\prime} v_{2}+\ldots+u_{i} \delta^{\prime} v_{i}, \tag{102}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta^{2} v_{i}=-\frac{1}{u_{i}}\left(\delta^{\prime} u_{1} \delta^{\prime} v_{1}+\delta^{\prime} u_{2} \delta^{\prime} v_{2}+\ldots+\delta^{\prime} u_{i} \delta^{\prime} v_{i}-\delta^{\prime 2} \Phi\right), \tag{103}
\end{equation*}
$$

in which we may, by (102), introduce or suppress any set of terms in $\delta^{\prime} u_{1}, \delta^{\prime} u_{2}, \ldots, \delta^{\prime} u_{i}$, which are proportional to $u_{1}, u_{2}, \ldots, u_{i}$.

In the particular case $i=2$, we have therefore by (98)

$$
\begin{equation*}
\delta^{2} v_{2}=-\frac{1}{u_{2}} \frac{\delta^{\prime} v_{1}^{2}+\delta^{\prime} v_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}+\frac{1}{u_{2}} \delta^{\prime 2} \Phi \tag{104}
\end{equation*}
$$

in which

$$
\left.\begin{array}{l}
\delta^{\prime} v_{1}=\delta v_{1}-\Phi^{\prime \prime}{ }^{\prime}\left(a_{1}, u_{1}\right) \delta a_{1}-\Phi^{\prime, \prime}\left(a_{2}, u_{1}\right) \delta a_{2}, \tag{105}\\
\delta^{\prime} v_{2}=\delta v_{2}-\Phi^{\prime}{ }^{\prime}\left(a_{1}, u_{2}\right) \delta a_{1}-\Phi^{\prime} \prime^{\prime}\left(a_{2}, u_{2}\right) \delta a_{2} ;
\end{array}\right\}
$$

also

$$
\begin{equation*}
u_{1} \delta^{\prime} v_{1}+u_{2} \delta^{\prime} v_{2}=0 . \tag{106}
\end{equation*}
$$

If we do not choose to suppose $\delta^{2} v_{1}=0$, then instead of (104) we have the more symmetrical relation

$$
\begin{equation*}
0=u_{1} \delta^{2} v_{1}+u_{2} \delta^{2} v_{2}+\frac{\delta^{\prime} v_{1}^{2}+\delta^{\prime} v_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}-\delta^{\prime 2} \Phi . \tag{107}
\end{equation*}
$$

Comparing these two last equations (106), (107), of which the former may be thus written

$$
\begin{equation*}
0=u_{1} \delta v_{1}+u_{2} \delta v_{2}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\Phi^{\prime}\left(a_{2}\right) \delta a_{2}, \tag{108}
\end{equation*}
$$

with the two following:

$$
\begin{equation*}
0=\delta \Psi\left(v_{1}, v_{2}, a_{1}, a_{2}\right)=\Psi^{\prime \prime}\left(v_{1}\right) \delta v_{1}+\Psi^{\prime \prime}\left(v_{2}\right) \delta v_{2}+\Psi^{\prime}\left(a_{1}\right) \delta a_{1}+\Psi^{\prime}\left(a_{2}\right) \delta a_{2}, \tag{109}
\end{equation*}
$$

HMPII
and

$$
\begin{align*}
0=\delta^{2} \Psi= & \Psi^{\prime \prime}\left(v_{1}\right) \delta^{2} v_{1}+\Psi^{\prime \prime}\left(v_{2}\right) \delta^{2} v_{2}+\Psi^{\prime \prime \prime}\left(v_{1}\right) \delta v_{1}^{2}+2 \Psi^{\prime},{ }^{\prime}\left(v_{1}, v_{2}\right) \delta v_{1} \delta v_{2}+\Psi^{\prime \prime \prime}\left(v_{2}\right) \delta v_{2}^{2} \\
& +2 \Psi^{\prime \prime}, \prime\left(v_{1}, a_{1}\right) \delta v_{1} \delta a_{1}+2 \Psi^{\prime \prime}, \prime\left(v_{1}, a_{2}\right) \delta v_{1} \delta a_{2}+2 \Psi^{\prime \prime}, \prime\left(v_{2}, a_{1}\right) \delta v_{2} \delta a_{1}+2 \Psi^{\prime,},\left(v_{2}, a_{2}\right) \delta v_{2} \delta a_{2} \\
& +\Psi^{\prime \prime \prime}\left(a_{1}\right) \delta a_{1}^{2}+2 \Psi^{\prime \prime},^{\prime}\left(a_{1}, a_{2}\right) \delta a_{1} \delta a_{2}+\Psi^{\prime \prime \prime}\left(a_{2}\right) \delta a_{2}^{2} \tag{110}
\end{align*}
$$

we find that

$$
\begin{equation*}
\frac{\Psi^{\prime \prime}\left(v_{1}\right)}{u_{1}}=\frac{\Psi^{\prime}\left(v_{2}\right)}{u_{2}}=-\frac{\Psi^{\prime \prime}\left(a_{1}\right)}{\Phi^{\prime}\left(a_{1}\right)}=-\frac{\Psi^{\prime}\left(a_{2}\right)}{\Phi^{\prime}\left(a_{2}\right)}=\lambda \tag{111}
\end{equation*}
$$

$$
\begin{align*}
& \delta^{2} \Psi=\lambda\left(u_{1} \delta^{2} v_{1}+u_{2} \delta^{2} v_{2}\right)+\frac{\delta^{\prime} v_{1}^{2}+\delta^{\prime} v_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}+2\left(V_{1} \delta v_{1}+V_{2} \delta v_{2}+A_{1} \delta a_{1}+A_{2} \delta a_{2}\right) \\
& \times\left\{u_{1} \delta v_{1}+u_{2} \delta v_{2}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\Phi^{\prime}\left(a_{2}\right) \delta a_{2}\right\} \tag{112}
\end{align*}
$$

λ having the same meaning as in (111), and $V_{1}, V_{2}, A_{1}, A_{2}$ being multipliers to be determined by the condition that this last equation shall hold good independently of the variations $\delta v_{1}, \delta v_{2}$, $\delta a_{1}, \delta a_{2}, \delta^{2} v_{1}, \delta^{2} v_{2}$. Taking therefore the four partial differential coefficients of the equation (112) with respect to $\delta v_{1}, \delta v_{2}, \delta a_{1}, \delta a_{2}$, we find

$$
\begin{align*}
& \begin{array}{r}
\delta \frac{\delta \Psi}{\delta v_{1}}=\frac{\lambda \delta^{\prime} v_{1}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}+u_{1}\left(V_{1} \delta v_{1}+V_{2} \delta v_{2}+A_{1} \delta a_{1}+A_{2} \delta a_{2}\right) \\
\\
\\
+V_{1}\left\{u_{1} \delta v_{1}+u_{2} \delta v_{2}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\Phi^{\prime}\left(a_{2}\right) \delta a_{2}\right\},
\end{array} \\
& \begin{aligned}
& \delta \frac{\delta \Psi}{\delta v_{2}}=\frac{\lambda \delta^{\prime} v_{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}+u_{2}(\ldots \ldots \ldots)+V_{2}\{\ldots \ldots \ldots\}, \\
& \delta \frac{\delta \Psi}{\delta a_{1}}=-\frac{\lambda}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}\left\{\Phi^{\prime},^{\prime}\left(a_{1}, u_{1}\right) \delta^{\prime} v_{1}+\Phi^{\prime},^{\prime}\left(a_{1}, u_{2}\right) \delta^{\prime} v_{2}\right\}-\delta^{\prime} \frac{\delta \Phi}{\delta a_{1}}-\Phi^{\prime}\left(a_{1}\right)\left(V_{1} \delta v_{1}+\ldots\right) \\
&+A_{1}\left\{u_{1} \delta v_{1}+\ldots\right\},
\end{aligned} \tag{113}\\
& \begin{aligned}
& \delta \frac{\delta \Psi}{\delta a_{2}}=-\frac{\lambda}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}\left\{\Phi^{\prime}, \prime\left(a_{2}, u_{1}\right) \delta^{\prime} v_{1}+\Phi^{\prime}, \prime\left(a_{2}, u_{2}\right) \delta^{\prime} v_{2}\right\}-\delta^{\prime} \frac{\delta \Phi}{\delta a_{2}}-\Phi^{\prime}\left(a_{2}\right)(\ldots \ldots \ldots) \\
&+A_{2}\{\ldots \ldots \ldots\} .
\end{aligned} \tag{114}
\end{align*}
$$

We could thus express the partial differential coefficients of the first and second orders of Ψ by means of those of Φ, the expressions of these differential coefficients of Ψ involving also the 5 arbitrary multipliers $\lambda, V_{1}, V_{2}, A_{1}, A_{2}$, which cannot be determined without assuming some new condition, such as that contained in the form (61). But without making such assumption we can transform the two equations of the form (30) and (31), namely,

$$
\begin{gather*}
0=\Psi^{\prime \prime}\left(v_{1}\right) \frac{\delta S_{2}}{\delta u_{1}}+\Psi^{\prime \prime}\left(v_{2}\right) \frac{\delta S_{2}}{\delta u_{2}}+\Psi^{\prime}\left(a_{1}\right) u_{1}+\Psi^{\prime}\left(a_{2}\right) u_{2} \tag{117}\\
0=\Psi^{\prime \prime}\left(v_{1}\right) \frac{\delta S_{3}}{\delta u_{1}}+\Psi^{\prime \prime}\left(v_{2}\right) \frac{\delta S_{3}}{\delta u_{2}}+\frac{1}{2} \Psi^{\prime \prime}\left(v_{1}\right)\left(\frac{\delta S_{2}}{\delta u_{1}}\right)^{2}+\Psi^{\prime \prime,}\left(v_{1}, v_{2}\right) \frac{\delta S_{2}}{\delta u_{1}} \frac{\delta S_{2}}{\delta u_{2}}+\frac{1}{2} \Psi^{\prime \prime \prime}\left(v_{2}\right)\left(\frac{\delta S_{2}}{\delta u_{2}}\right)^{2} \\
+\Psi^{\prime \prime,}\left(v_{1}, a_{1}\right) \frac{\delta S_{2}}{\delta u_{1}} u_{1}+\Psi^{\prime,^{\prime}}\left(v_{1}, a_{2}\right) \frac{\delta S_{2}}{\delta u_{1}} u_{2}+\Psi^{\prime \prime},\left(v_{2}, a_{1}\right) \frac{\delta S_{2}}{\delta u_{2}} u_{1}+\Psi^{\prime \prime},^{\prime}\left(v_{2}, a_{2}\right) \frac{\delta S_{2}}{\delta u_{2}} u_{2} \\
 \tag{118}\\
+\frac{11}{2} \Psi^{\prime \prime \prime}\left(a_{1}\right) u_{1}^{2}+\Psi^{\prime}, \prime\left(a_{1}, a_{2}\right) u_{1} u_{2}+\frac{1}{2} \Psi^{\prime \prime \prime}\left(a_{2}\right) u_{2}^{2}
\end{gather*}
$$

so as to eliminate the differential coefficients of Ψ and introduce those of Φ in their stead.

For it is evident that the equation (117) may be formed from the equation

$$
\begin{equation*}
\delta \Psi=0 \tag{119}
\end{equation*}
$$

by merely changing $\delta v_{1}, \delta v_{2}, \delta a_{1}, \delta a_{2}$ to $\frac{\delta S_{2}}{\delta u_{1}}, \frac{\delta S_{2}}{\delta u_{2}}, u_{1}, u_{2}$ respectively, and that the equation (118) may be formed from

$$
\begin{equation*}
\delta^{2} \Psi=0 \tag{120}
\end{equation*}
$$

by making the changes just mentioned and changing also $\delta^{2} v_{1}, \delta^{2} v_{2}$ to $2 \frac{\delta S_{3}}{\delta u_{1}}, 2 \frac{\delta S_{3}}{\delta u_{2}}$; since then, by (111), we have

$$
\begin{equation*}
\delta \Psi=\lambda\left\{u_{1} \delta v_{1}+u_{2} \delta v_{2}-\Phi^{\prime}\left(a_{1}\right) \delta a_{1}-\Phi^{\prime}\left(a_{2}\right) \delta a_{2}\right\}, \tag{121}
\end{equation*}
$$

the equation (117) gives independently of λ

$$
\begin{equation*}
0=u_{1} \frac{\delta S_{2}}{\delta u_{1}}+u_{2} \frac{\delta S_{2}}{\delta u_{2}}-u_{1} \Phi^{\prime}\left(a_{1}\right)-u_{2} \Phi^{\prime}\left(a_{2}\right), \tag{122}
\end{equation*}
$$

that is, on account of the homogeneous form of S_{2},

$$
\begin{equation*}
S_{2}=\frac{1}{2}\left\{u_{1} \Phi^{\prime}\left(a_{1}\right)+u_{2} \Phi^{\prime}\left(a_{2}\right)\right\}, \tag{123}
\end{equation*}
$$

a result agreeing with (48); and, in like manner, (118) gives, by (112),

$$
\begin{align*}
& 0=2\left(u_{1} \frac{\delta S_{3}}{\delta u_{1}}+u_{2} \frac{\delta S_{3}}{\delta u_{2}}\right)-\Delta^{\prime 2} \Phi+\frac{\Delta^{\prime} v_{1}^{2}+\Delta^{\prime} v_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}+\frac{2}{\lambda}\left(V_{1} \frac{\delta S_{2}}{\delta u_{1}}+V_{2} \frac{\delta S_{2}}{\delta u_{2}}+A_{1} u_{1}+A_{2} u_{2}\right) \\
& \times\left\{u_{1} \frac{\delta S_{2}}{\delta u_{1}}+u_{2} \frac{\delta S_{2}}{\delta u_{2}}-u_{1} \Phi^{\prime}\left(a_{1}\right)-u_{2} \Phi^{\prime}\left(a_{2}\right)\right\} \tag{124}
\end{align*}
$$

in which the part involving the arbitrary multiplier vanishes by (122), and in which
$\Delta^{\prime} v_{1}=\frac{\delta S_{2}}{\delta u_{1}}-u_{1} \Phi^{\prime,}\left(a_{1}, u_{1}\right)-u_{2} \Phi^{\prime \prime},\left(a_{2}, u_{1}\right), \quad \Delta^{\prime} v_{2}=\frac{\delta S_{2}}{\delta u_{2}}-u_{1} \Phi^{\prime,}\left(a_{1}, u_{2}\right)-u_{2} \Phi^{\prime,}\left(a_{2}, u_{2}\right)$.
The expression (123) gives

Therefore

$$
\left.\begin{array}{l}
\frac{\delta S_{2}}{\delta u_{1}}=\frac{1}{2} \Phi^{\prime}\left(a_{1}\right)+\frac{1}{2} u_{1} \Phi^{\prime \prime}\left(a_{1}, u_{1}\right)+\frac{1}{2} u_{2} \Phi^{\prime \prime}\left(a_{2}, u_{1}\right), \tag{126}\\
\frac{\delta S_{2}}{\delta u_{2}}=\frac{1}{2} \Phi^{\prime}\left(a_{2}\right)+\frac{1}{2} u_{1} \Phi^{\prime \prime}\left(a_{1}, u_{2}\right)+\frac{1}{2} u_{2} \Phi^{\prime \prime}\left(a_{2}, u_{2}\right) .
\end{array}\right\}
$$

$$
\begin{align*}
& \Delta^{\prime} v_{1}=\frac{1}{2}\left\{\Phi^{\prime}\left(a_{1}\right)-u_{1} \Phi^{\prime} '^{\prime}\left(a_{1}, u_{1}\right)-u_{2} \Phi^{\prime},^{\prime}\left(a_{2}, u_{1}\right)\right\}, \tag{127}\\
& \Delta^{\prime} v_{2}=\frac{1}{2}\left\{\Phi^{\prime}\left(a_{2}\right)-u_{1} \Phi^{\prime \prime},\left(a_{1}, u_{2}\right)-u_{2} \Phi^{\prime},^{\prime}\left(a_{2}, u_{2}\right)\right\},
\end{align*},
$$

in which, by (80),

$$
\begin{equation*}
\Phi^{\prime}\left(a_{1}\right)=u_{1} \Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{1}\right)+u_{2} \Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{2}\right), \quad \Phi^{\prime}\left(a_{2}\right)=u_{1} \Phi^{\prime},^{\prime}\left(a_{2}, u_{1}\right)+u_{2} \Phi^{\prime} \prime^{\prime}\left(a_{2}, u_{2}\right) ; \tag{128}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\Delta^{\prime} v_{1}=\frac{1}{2} u_{2}\left\{\Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{2}\right)-\Phi^{\prime},^{\prime}\left(a_{2}, u_{1}\right)\right\}, \quad \Delta^{\prime} v_{2}=-\frac{1}{2} u_{1}\left\{\Phi^{\prime},^{\prime}\left(a_{1}, u_{2}\right)-\Phi^{\prime},^{\prime}\left(a_{2}, u_{1}\right)\right\} ; \tag{129}
\end{equation*}
$$

so that, on account of the homogeneous form and dimension $(=3)$ of S_{3}, the equation (124) gives

$$
\begin{align*}
S_{3}=-\frac{1}{24} \frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}\{ & \left\{\Phi^{\prime \prime},\left(a_{1},\right.\right. \\
& \left.\left.u_{2}\right)-\Phi^{\prime \prime}\left(a_{2}, u_{1}\right)\right\}^{2} \tag{130}\\
& +\frac{1}{\delta}\left\{u_{1}^{2} \Phi^{\prime \prime}\left(a_{1}\right)+2 u_{1} u_{2} \Phi^{\prime \prime}\left(a_{1}, a_{2}\right)+u_{2}^{2} \Phi^{\prime \prime}\left(a_{2}\right)\right\}
\end{align*}
$$

because in (124) we are to make

$$
\begin{equation*}
\Delta^{\prime 2} \Phi=u_{1}^{2} \Phi^{\prime \prime}\left(a_{1}\right)+2 u_{1} u_{2} \Phi^{\prime},\left(a_{1}, a_{2}\right)+u_{2}^{2} \Phi^{\prime \prime}\left(a_{2}\right) . \tag{131}
\end{equation*}
$$

We may substitute, if we choose, for the factor $\frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}$ any one of the other forms (95) which are more simple but less symmetric, except indeed the form $-\frac{u_{1} u_{2}}{\Phi^{\prime},{ }^{\prime}\left(u_{1}, u_{2}\right)}$ which might be substituted with advantage.

We have then, to the accuracy of the 3rd order inclusive, for the case $i=2$, this expression for the principal function S :

$$
\begin{align*}
& S=\int_{\left(x_{1}=a_{1}, x_{2}=a_{2}\right)}^{\left(x_{1}=a_{1}+u_{1} x_{2}=a_{2}+u_{2}\right)} \Phi\left(x_{1}, x_{2}, d x_{1}, d x_{2}\right)=\Phi\left(a_{1}, a_{2}, u_{1}, u_{2}\right)+\frac{1}{2}\left\{u_{1} \Phi^{\prime}\left(a_{1}\right)+u_{2} \Phi^{\prime}\left(a_{2}\right)\right\} \\
&+\frac{1}{6}\left\{u_{1}^{2} \Phi^{\prime \prime}\left(a_{1}\right)+2 u_{1} u_{2} \Phi^{\prime \prime}\left(a_{1}, a_{2}\right)+u_{2}^{2} \Phi^{\prime \prime}\left(a_{2}\right)\right\} \tag{132}\\
&-\frac{1}{24} \frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}\left\{\Phi^{\prime \prime}\left(a_{1}, u_{2}\right)-\Phi^{\prime \prime}{ }^{\prime}\left(a_{2}, u_{1}\right)\right\}^{2}
\end{align*}
$$

in which $-\frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}=\frac{u_{1} u_{2}}{\Phi^{\prime},\left(u_{1}, u_{2}\right)}$.
[Examples.]
[7.] For example, if* $\Phi\left(x_{1}, x_{2}, d x_{1}, d x_{2}\right)=\frac{d x_{1}^{2}}{2 d x_{2}}+f\left(x_{1}\right) d x_{2}$,
then

$$
\begin{equation*}
\Phi\left(a_{1}, a_{2}, u_{1}, u_{2}\right)=\frac{u_{1}^{2}}{2 u_{2}}+f\left(a_{1}\right) u_{2} \tag{133}
\end{equation*}
$$

and consequently

$$
\left.\begin{array}{l}
\Phi^{\prime}\left(a_{1}\right)=u_{2} f^{\prime}\left(a_{1}\right), \quad \Phi^{\prime}\left(a_{2}\right)=0, \tag{134}\\
\Phi^{\prime \prime}\left(a_{1}\right)=u_{2} f^{\prime \prime}\left(a_{1}\right), \quad \Phi^{\prime},\left(a_{1}, a_{2}\right)=0, \quad \Phi^{\prime \prime}\left(a_{2}\right)=0, \\
\Phi^{\prime},\left(a_{1}, u_{2}\right)=f^{\prime}\left(a_{1}\right), \quad \Phi^{\prime},\left(a_{2}, u_{1}\right)=0, \\
\Phi^{\prime \prime}\left(u_{1}\right)=\frac{1}{u_{2}}, \quad \Phi^{\prime \prime}\left(u_{2}\right)=\frac{u_{1}^{2}}{u_{2}^{3}} ;
\end{array}\right\}
$$

therefore the general approximate expression (132), for the case $i=2$, gives here

$$
\begin{align*}
& S=\int_{\left(x_{1}=a_{1}, x_{2}=a_{2}\right)}^{\left(x_{1}=a_{1}+u_{1}, x_{2}=a_{2}+u_{2}\right)}\left\{\frac{d x_{1}^{2}}{2 d x_{2}}+f\left(x_{1}\right) d x_{2}\right\} \\
&=\frac{u_{1}^{2}}{2 u_{2}}+u_{2} f\left(a_{1}\right)+\frac{1}{2} u_{1} u_{2} f^{\prime}\left(a_{1}\right)+\frac{1}{6} u_{1}^{2} u_{2} f^{\prime \prime}\left(a_{1}\right)-\frac{1}{24} u_{2}^{3}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} \tag{136}
\end{align*}
$$

In this example the general differential equations (7) become

$$
\begin{equation*}
d \frac{d x_{1}}{d x_{2}}=f^{\prime}\left(x_{1}\right) d x_{2}, \quad d\left\{\frac{d x_{1}^{2}}{2 d x_{2}^{2}}-f\left(x_{1}\right)\right\}=0 \tag{137}
\end{equation*}
$$

equations which are obviously compatible with each other, and which concur in giving

$$
\begin{equation*}
\frac{d x_{1}^{2}}{d x_{2}^{2}}-2 f\left(x_{1}\right)=b_{1}^{2}-2 f\left(a_{1}\right) \tag{138}
\end{equation*}
$$

[^1]b_{1} denoting, as in page 333 , the initial value of $\frac{\delta d S}{\delta d x_{1}}$, which is here $\frac{d x_{1}}{d x_{2}}$, hence if we suppose $\frac{d x_{1}}{d x_{2}}>0$, we shall have
\[

$$
\begin{equation*}
d x_{2}=\frac{d x_{1}}{\sqrt{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}}}, \tag{139}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
S=\int_{a_{1}}^{a_{1}+u_{1}} \frac{2 f\left(x_{1}\right)-f\left(a_{1}\right)+\frac{1}{2} b_{1}^{2}}{\sqrt{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}}} d x_{1} \tag{140}
\end{equation*}
$$

rigorously. Change here x_{1} to $a_{1}+u_{1}$ and we get approximately

$$
\begin{equation*}
f\left(x_{1}\right)=f\left(a_{1}+u_{1}\right)=f\left(a_{1}\right)+u_{1} f^{\prime}\left(a_{1}\right)+\frac{1}{2} u_{1}^{2} f^{\prime \prime}\left(a_{1}\right) \tag{141}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& \left\{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}\right\}^{-\frac{1}{2}}=b_{1}^{-1}\left\{1+2 u_{1} \frac{f^{\prime}\left(a_{1}\right)}{b_{1}^{2}}+u_{1}^{2_{1}^{\prime \prime}} \frac{\left.a_{1}\right)}{b_{1}^{2}}\right\}^{-\frac{1}{2}} \\
& =b_{1}^{-1}-b_{1}^{-3}\left\{u_{1} f^{\prime}\left(a_{1}\right)+\frac{1}{2} u_{1}^{2} f^{\prime \prime}\left(a_{1}\right)\right\}+\frac{3}{2} b_{1}^{-5} u_{1}^{2}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}, \tag{142}
\end{align*}
$$

therefore, by (139),

$$
\begin{align*}
& \begin{aligned}
& u_{2}=\int_{a_{1}}^{x_{1}}\left\{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}\right\}^{-\frac{1}{2}} d x_{1}=\int_{0}^{u_{1}}\left\{2 f\left(a_{1}+u_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}\right\}^{-\frac{1}{2}} d u_{1} \\
&=b_{1}^{-1} u_{1}-b_{1}^{-3}\left\{\frac{1}{2} u_{1}^{2} f^{\prime}\left(a_{1}\right)+\frac{1}{6} u_{1}^{3} f^{\prime \prime}\left(a_{1}\right)\right\}+\frac{1}{2} b_{1}^{-5} u_{1}^{3}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}, \\
& b_{1}=\frac{u_{1}}{u_{2}}-\frac{1}{2} b_{1}^{-2} u_{2}^{-1} u_{1}^{2} f^{\prime}\left(a_{1}\right)-\frac{1}{6} b_{1}^{-2} u_{2}^{-1} u_{1}^{3} f^{\prime \prime}\left(a_{1}\right)+\frac{1}{2} b_{1}^{-4} u_{2}^{-1} u_{1}^{3}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} ;
\end{aligned}
\end{align*}
$$

hence as a first approximation

$$
\begin{equation*}
b_{1}=\frac{u_{1}}{u_{2}} \tag{145}
\end{equation*}
$$

as a second approximation

$$
\begin{equation*}
b_{1}=\frac{u_{1}}{u_{2}}-\frac{1}{2} u_{2} f^{\prime}\left(a_{1}\right) ; \tag{146}
\end{equation*}
$$

and as a third approximation

$$
\begin{align*}
b_{1} & =\frac{u_{1}}{u_{2}}-\frac{1}{2} u_{2} f^{\prime}\left(a_{1}\right)\left\{1+\frac{u_{2}^{2}}{u_{1}} f^{\prime}\left(a_{1}\right)\right\}-\frac{1}{6} u_{1} u_{2} f^{\prime \prime}\left(a_{1}\right)+\frac{1}{2} \frac{u_{2}^{3}}{u_{1}}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} \\
& =\frac{u_{1}}{u_{2}}-\frac{1}{2} u_{2} f^{\prime}\left(a_{1}\right)-\frac{1}{6} u_{1} u_{2} f^{\prime \prime}\left(a_{1}\right) ; \tag{147}
\end{align*}
$$

also

$$
\begin{equation*}
2 f\left(a_{1}+u_{1}\right)-f\left(a_{1}\right)+\frac{1}{2} b_{1}^{2}=\frac{1}{2} b_{1}^{2}+f\left(a_{1}\right)+2 u_{1} f^{\prime}\left(a_{1}\right)+u_{1}^{2} f^{\prime \prime}\left(a_{1}\right), \tag{148}
\end{equation*}
$$

therefore

$$
\begin{align*}
\frac{2 f\left(a_{1}+u_{1}\right)-f\left(a_{1}\right)+\frac{1}{2} b_{1}^{2}}{\sqrt{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}}}= & \frac{1}{2} b_{1}+\frac{f\left(a_{1}\right)}{b_{1}}+u_{1} \frac{f^{\prime}\left(a_{1}\right)}{b_{1}}\left\{2-\frac{1}{2}-\frac{f\left(a_{1}\right)}{b_{1}^{2}}\right\} \\
& +\frac{u_{1}^{2}}{b_{1}}\left[f^{\prime \prime}\left(a_{1}\right)-2\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}}\right)^{2}+\left\{\frac{1}{2} b_{1}^{2}+f\left(a_{1}\right)\right\}\left\{-\frac{f^{\prime \prime}\left(a_{1}\right)}{2 b_{1}^{2}}+\frac{3}{2}\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}^{2}}\right)^{2}\right\}\right] \\
= & \frac{1}{2} b_{1}+\frac{f\left(a_{1}\right)}{b_{1}}+u_{1} \frac{f^{\prime}\left(a_{1}\right)}{b_{1}}\left\{\frac{3}{2}-\frac{f\left(a_{1}\right)}{b_{1}^{2}}\right\}+\frac{u_{1}^{2}}{b_{1}}\left\{\frac{3}{4} f^{\prime \prime}\left(a_{1}\right)-\frac{5}{4}\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}}\right)^{2}\right. \\
& \left.\quad-\frac{f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)}{2 b_{1}^{2}}+\frac{3}{2} f\left(a_{1}\right)\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}^{2}}\right)^{2}\right\} ; \tag{149}
\end{align*}
$$

hence

$$
\begin{align*}
& S=\int_{0}^{u_{1}} \frac{2 f\left(a_{1}+u_{1}\right)-f\left(a_{1}\right)+\frac{1}{2} b_{1}^{2}}{\sqrt{2 f\left(x_{1}\right)-2 f\left(a_{1}\right)+b_{1}^{2}}} d u_{1}=\left(\frac{b_{1}}{2}+\frac{f\left(a_{1}\right)}{b_{1}}\right) u_{1}+f^{\prime}\left(a_{1}\right)\left\{\frac{3}{2 b_{1}}-\frac{f\left(a_{1}\right)}{b_{1}^{3}}\right\} \frac{u_{1}^{2}}{2} \\
&+\left\{\frac{3}{4} \frac{f^{\prime \prime}\left(a_{1}\right)}{b_{1}}-\frac{5}{4 b_{1}}\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}}\right)^{2}-\frac{f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)}{2 b_{1}^{3}}+\frac{3}{2} \frac{f\left(a_{1}\right)}{b_{1}}\left(\frac{f^{\prime}\left(a_{1}\right)}{b_{1}^{2}}\right)^{2}\right\} \frac{u_{1}^{3}}{3} \tag{150}
\end{align*}
$$

in which, by (147),

$$
\begin{align*}
& \frac{b_{1} u_{1}}{2}=\frac{u_{1}^{2}}{2 u_{2}}-\frac{u_{1} u_{2}}{4} f^{\prime}\left(a_{1}\right)-\frac{u_{1}^{2} u_{2}}{12} f^{\prime \prime}\left(a_{1}\right), \tag{151}\\
& \frac{f\left(a_{1}\right)}{b_{1}} u_{1}=u_{2} f\left(a_{1}\right)\left\{1-\frac{u_{2}^{2}}{2 u_{1}} f^{\prime}\left(a_{1}\right)-\frac{u_{2}^{2}}{6} f^{\prime \prime}\left(a_{1}\right)\right\}^{-1} \\
& =u_{2} f\left(a_{1}\right)\left\{1+\frac{u_{2}^{2}}{2 u_{1}} f^{\prime}\left(a_{1}\right)+\frac{u_{2}^{2}}{6} f^{\prime \prime}\left(a_{1}\right)+\frac{u_{2}^{4}}{4 u_{1}^{2}}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}\right\} \text {, } \tag{152}\\
& \frac{3 f^{\prime}\left(a_{1}\right)}{4 b_{1}} u_{1}^{2}=\frac{3}{4} u_{1} u_{2} f^{\prime}\left(a_{1}\right)\left\{1+\frac{u_{2}^{2}}{2 u_{1}} f^{\prime}\left(a_{1}\right)\right\}, \tag{153}\\
& -\frac{f\left(a_{1}\right) f^{\prime}\left(a_{1}\right)}{2 b_{1}^{3}} u_{1}^{2}=-\frac{u_{2}^{3}}{2 u_{1}} f\left(a_{1}\right) f^{\prime}\left(a_{1}\right)\left\{1+\frac{3 u_{2}^{2}}{2 u_{1}} f^{\prime}\left(a_{1}\right)\right\}, \tag{154}\\
& \left\{\frac{f^{\prime \prime}\left(a_{1}\right)}{4 b_{1}}-\frac{5\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}}{12 b_{1}^{3}}-\frac{f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)}{6 b_{1}^{3}}+\frac{f\left(a_{1}\right)\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}}{2 b_{1}^{5}}\right\} u_{1}^{3} \\
& =\frac{1}{4} u_{1}^{2} u_{2} f^{\prime \prime}\left(a_{1}\right)-\frac{1}{12} u_{2}^{3}\left[5\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}+2 f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)\right]+\frac{1}{2} u_{2}^{5} u_{1}^{-2} f\left(a_{1}\right)\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} ; \tag{155}
\end{align*}
$$

therefore, adding these last five expressions,

$$
\begin{align*}
S= & \frac{u_{1}^{2}}{2 u_{2}}+u_{2} f\left(a_{1}\right) \\
& -\frac{u_{1} u_{2}}{4} f^{\prime}\left(a_{1}\right)+\frac{u_{2}^{3} u_{1}^{-1}}{2} f\left(a_{1}\right) f^{\prime}\left(a_{1}\right)+\frac{3 u_{1} u_{2}}{4} f^{\prime}\left(a_{1}\right)-\frac{u_{2}^{3} u_{1}^{-1}}{2} f\left(a_{1}\right) f^{\prime}\left(a_{1}\right) \\
& -\frac{u_{1}^{2} u_{2}}{12} f^{\prime \prime}\left(a_{1}\right)+\frac{u_{2}^{3}}{6} f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)+\frac{u_{2}^{5} u_{1}^{-2}}{4} f\left(a_{1}\right)\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}+\frac{3 u_{2}^{3}}{8}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}-\frac{3 u_{2}^{5} u_{1}^{-2}}{4} f\left(a_{1}\right)\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} \\
& +\frac{u_{1}^{2} u_{2}}{4} f^{\prime \prime}\left(a_{1}\right)-\frac{u_{2}^{3}}{6} f\left(a_{1}\right) f^{\prime \prime}\left(a_{1}\right)-\frac{5 u_{2}^{3}}{12}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2}+\frac{u_{2}^{5} u_{1}^{-2}}{2} f\left(a_{1}\right)\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} \\
= & \frac{u_{1}^{2}}{2 u_{2}}+u_{2} f\left(a_{1}\right)+\frac{u_{1} u_{2}}{2} f^{\prime}\left(a_{1}\right)+\frac{u_{1}^{2} u_{2}}{6} f^{\prime \prime}\left(a_{1}\right)-\frac{u_{2}^{3}}{24}\left\{f^{\prime}\left(a_{1}\right)\right\}^{2} \tag{156}
\end{align*}
$$

as in (136).
This has been a complicated process: its most essential part, after the deduction of the rigorous intermediate integral equation (138), has been the approximate elimination of b_{1} between the two rigorous expressions
and

$$
\begin{equation*}
u_{2}=\int_{0}^{u_{1}} \frac{d u_{1}}{\sqrt{b_{1}^{2}+2 f\left(a_{1}+u_{1}\right)-2 f\left(a_{1}\right)}} \tag{143}
\end{equation*}
$$

$$
\begin{equation*}
S=\int_{0}^{u_{1}} \frac{\frac{1}{2} b_{1}^{2}+2 f\left(a_{1}+u_{1}\right)-f\left(a_{1}\right)}{\sqrt{b_{1}^{2}+2 f\left(a_{1}+u_{1}\right)-2 f\left(a_{1}\right)}} d u_{1} \tag{150}
\end{equation*}
$$

giving the approximate result (136) through the medium of the approximate expression (147), deduced from (143).

In the present example we have, by (133),

$$
\begin{equation*}
y_{1}=\frac{\delta d S}{\delta d x_{1}}=\frac{d x_{1}}{d x_{2}} ; \quad y_{2}=\frac{\delta d S}{\delta d x_{2}}=-\frac{1}{2}\left(\frac{d x_{1}}{d x_{2}}\right)^{2}+f\left(x_{1}\right) ; \tag{157}
\end{equation*}
$$

so that the general equation (14), $0=\Psi\left(y_{1}, \ldots, y_{i}, x_{1}, \ldots, x_{i}\right)$, may here be put under the form

$$
\begin{equation*}
0=\frac{1}{2} y_{1}^{2}+y_{2}-f\left(x_{1}\right), \tag{158}
\end{equation*}
$$

and the general partial differential equation (16), which may always be thus written

$$
\begin{equation*}
0=\Psi\left(\frac{\delta S}{\delta u_{1}}, \ldots, \frac{\delta S}{\delta u_{i}}, a_{1}+u_{1}, \ldots, a_{i}+u_{i}\right) \tag{159}
\end{equation*}
$$

becomes in the present example

$$
\begin{equation*}
0=\frac{1}{2}\left(\frac{\delta S}{\delta u_{1}}\right)^{2}+\frac{\delta S}{\delta u_{2}}-f\left(a_{1}+u_{1}\right) \tag{160}
\end{equation*}
$$

and gives

$$
\begin{equation*}
\frac{\delta S}{\delta u_{1}}= \pm \sqrt{2 f\left(a_{1}+u_{1}\right)-2 \frac{\delta S}{\delta u_{2}}} . \tag{161}
\end{equation*}
$$

If we take the upper sign, the complete and general integral of this partial differential equation (161) is given by the following equations:

$$
\begin{equation*}
S=\int_{0}^{u_{1}} \sqrt{2 f\left(a_{1}+u_{1}\right)-2 b_{2}} d u_{1}+b_{2} u_{2}+\phi\left(b_{2}\right), \quad 0=u_{2}-\int_{0}^{u_{1}} \frac{d u_{1}}{\sqrt{2 f\left(a_{1}+u_{1}\right)-2 b_{2}}}+\phi^{\prime}\left(b_{2}\right), \tag{162}
\end{equation*}
$$

$\phi\left(b_{2}\right)$ being an arbitrary function of b_{2} and $\phi^{\prime}\left(b_{2}\right)$ being its derived function, but b_{2} being treated as constant in effecting the two definite integrations; and in the present question this arbitrary function $\phi\left(b_{2}\right)$ and therefore also $\phi^{\prime}\left(b_{2}\right)$ must be supposed to be identically equal to zero, because S vanishes with u_{1} and u_{2} independently of the auxiliary quantity b_{2}, which may easily be shown to be equal to $\frac{\delta S}{\delta u_{2}}$ and to be constant in the progression of $u_{1} u_{2} S$; we may then rigorously determine the form of the principal function S by eliminating b_{2} between the two equations

$$
\begin{equation*}
u_{2}=\int_{0}^{u_{1}} \frac{d u_{1}}{\sqrt{2 f\left(a_{1}+u_{1}\right)-2 b_{2}}}, \quad S=\int_{0}^{u_{1}} \frac{2 f\left(a_{1}+u_{1}\right)-b_{2}}{\sqrt{2 f\left(a_{1}+u_{1}\right)-2 b_{2}}} d u_{1}, \tag{163}
\end{equation*}
$$

which may easily be seen to coincide with the equations (143) and (150).
(Jan. 23 $\left.{ }^{\text {rd }}, 1836.\right)$
As another example,* let

$$
\begin{equation*}
\Phi\left(x_{1}, x_{2}, d x_{1}, d x_{2}\right)=e^{2 h x_{1}}\left(h \frac{d x_{1}^{2}}{d x_{2}}+g d x_{2}\right) \tag{164}
\end{equation*}
$$

h and g being any arbitrary constants and e being the napierian base. Then

$$
\begin{gather*}
\Phi\left(a_{1}, a_{2}, u_{1}, u_{2}\right)=e^{2 h a_{1}}\left(h \frac{u_{1}^{2}}{u_{2}}+g u_{2}\right) ; \tag{165}\\
\Phi^{\prime}\left(a_{1}\right)=2 h \Phi, \quad \Phi^{\prime}\left(a_{2}\right)=0, \quad \Phi^{\prime}\left(u_{1}\right)=2 h \frac{u_{1}}{u_{2}} e^{2 h a_{1}}, \quad \Phi^{\prime}\left(u_{2}\right)=e^{2 h a_{3}}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right) ; \tag{166}
\end{gather*}
$$

* [Problem of the fall of a heavy body in a medium resisting as the square of the velocity.]

$$
\begin{align*}
& \left.\begin{array}{c}
\Phi^{\prime \prime}\left(a_{1}\right)=4 h^{2} \Phi, \quad \Phi^{\prime} \prime^{\prime}\left(a_{1}, a_{2}\right)=0, \quad \Phi^{\prime \prime}\left(a_{2}\right)=0, \\
\Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{1}\right)=4 h^{2} \frac{u_{1}}{u_{2}} e^{2 h a_{1}}, \quad \Phi^{\prime} \prime^{\prime}\left(a_{1}, u_{2}\right)=2 h\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right) e^{2 h a_{1}}, \quad \Phi^{\prime} \prime^{\prime}\left(a_{2}, u_{1}\right)=0,
\end{array}\right\} \\
& \Phi^{\prime \prime}{ }^{\prime}\left(a_{2}, u_{2}\right)=0, \tag{167}\\
& \Phi^{\prime \prime}\left(u_{1}\right)=\frac{2 h}{u_{2}} e^{2 h a_{1}}, \quad \Phi^{\prime} \prime^{\prime}\left(u_{1}, u_{2}\right)=-\frac{2 h u_{1}}{u_{2}^{2}} e^{2 h a_{1}}, \quad \Phi^{\prime \prime}\left(u_{2}\right)=\frac{2 h u_{1}^{2}}{u_{2}^{3}} e^{2 h a_{1}} ; \\
& \frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}=-\frac{u_{1} u_{2}}{\Phi^{\prime \prime}\left(u_{1}, u_{2}\right)}=\frac{u_{2}^{3}}{2 h} e^{-2 h a_{1}}, \tag{168}
\end{align*}
$$

and the general approximate expression (132) becomes

$$
\begin{align*}
S=\int_{x_{1}=a_{1}, x_{2}=a_{2}}^{x_{1}=a_{1}+u_{1}, x_{1}=a_{2}+u_{2}} e^{2 h x_{1}}(& \left(h \frac{d x_{1}^{2}}{d x_{2}}+g d x_{2}\right) \\
& =\left(1+h u_{1}+\frac{2}{3} h^{2} u_{1}^{2}\right) e^{2 h a_{1}}\left(h \frac{u_{1}^{2}}{u_{2}}+g u_{2}\right)-\frac{\left(g u_{2}^{2}-h u_{1}^{2}\right)^{2}}{12 u_{2}} h e^{2 h a_{1}} . \tag{169}
\end{align*}
$$

In this example the general differential equations (7) become

$$
\begin{equation*}
e^{2 h x_{1}}\left(h \frac{d x_{1}^{2}}{d x_{2}}+g d x_{2}\right)=d \cdot e^{2 h x_{1}} \frac{d x_{1}}{d x_{2}}, \quad 0=d \cdot e^{2 h x_{1}}\left(g-h \frac{d x_{1}^{2}}{d x_{2}^{2}}\right) \tag{170}
\end{equation*}
$$

and both agree in giving

$$
\begin{equation*}
d \frac{d x_{1}}{d x_{2}}-g d x_{2}+h \frac{d x_{1}^{2}}{d x_{2}}=0 \tag{171}
\end{equation*}
$$

as the ordinary differential equation of the second order between x_{1} and x_{2}. The second equation (170) gives, as an intermediate integral,

$$
\begin{equation*}
e^{2 h x_{1}}\left(g-h \frac{d x_{1}^{2}}{d x_{2}^{2}}\right)=b_{2}=\text { const., } \tag{172}
\end{equation*}
$$

b_{2} denoting as usual the initial value of $\Phi^{\prime}\left(d x_{2}\right)$ or of $\frac{\delta d S}{\delta d x_{2}}$; therefore

$$
\begin{equation*}
\frac{d x_{2}}{d x_{1}}= \pm \sqrt{\frac{h}{g-b_{2} e^{-h x_{1}}}}, \tag{173}
\end{equation*}
$$

and hence, taking the upper sign,

$$
\begin{equation*}
u_{2}=\sqrt{h} \int_{0}^{u_{1}} \frac{d u_{1}}{\sqrt{g-b_{2} e^{-2 h\left(a_{1}+u_{2}\right)}}} \tag{174}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{d S}{d x_{2}}=e^{2 h x_{1}}\left(g+h \frac{d x_{1}^{2}}{d x_{2}^{2}}\right)=2 g e^{2 h x_{1}}-b_{2}, \tag{175}
\end{equation*}
$$

therefore

$$
\begin{equation*}
S=-b_{2} u_{2}+2 g \sqrt{h} \int_{0}^{u_{1}} \frac{e^{2 h\left(a_{1}+u_{1}\right)} d u_{1}}{\sqrt{g-b_{2} e^{-2 h\left(a_{1}+u_{1}\right)}}}, \tag{176}
\end{equation*}
$$

that is, by the expression for u_{2},

$$
\begin{equation*}
S=\sqrt{h} \int_{0}^{u_{2}} \frac{2 g e^{2 h\left(a_{1}+u_{2}\right)}-b_{2}}{\sqrt{g-b_{2} e^{-2 h\left(a_{1}+u_{1}\right)}}} d u_{1} \tag{177}
\end{equation*}
$$

The equations (174), (177) are rigorous and the approximate elimination of b_{2} between them ought to conduct to the expression (169).

To effect this approximate elimination, we shall first develope the reciprocal of the radical. We have
therefore

$$
\begin{equation*}
g-b_{2} e^{-2 h\left(a_{1}+u_{1}\right)}=g-b_{2} e^{-2 h a_{1}} e^{-2 h u_{1}}=g-b_{2} e^{-2 h a_{1}}\left(1-2 h u_{1}+2 h^{2} u_{1}^{2}\right) \tag{178}
\end{equation*}
$$

$$
\left\{g-b_{2} e^{\left.-2 h\left(a_{1}+u_{1}\right)\right\}^{-\frac{1}{2}}}=e^{h a_{1}}\left\{g e^{2 h a_{1}}-b_{2}+2 b_{2} h u_{1}-2 b_{2} h^{2} u_{1}^{2}\right\}^{-\frac{1}{2}}\right.
$$

$$
\begin{align*}
& =e^{h a_{1}}\left(g e^{2 h a_{1}}-b_{2}\right)^{-\frac{1}{2}}\left\{1+\frac{2 b_{2} h u_{1}}{g e^{2 h a_{1}}-b_{2}}\left(1-h_{1} u_{1}\right)\right\}^{-\frac{1}{2}} \\
& =e^{h a_{1}}\left(g e^{2 h a_{1}}-b_{2}\right)^{-\frac{1}{2}}\left\{1-\frac{b_{2} h u_{1}\left(1-h u_{1}\right)}{g e^{2 h a_{1}}-b_{2}}+\frac{\frac{3}{2} b_{2}^{2} h^{2} u_{1}^{2}}{\left(g e^{2 h a_{1}}-b_{2}\right)^{2}}\right\} \\
& =\left(g-b_{2} e^{-2 h a_{1}}\right)^{-\frac{1}{2}}-u_{1} e^{h a_{1}} b_{2} h\left(g e^{2 h a_{1}}-b_{2}\right)^{-\frac{3}{2}} \\
& +u_{1}^{2} e^{h a_{1}} b_{2} h^{2}\left(g e^{2 h a_{1}}+\frac{1}{2} b_{2}\right)\left(g e^{2 h a_{1}}-b_{2}\right)^{-\frac{5}{2}} ; \tag{179}
\end{align*}
$$

therefore

$$
\begin{equation*}
u_{2}=\frac{u_{1} \sqrt{h}}{\sqrt{g-b_{2} e^{-2 h a_{1}}}}-\frac{u_{1}^{2}}{2} e^{-2 h a_{1}} b_{2}\left(\frac{h e^{2 h a_{1}}}{g e^{2 h u_{1}}-b_{2}}\right)^{\frac{3}{2}}+\frac{u_{1}^{3}}{3} e^{-4 h a_{1}} b_{2}\left(g e^{2 h a_{1}}+\frac{1}{2} b_{2}\right)\left(\frac{h e^{2 h a_{1}}}{g e^{2 h a_{1}}-b_{2}}\right)^{\frac{5}{2}} \tag{180}
\end{equation*}
$$

hence, as a first approximation,

$$
\begin{equation*}
\sqrt{\frac{g-b_{2} e^{-2 h a_{1}}}{h}}=\frac{u_{1}}{u_{2}} \tag{181}
\end{equation*}
$$

and so (cf. (172))

$$
\begin{equation*}
b_{2}=\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right) e^{2 h a_{1}} \tag{182}
\end{equation*}
$$

and since in this approximation

$$
\begin{equation*}
\left(\frac{h e^{2 h a_{1}}}{g e^{2 h a_{1}}-b_{2}}\right)^{\frac{1}{2}}=\frac{u_{2}}{u_{1}} \tag{183}
\end{equation*}
$$

we have as a second approximation

$$
\begin{equation*}
u_{1} \sqrt{\frac{h}{g-b_{2} e^{-2 h a_{1}}}}=u_{2}+\frac{\left(g u_{2}^{2}-h u_{1}^{2}\right) u_{2}}{2 u_{1}} \tag{184}
\end{equation*}
$$

that is,

$$
\left(\frac{u_{2}}{u_{1}}\right)^{2} \frac{g-b_{2} e^{-2 h a_{1}}}{h}=1+h u_{1}-\frac{g u_{2}^{2}}{u_{1}}
$$

or

$$
\begin{equation*}
b_{2} e^{-2 h a_{1}}=g-h \frac{u_{1}^{2}}{u_{2}^{2}}\left\{1+h u_{1}-\frac{g u_{2}^{2}}{u_{1}}\right\}=\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)\left(1+h u_{1}\right) \tag{185}
\end{equation*}
$$

Consequently, as a third approximation,

$$
\begin{align*}
& \frac{u_{1}}{u_{2}} \sqrt{\frac{h}{g-b_{2} e^{-2 h a_{1}}}}=1+\frac{g u_{2}^{2}-h u_{1}^{2}}{2 u_{1}}\left\{1+h u_{1}+\frac{3}{2 u_{1}}\left(g u_{2}^{2}-h u_{1}^{2}\right)\right\}-\frac{1}{6 u_{1}^{2}}\left(g u_{2}^{2}-h u_{1}^{2}\right)\left(3 g u_{2}^{2}-h u_{1}^{2}\right) \\
& =1+\frac{g u_{2}^{2}-h u_{1}^{2}}{2 u_{1}}\left\{1-\frac{h u_{1}}{6}+\frac{g u_{2}^{2}}{2 u_{1}}\right\}, \tag{186}\\
& \begin{aligned}
& \frac{u_{2}^{2}}{u_{1}^{2}} \frac{g-b_{2} e^{-2 h a_{1}}}{h}=1+\frac{h u_{1}^{2}-g u_{2}^{2}}{u_{1}}\left\{1+h u_{1}+\frac{3}{2 u_{1}}\left(g u_{2}^{2}-h u_{1}^{2}\right)\right\}+\frac{3}{4 u_{1}^{2}}\left(g u_{2}^{2}-h u_{1}^{2}\right)^{2} \\
&+\frac{1}{3 u_{1}^{2}}\left(g u_{2}^{2}-h u_{1}^{2}\right)\left(3 g u_{2}^{2}-h u_{1}^{2}\right),
\end{aligned} \\
& \begin{array}{l}
\frac{b_{2} e^{-2 h a_{1}} u_{2}^{2}}{g u_{2}^{2}-h u_{1}^{2}}=1+h u_{1}+h^{2} u_{1}^{2}+\frac{3}{4} h\left(g u_{2}^{2}-h u_{1}^{2}\right)-\frac{h}{3}\left(3 g u_{2}^{2}-h u_{1}^{2}\right)=1+h u_{1}+\frac{7}{12} h^{2} u_{1}^{2}-\frac{1}{4} g h u_{2}^{2} \\
\text { HM PII }
\end{array} \tag{187}
\end{align*}
$$

and

$$
\begin{equation*}
b_{2}=e^{2 h a_{1}}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)\left\{1+h u_{1}+\frac{7}{12} h^{2} u_{1}^{2}-\frac{1}{4} g h u_{2}^{2}\right\} \tag{189}
\end{equation*}
$$

Again, we have by what precedes

$$
\begin{align*}
& \sqrt{\frac{h}{g-b_{2} e^{-2 h\left(a_{1}+u_{1}\right)}}}=\sqrt{\frac{h}{g-b_{2} e^{-2 h a_{1}}}}-u_{1} b_{2} e^{-2 h a_{1}}\left(\frac{h}{g-b_{2} e^{-2 h a_{1}}}\right)^{\frac{3}{2}} \\
&+u_{1}^{2} b_{2} e^{-2 h a_{1}}\left(g+\frac{1}{2} b_{2} e^{-2 h a_{1}}\right)\left(\frac{h}{g-b_{2} e^{-2 h a_{1}}}\right)^{\frac{5}{2}} \tag{190}
\end{align*}
$$

also

$$
\begin{equation*}
2 g e^{2 h u_{1}-b_{2} e^{-2 h a_{1}}=2 g-b_{2} e^{-2 h a_{1}}+4 g h u_{1}+4 g h^{2} u_{1}^{2} ; ~} \tag{191}
\end{equation*}
$$

therefore, by (177) and (180),

$$
S e^{-2 h a_{1}}=u_{2}\left(2 g-b_{2} e^{-2 h a_{1}}\right)+\left(2 g h u_{1}^{2}+\frac{4}{3} g h^{2} u_{1}^{3}\right)\left(\frac{h}{g-b_{2} e^{-2 h a_{1}}}\right)^{\frac{1}{2}}
$$

$$
\begin{equation*}
-\frac{4}{3} g h u_{1}^{3} b_{2} e^{-2 h a_{1}}\left(\frac{h}{g-b_{2} e^{-2 h a_{1}}}\right)^{\frac{3}{2}}, \tag{192}
\end{equation*}
$$

in which

$$
\begin{gather*}
u_{2}\left(2 g-b_{2} e^{-2 h a_{1}}\right)=g u_{2}+h \frac{u_{1}^{2}}{u_{2}}+\left(\frac{h u_{1}^{2}}{u_{2}}-g u_{2}\right)\left(h u_{1}+\frac{7}{12} h^{2} u_{1}^{2}-\frac{1}{4} g h u_{2}^{2}\right), \tag{193}\\
2 g h u_{1}^{2}\left(1+\frac{2}{3} h u_{1}\right) \sqrt{\frac{h}{g-b_{2} e^{-2 h a_{1}}}}=2 g h u_{1} u_{2}\left(1+\frac{1}{8} h u_{1}+\frac{1}{2} g \frac{u_{2}^{2}}{u_{1}}\right), \tag{194}
\end{gather*}
$$

and

$$
\begin{equation*}
-\frac{4}{3} g h u_{1}^{3} b_{2} e^{-2 h a_{1}}\left(\frac{h}{g-b_{2} e^{-2 h a_{1}}}\right)^{\frac{3}{2}}=-\frac{4}{3} g h u_{2}\left(g u_{2}^{2}-h u_{1}^{2}\right) . \tag{195}
\end{equation*}
$$

Therefore, adding the three last expressions, we find

$$
\begin{equation*}
S e^{-2 h a_{1}}=\left(\frac{h u_{1}^{2}}{u_{2}}+g u_{2}\right)\left(1+h u_{1}\right)+\frac{7}{12} \frac{h^{3} u_{1}^{4}}{u_{2}}+\frac{5}{6} g h^{2} u_{1}^{2} u_{2}-\frac{1}{12} g^{2} h u_{2}^{3}, \tag{196}
\end{equation*}
$$

agreeing with (169).
It would however have been simpler, in this example, to have put the differential equation of the second order (171) under the form:

$$
\begin{equation*}
x_{1}^{\prime \prime}=g-h x_{1}^{\prime 2}, \tag{197}
\end{equation*}
$$

and then to have deduced from it by differentiation
and therefore

$$
\begin{gather*}
x_{1}^{\prime \prime \prime}=-2 h x_{1}^{\prime} x_{1}^{\prime \prime}=-2 h x_{1}^{\prime}\left(g-h x_{1}^{\prime 2}\right), \tag{198}\\
a_{1}^{\prime \prime}=g-h a_{1}^{\prime 2}, \tag{199}\\
a_{1}^{\prime \prime}=-2 h a_{1}^{\prime}\left(g-h a_{1}^{\prime 2}\right), \tag{200}
\end{gather*}
$$

$x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{1}^{\prime \prime \prime}$ being differential coefficients of x_{1} considered as a function of x_{2}, and $a_{1}^{\prime}, a_{1}^{\prime \prime}, a_{1}^{\prime \prime \prime}$ being their values when $x_{2}=a_{2}, x_{1}=a_{1}$. For thus we should obtain, by Taylor's theorem,
that is,

$$
\begin{gather*}
u_{1}=a_{1}^{\prime} u_{2}+\frac{1}{2} a_{1}^{\prime \prime} u_{2}^{2}+\frac{1}{6} a_{1}^{\prime \prime \prime} u_{2}^{3}, \tag{201}\\
u_{1}=a_{1}^{\prime} u_{2}+\frac{1}{2} u_{2}^{2}\left(g-h a_{1}^{\prime 2}\right)\left(1-\frac{2}{3} h a_{1}^{\prime} u_{2}\right), \tag{202}
\end{gather*}
$$

which gives as a first approximation

$$
\begin{equation*}
a_{1}^{\prime}=\frac{u_{1}}{u_{2}} ; \tag{203}
\end{equation*}
$$

as a second approximation

therefore

$$
\begin{equation*}
a_{1}^{\prime}=\frac{u_{1}}{u_{2}}-\frac{u_{2}}{2}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right) ; \tag{204}
\end{equation*}
$$

$$
\begin{equation*}
g-h a_{1}^{\prime 2}=\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)\left(1+h u_{1}\right) \tag{205}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+h u_{1}\right)\left(1-\frac{2}{3} h a_{1}^{\prime} u_{2}\right)=1+\frac{1}{3} h u_{1} . \tag{206}
\end{equation*}
$$

As a third approximation

$$
\begin{equation*}
a_{1}^{\prime}=\frac{u_{1}}{u_{2}}-\frac{u_{2}}{2}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)\left(1+\frac{1}{3} h u_{1}\right) . \tag{207}
\end{equation*}
$$

Also

$$
\begin{equation*}
S=e^{2 h a_{1}} \int_{0}^{u_{2}} e^{2 h u_{1}}\left(h x_{1}^{\prime 2}+g\right) d u_{2} \tag{208}
\end{equation*}
$$

in which

$$
\begin{equation*}
x_{1}^{\prime}=a_{1}^{\prime}+a_{1}^{\prime \prime} u_{2}+\frac{1}{2} a_{1}^{\prime \prime} u_{2}^{2} \tag{209}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{2 h u_{1}}=1+2 h u_{1}+2 h^{2} u_{1}^{2}=1+2 h a_{1}^{\prime} u_{2}+\left(2 h^{2} a_{1}^{\prime 2}+h a_{1}^{\prime \prime}\right) u_{2}^{2} ; \tag{210}
\end{equation*}
$$

therefore

$$
\begin{align*}
& e^{2 h u_{1}\left(h x_{1}^{\prime 2}+g\right)=\left(h a_{1}^{\prime 2}+g\right)\left\{1+2 h a_{1}^{\prime} u_{2}+\left(2 h^{2} a_{1}^{\prime 2}+h a_{1}^{\prime \prime}\right) u_{2}^{2}\right\}+}+2 h a_{1}^{\prime} a_{1}^{\prime \prime}\left\{u_{2}+2 h a_{1}^{\prime} u_{2}^{2}\right\}+ \\
&+h\left(a_{1}^{\prime \prime 2}+a_{1}^{\prime} a_{1}^{\prime \prime}\right) u_{2}^{2}, \tag{211}
\end{align*}
$$

and

$$
\begin{align*}
S e^{-2 h a_{1}} & =\left(h a_{1}^{\prime 2}+g\right)\left\{u_{2}+h a_{1}^{\prime} u_{2}^{2}+\frac{h}{3}\left(2 h a_{1}^{\prime 2}+a_{1}^{\prime \prime}\right) u_{2}^{3}\right\}+h a_{1}^{\prime} a_{1}^{\prime \prime}\left\{u_{2}^{2}+\frac{4}{3} h a_{1}^{\prime} u_{2}^{3}\right\}+\frac{h}{3}\left(a_{1}^{\prime \prime 2}+a_{1}^{\prime} a_{1}^{\prime \prime \prime}\right) u_{2}^{3} \\
& =\left(h a_{1}^{\prime 2}+g\right) u_{2}+2 g h a_{1}^{\prime} u_{2}^{2}+\frac{1}{3} h u_{2}^{3}\left\{\left(g+h a_{1}^{\prime 2}\right)^{2}+g^{2}-h^{2} a_{1}^{\prime 4}\right\} \\
& =\left(h a_{1}^{\prime 2}+g\right) u_{2}\left(1+\frac{2}{3} g h u_{2}^{2}\right)+2 g h a_{1}^{\prime} u_{2}^{2} \tag{212}
\end{align*}
$$

in which, by (207),

$$
\begin{gather*}
\left(h a_{1}^{\prime 2}+g\right) u_{2}=\frac{h u_{1}^{2}}{u_{2}}+g u_{2}-h u_{1} u_{2}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)\left(1+\frac{1}{3} h u_{1}\right)+\frac{h u_{2}^{3}}{4}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right)^{2}, \\
\frac{2}{3} g h u_{2}^{3}\left(h a_{1}^{\prime 2}+g\right)=\frac{2}{3} g h u_{2}\left(h u_{1}^{2}+g u_{2}^{2}\right), \tag{213}\\
2 g h a_{1}^{\prime} u_{2}^{2}=2 g h u_{1} u_{2}-g h u_{2}^{3}\left(g-h \frac{u_{1}^{2}}{u_{2}^{2}}\right) ;
\end{gather*}
$$

therefore, adding these three last expressions, we find for the principal function S this expression, agreeing with (196) and with (169):

$$
\begin{equation*}
S=\left\{\left(\frac{h u_{1}^{2}}{u_{2}}+g u_{2}\right)\left(1+h u_{1}\right)+\frac{7}{12} \frac{h^{3} u_{1}^{4}}{u_{2}}+\frac{5}{6} g h^{2} u_{1}^{2} u_{2}-\frac{1}{12} g^{2} h u_{2}^{3}\right\} e^{2 h a_{1}} \tag{214}
\end{equation*}
$$

It is worth observing that the differential equation of the second order (197) is that of the fall of a heavy body in a medium which resists as the square of the velocity; so that the integral of this equation can be rigorously expressed by the method of the principal function.

As a third example* put

$$
\begin{equation*}
d S=\Phi\left(x_{1}, x_{2}, d x_{1}, d x_{2}\right)=\frac{d x_{1}^{2}}{2 d x_{2}}+g x_{1} d x_{2} \tag{215}
\end{equation*}
$$

g being any arbitrary constant. Then

$$
\begin{equation*}
\Phi\left(a_{1}, a_{2}, u_{1}, u_{2}\right)=\frac{u_{1}^{2}}{2 u_{2}}+g a_{1} u_{2} \tag{216}
\end{equation*}
$$

* [Particular case of example on page 348.]
therefore
and

$$
\begin{equation*}
\Phi^{\prime}\left(a_{1}\right)=g u_{2}, \quad \Phi^{\prime}\left(a_{2}\right)=0, \quad \Phi^{\prime}\left(u_{1}\right)=\frac{u_{1}}{u_{2}}, \quad \Phi^{\prime}\left(u_{2}\right)=g a_{1}-\frac{u_{1}^{2}}{2 u_{2}^{2}} \tag{217}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\Phi^{\prime \prime}\left(a_{1}\right)=0, \quad \Phi^{\prime} \prime^{\prime}\left(a_{1}, a_{2}\right)=0, \quad \Phi^{\prime \prime}\left(a_{2}\right)=0 \\
\Phi^{\prime}, \prime\left(a_{1}, u_{1}\right)=0, \quad \Phi^{\prime, \prime}\left(a_{1}, u_{2}\right)=g, \quad \Phi^{\prime} \prime^{\prime}\left(a_{2}, u_{1}\right)=0, \quad \Phi^{\prime}, \prime\left(a_{2}, u_{2}\right)=0 \tag{218}\\
\Phi^{\prime \prime}\left(u_{1}\right)=\frac{1}{u_{2}}, \quad \Phi^{\prime \prime}\left(u_{1}, u_{2}\right)=-\frac{u_{1}}{u_{2}^{2}}, \quad \Phi^{\prime \prime}\left(u_{2}\right)=\frac{u_{1}^{2}}{u_{2}^{3}} ;
\end{array}\right\}
$$

hence

$$
\begin{equation*}
\frac{u_{1}^{2}+u_{2}^{2}}{\Phi^{\prime \prime}\left(u_{1}\right)+\Phi^{\prime \prime}\left(u_{2}\right)}=-\frac{u_{1} u_{2}}{\Phi^{\prime, \prime}\left(u_{1}, u_{2}\right)}=u_{2}^{3} \tag{219}
\end{equation*}
$$

so that the general approximate expression (132) becomes in this example

$$
\begin{equation*}
S=\int_{x_{1}=a_{1}, x_{2}=a_{2}}^{x_{1}=a_{1}+u_{1}, x_{2}=a_{2}+u_{2}} \frac{d x_{1}^{2}}{2 d x_{2}}+g x_{1} d x_{2}=\frac{u_{1}^{2}}{2 u_{2}}+g a_{1} u_{2}+\frac{1}{2} g u_{1} u_{2}-\frac{1}{24} g^{2} u_{2}^{3} \tag{220}
\end{equation*}
$$

In this particular example,

$$
\begin{align*}
& y_{1}=\frac{\delta d S}{\delta d x_{1}}=\frac{d x_{1}}{d x_{2}} \tag{221}\\
& y_{2}=\frac{\delta d S}{\delta d x_{2}}=g x_{1}-\frac{d x_{1}^{2}}{2 d x_{2}^{2}} \tag{222}
\end{align*}
$$

also

$$
\begin{equation*}
\frac{\delta d S}{\delta x_{1}}=g d x_{2} \tag{223}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\delta d S}{\delta x_{2}}=0 \tag{224}
\end{equation*}
$$

thus the differential equations (7) become here

$$
\begin{equation*}
d \frac{d x_{1}}{d x_{2}}=g d x_{2}, \quad d\left(g x_{1}-\frac{1}{2} \frac{d x_{1}^{2}}{d x_{2}^{2}}\right)=0 \tag{225}
\end{equation*}
$$

and they concur in giving as the complete integral with two arbitrary constants:

$$
\begin{equation*}
x_{1}=a_{1}+a_{1}^{\prime}\left(x_{2}-a_{2}\right)+\frac{1}{2} g\left(x_{2}-a_{2}\right)^{2} \tag{226}
\end{equation*}
$$

that is,

$$
\begin{equation*}
u_{1}=a_{1}^{\prime} u_{2}+\frac{1}{2} g u_{2}^{2} \tag{227}
\end{equation*}
$$

Hence, rigorously,

$$
\begin{equation*}
a_{1}^{\prime}=\frac{u_{1}}{u_{2}}-\frac{1}{2} g u_{2} \tag{228}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{d x_{1}}{d x_{2}}=a_{1}^{\prime}+g u_{2} \tag{229}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(\frac{d x_{1}}{d x_{2}}\right)^{2}+g x_{1}=g a_{1}+\frac{1}{2} a_{1}^{\prime 2}+2 g a_{1}^{\prime} u_{2}+g^{2} u_{2}^{2} \tag{230}
\end{equation*}
$$

therefore

$$
\begin{equation*}
S=\int_{0}^{u_{2}}\left\{\frac{1}{2}\left(\frac{d x_{1}}{d x_{2}}\right)^{2}+g x_{1}\right\} d u_{2}=\left(g a_{1}+\frac{1}{2} a_{1}^{\prime 2}\right) u_{2}+g a_{1}^{\prime} u_{2}^{2}+\frac{1}{3} g^{2} u_{2}^{3} \tag{231}
\end{equation*}
$$

rigorously, or

$$
\begin{align*}
S & =g a_{1} u_{2}+\frac{1}{2} u_{2}\left(a_{1}^{\prime}+g u_{2}\right)^{2}-\frac{1}{6} g^{2} u_{2}^{3} \\
& =g a_{1} u_{2}+\frac{1}{2} u_{2}\left(\frac{u_{1}}{u_{2}}+\frac{1}{2} g u_{2}\right)^{2}-\frac{1}{6} g^{2} u_{2}^{3} \\
& =g a_{1} u_{2}+\frac{u_{1}^{2}}{2 u_{2}}+\frac{1}{2} g u_{1} u_{2}-\frac{1}{24} g^{2} u_{2}^{3} \tag{232}
\end{align*}
$$

rigorously, as deduced in (220) from the generally approximate expression (132), which in this example is more than approximate.

[^0]: * [This alternative method of finding an approximate expression for S is very similar to that adopted by various writers on Rayleigh's Principle (Rayleigh, Phil. Trans. (1870), A, clxi, p. 77; Ritz, Crelle (1908), cxxxv, p. 1). Approximate values which satisfy the end conditions (53) and (54) are substituted for z_{1}, \ldots, z_{n} in the integral (57) and an approximate value thus found for the principal value, which can then be used to solve the original set of differential equations (7).]

[^1]: * [This is the dynamical problem of the linear motion of a particle of unit mass whose coordinate is x_{1} at time x_{2}, the force potential being $-f\left(x_{1}\right)$.]

