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XVIL
[ON THE PROPAGATION OF LIGHT IN CRYSTALS*]

* [See Cauchy, CEuvres, n® Serie, Tome ιx, pp. 390-450; i® Serie, Tome π, pp. 111-177. Also Appendix, Note 11, p. 638. An abstract of this manuscript appears on page 450.]
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[Equations of motion of an attracting or repelling system in vibration 
about a state of rest or motion.]1. Let X, y, z be the rectangular coordinates of any one point A of an attracting or repelling system at the time t∖ let x + r cos α, y + r cos β,z + r cos γ be the coordinates of any other point B of the same system, at the same moment; and let the components of the accelerating or retarding action of B on A be denoted by m cos α∕(r), m cos βf{r), m cos γf {r), m being a constant factor which may be called the mass of the point B, & the function ∕(r) being positive for the case of attraction and negative for the case of repulsion ; while the distance r between the two points is considered as always positive: then the differential equations of the motion of the point A, if we attend only to the action of B upon it, are

(1.)
and if we take account of the actions of all the points B, G, &c., on the point A, the differential equations of the motion of A may be then denoted as follows,

(2.)
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414 XVII. PROPAGATION OF LIGHT IN CRYSTALS [1, 2the sign of summation /S' extending to all these other points R, G, &c., each of which has its own set of values of m, r, α, β, γ.If the total number of attracting or repelhng points A, B, C, ^,G.∖iQ n we attend onlyto their actions upon each other, there will be then 3n simultaneous differential equations of the order including and analogous to the 3 equations (2.); & the integrals of these 
3n equations (if known) would express the 3w coordinates of the n points of the system as functions of the time t, involving also, besides the n masses, Qn arbitrary constants, which might be determined by the initial positions of the points and their initial components i>f velocities. And for every different supposition which we might make respecting these arbitrary initial circumstances, we should have (in general) a different result respecting the manner of motion of the system, though stiff consistent with the laws of mutual attraction or repulsion, as expressed by the differential equations.2. Imagine then that while x, y, z and z + rcosα, y-∖-rcQS,β, z + rcQS>γ denote as before the coordinates of the points A & B at the time t in one possible state of motion (or rest) of the system, the coordinates of the same two points at the same moment in another possible state of motion of the same system are denoted by x + ξ,, y + η, z + ζ andic + rcosα + ^ + Δf, y + rcosβ + η + ∕∖η, z + rcosy + ζ + ∆ζ, respectively; and let r + er denote the mutual distance of these two points in this new manner of motion, so thatThen (3.)

will denote the 3 new cosines by which the new quantity mf{r + er) is to be multiplied, in order to get the three new components of accelerating or retarding action of B on A; & the differential equations (2.) of the old motion (or rest) of the system will be changed for the new motion, to the following
(4.)

And subtracting the equations (2.) of the old motion, from the equations (4.) of the new, we find the following equations:
(5.)
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2-4] XVII. PROPAGATION OF LIGHT IN CRYSTALS 415
which express, generally and rigorously, the laws of the differences between any two possible motions 
of any one system of attracting or repelling points', qt, in other words, the laws of the dynamically possible deviations from any one dynamically possible manner of motion of an attracting or repelling system.3. Let us now modify these general and rigorous expressions by introducing the particular & approximate supposition that the length and direction of the varying line which connects any 
one moving point of the system with any other differ extremely little at any arbitrary moment t in 
the second manner of motion of the system from the length and direction of the same line at the same 
moment in the first manner of motion. On this hypothesis the quantities —, —, — and e will r r rbe extremely small, whether r be large or small, & we may neglect their squares and products; so that if we denote by/' (r) the first differential coefficient of the function∕(r), the equations (5.) will take the simplified forms.

(θ.)

in which, by (3.), (7.)Such are the approximate laws of the dynamically possible deviations from one standard manner of motion of an attracting or repelling system, under the condition that the mutual distances of the several points of that system are altered extremely little by those deviations in length and in direction.4. To illustrate by an example the foregoing general results, we may remark that they extend to the case of the solar system, considered as a system of points of which each attracts every other inversely as the square of the distance. In this case∕(r) = r~≡, and the equations (2.) for the standard manner of motion, which may be supposed to be the actual motion of the d≡x mcosα d"^ mGθsβ d"^ „ zncosy . , . .,,system, become = *S.  ———, -^=6. —— , = o. —. And if with this standard oractual motion of the solar system we compare any other motion which the same system might possibly have, (consistently with the present values of the masses & with the present law of attraction,) the deviations of the latter motion from the former are connected rigorously by equations of the form (5.)
& if these deviations be imagined such as to alter very little the length and the direction of the distance of any one planet from any other or from the Sun, they may then be approximately expressed by equations of the form (6.), namely 
in which e has the value (7.).
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416 XVII. PROPAGATION OP LIGHT IN CRYSTALS [5, 65. Let it next be supposed that the. law of mutvxil action is such that the system is capable of 
equilibrium either exactly, or at least so very nearly that the difference shall produce no sensible effect in the final conclusions from this supposition: and let this possible state of equihbrium be taken as the standard state, to which the coordinates x, y, z refer & from which the deviations or displacements ξ, η, ζ are to be measured. Then the equations (6.) will determine approximately the motions of a displaced point of the system; and α, β, γ, r will become independent of the time and will satisfy the following equations of equilibrium,
More generally, we shall suppose that the action of any one point of the system on any other is 
so small and extends sensibly to so small cl distance, and that the distribution of these points in 
space is so symmetric, as to satisfy, without sensible error, the conditions (9.)in which h, i, i', i" may denote any positive integers, or zero, provided that the sum of the exponents 
i, i', i" of the cosines is an odd number. That is, we shall suppose that in the state of equilibrium, for every point B with mass m & with coordinates x + r cos a, y + r cos β, z + r cos γ which is near enough to infiuence sensibly the point Λ with coordinates x, y, z, there is another near point C with an equal mass m and having for coordinates
or at least that the results deduced from this supposition are not liable to sensible error. It is worth while to observe that when the extent of sensible action is supposed small, the approxi­mate equations of motion of a displaced point (6.) may be obtained from the rigorous equa­tions (5.) by supposing only that within this small extent of sensible cLction the mutual distance of 
any two points changes very little in length and in direction.

[Conditions for plane waves.}
6. The foregoing suppositions being admitted, we shall next inquire whether under any, and 

under what conditions the approximate equations of motion of a displaced point (6.) are compatible 
with the uniform propagation of an indefinite series of plane waves, or of displacements which succeed 
ecbch other periodically in space and time <Ss are the same for all the points situated at any one moment 
on any one plane parallel to a given plane∙,iι∖ other words, we shall inquire whether & under what conditions the variable displacements η, ζ can be supposed to be periodical functions of any one linear function, such Αsux + vy + wz + si+ θ, of the coordinates of equihbrium x,y,z & the time t, consistently with the approximate equations of motion (6.). But to simplify this inquiry, 
which is not into the most general motion possible but only into the conditions of the possibility of a 
particular motion proposed, we shall consider at present only the simplest kind of periodical 'motion; & shall therefore assume, for the laws of displacement to be examined, the following expressions. (10.)
So that the question now is, whether under any, & if so then under what conditions, the constants
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6, 7] XVII. PROPAGATION OF LIGHT IN CRYSTALS 417F, v', t∖ θ can be so chosen as to satisfy the differential equations of motion (6.) bythe expressions of displacement (10.). If we can discover such conditions, we can then determine the thickness (λ) of the wave, & the slowness {μ,) of its propagation; since these will be respectively 26“1“ “hequal to the square roots of the expressions ---- =----- = and------- =----- .
7. In this investigation, the operation Δ of differencing, by which we pass from the dis­placement of one to the displacement of another point of the system, affects only the coordinates of equilibrium x, y, z in the expressions of displacement (10.) & not the time t nor the constants 

ξ∖ η'f ζ', u, V, w, s, θ, which are supposed to be the same for all the points of the system. We are therefore to substitute for in the equations (7.) and (6.) the value

(11.)
becauseand (12.)and similar substitutions are to be made for ∆17 and ∆ζ. The sign of summation /S' refers to the various values of m, r, α, β, γ corresponding to the various other points B, C, &c. of the system which attract or repel the point Λ, whose coordinates when displaced are x + ξ, y + η, ζ + ζ; βo that if we attend to the suppositions made in the 5* “ paragraph and put, for abridgment.

and

HMPII

' (13.)

(14.)
53
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4 1 8  X VII.  P R O P A G A TI O N  O F  LI G H T  I N C R Y S T A L S  [ 7, 8

w e  s h all  h a v e  t h e t h r e e f oll o wi n g c o n diti o n s  t o b e  s ati sfi e d:

( 1 5.)

o r  fi n all y, b y  t h e s u p p o s e d  e x p r e s si o n s  of  di s pl a c e m e nt,

( 1 6.)

A n d  t h e s e a r e  t h e s o u g ht  c o n diti o n s  f o r t h e p o s si bilit y  of  t h e u nif o r m  p r o p a g ati o n  of  a  s u c c e s si o n  

of  pl a n e  w a v e s  wit h  di s pl a c e m e nt s  of  t h e f o r m s ( 1 0.), i n a  s y st e m of  att r a cti n g  o r  r e p elli n g  

p oi nt s  di st ri b ut e d  a s  s u p p o s e d a b o v e.  T h e y  d o  n ot  at  all  r e st ri ct t h e c o n st a nt  θ  b ut  t h e y gi v e  

t h r e e r el ati o n s  b et w e e n  t h e c o n st a nt s  u,  v,  w,  s a n d  t h o s e t w o ot h e r  c o n st a nt s  w hi c h  e x p r e s s  t h e 

r ati o s of  f', 1 7',  ζ'.

[ V al u es of  c o nst a nts  f or a n  i nfi nit esi m all y str ai n e d c u bi c  l atti c e.^ ∖

8. T o  si m plif y t h e s e c o n diti o n s, w e  s h all  n o w  i nt r o d u c e t h e a d diti o n al  s u p p o siti o n of  a n  

e q u alit y b et w e e n  t h e q u a ntiti es  m,  a n d  n e a rl y  c u bi c al a r r a n g e m e nt  of  t h e att r a cti n g  o r  r e p elli n g  

p oi nts  i n t h ei r p o siti o n  of  e q uili b ri u m,  w hi c h  diff e r s  f r o m a  c u bi c al a r r a n g e m e nt  o nl y  b y  t h r e e 

s m all a n d  {i n g e n e r al)  u n e q u al  dil at ati o ns  o r  c o nt r a cti o ns i n t h r e e r e ct a n g ul a r di r e cti o ns ’, i n s u c h  

a  m a n n e r  t h at i n t h e e x p r e s si o n s  ( 1 3.), ( 1 4.) w e  m a y  p ut

( 1 7.)

a,,  b,,  c, b ei n g  t h r e e s m all  c o n st a nt  c o effi ci e nt s of  dil at ati o n  o r  c o nt r a cti o n  &  r ,, ct.,, β,, γ,  b ei n g  

t h e q u a ntiti e s  a n al o g o u s  t o r, α,  β,  γ  i n t h at e x a ctl y  c u bi c al  a r r a n g e m e nt  of  p oi nt s  f r o m w hi c h  

t h e a r r a n g e m e nt  of  t h e s y st e m, i n t h e st at e of  e q uili b ri u m  c o n si d e r e d  l at el y, i s n o w  s u p p o s e d  

t o diff e r  littl e. O n  t hi s h y p ot h e si s,  if w e  n e gl e ct  all  t e r m s a b o v e  t h e s e c o n d di m e n si o n  wit h  

r e s p e ct  t o t h e s m all  dil at ati o n s  o r  c o nt r a cti o n s a,,  b,,  c,,  t h e a c c u r at e  e x p r e s si o n

( 1 8.)

d e d u c e d  f r o m t h e e q u ati o n s  ( 1 7.) will  gi v e  a p p r o xi m at el y

*' z
( 1 9.)

( 2 0.)
II w e  n e gl e ct  e v e n  t ri e s q u a r e s  a n d  p r o d u ct s  0 1  a,,  b,, c,:  a n d  m  t hi s l att e r o r d e r  0 1  a p p r o xi m ati o n,  
t h e e q u ati o n s  ( 1 7.) will  al s o  gi v e

o r  si m pl y.

( 2 1.)
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8]  X VII.  P R O P A G A TI O N  O F  LI G H T  I N C R Y S T A L S  4 1 9

O n  t h e s a m e h y p ot h e si s,  w e  m a y  e x p r e s s t h e r e ct a n g ul a r c o o r di n at e s r,  c o s  α, , r,  c o s  β, , 

r,  c o s  γ,  of  t h e p oi nt s  of  t h e c u bi c al  a r r a n g e m e nt  a s  f oll o w s:

h  d e n oti n g  t h e m e a n  i nt e r v al oι  t w o a dj a c e nt  p oi nt s  o n  t h e l e n gt h of  t h e si d e of  a n y  o n e  of  t h e 

el e m e nt a r y  c u bi c al  s p a c e s, a n d  ⅛,  d e n oti n g  a n y  i nt e g e r n u m b e r s  p o siti v e  o r  n e g ati v e  o r

n ull,  w hi c h  a r e  h o w e v e r  t o b e  s u p p o s e d  s u bj e ct  t o t h e c o n diti o n s

z ■ r ' f ×  ' ∙

i n o r d e r  n ot  t o i n cl u d e i n t h e s u m m ati o n of  t h e att r a cti v e  o r  r e p ul si v e a cti o n s  of  t h e s e v e r al 

p oi nt s  of  t h e s y st e m o n  a n y  o n e  p a rti c ul a r  p oi nt  t h e a cti o n  of  t h at p oi nt  it s elf. A n d  w h e n,  b y  

s u b stit uti o n  of  t h e v al u e s  ( 2 0.) a n d  ( 2 1.), w e  h a v e  c h a n g e d  t h e 6  e x p r e s si o n s  ( 1 3.) &  ( 1 4.) f o r t h e 

’ q u a ntiti e s  L,  M,  Y,  P,  Q,  R  t o ot h e r  e x p r e s si o n s  of  t h e f o r m

∖ r  r 9  I r ' r  β t ' f / ×  ∙

a s  it i s p o s si bl e  i n e v e r y  c a s e  t o d o,  w e  m a y  t h e n t r a n sf o r m t h e s e l att e r e x p r e s si o n s  t o ot h e r s  of  

t h e f o r m

t h e si g n of  s u m m ati o n  Σ( ^  j ⅛ i n di c ati n g a  s u m m ati o n  wit h  r e s p e ct t o e a c h  of  t h e

t h r e e i n d e p e n d e nt i nt e g e r s i, f r o m —  ∞  t o ∞,  a n d  t h e t e r m —  F  ( 0, 0,  0,  0)  b ei n g  a d d e d

i n o r d e r  t o all o w  f o r t h e c o n diti o n ( 2 3.). B e si d e s,  b y  t h e s u p p o s e d  s m all n e s s &  e q u a ht y  of  t h e 

m a s s  c o n st a nt s  m,  &  b y  t h e s u p p o s e d  u nif o r mit y  of  di st ri b uti o n  of  t h e att r a cti n g  o r  r e p el h n g 

p oi nt s  &  t h e s u p p o s e d  s m all n e s s of  e xt e nt  of  t h ei r s e n si bl e  i nfl u e n c e o n  e a c h  ot h e r,  t h e e x p r e s ­

si o n ( 2 5.) m a y  b e  t r a n sf o r m e d wit h o ut  s e n si bl e  e r r o r  i nt o t h e f oll o wi n g t ri pl e s u m

( 2 6.)

if w e  p ut  f o r a b ri d g m e nt

( 2 7.)

It a p p e a r s  al s o  t o a d mit  of  p r o of  t h at i n vi rt u e  of  t h e f o r e g oi n g s u p p o siti o n s  t h e t ri pl e s u m  

( 2 6.) m a y  i n g e n e r al  b e  v e r y  a p p r o xi m at el y  e x p r e s s e d  b y  t h e f oll o wi n g si n gl e s u m,

( 2 8.)

b ut  t h e i n v e sti g ati o n s of  P oi s s o n*  r e s p e cti n g  si mil a r  c a s e s  of  m ol e c ul a r  a cti o n  s e e m  t o s h o w  t h at 
f ∞ 4 τ r

w e  m u st  di sti n g ui s h  t hi s l a st s u m Σ  f r o m t h e d efi nit e  i nt e g r al - y g Φ  ( r  J r ↑ d r, , wit h  w hi c h  w e  

mi g ht  ot h e r wi s e  b e  t e m pt e d t o c o nf o u n d  it. P e r h a p s  e v e n  t h e r e d u cti o n of  t h e t ri pl e s u m ( 2 6.) 

t o t h e si n gl e  s u m  ( 2 8.) m a y  i n s o m e c a s e s s e n si bl y  e r r. S o  t h at it mi g ht  b e  n e c e s s a r y,  f o r s o m e  

l a w s of  m ol e c ul a r  a cti o n,  t o e m pl o y  t h e l e s s si m pl e e x p r e s si o n

a n d  n ot  t o a d mit  t h e t r a n sf o r m ati o n

( 2 9.)

( 3 0.)

5 3- 2

* [ P oi s s o n, N o u υ e a u x  M 0 m oi r e a  d e  I' A c a d e mi e, d es  S ci e n c es,  T o m e  vι.]
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420 XVII. PROPAGATION OF LIGHT IN CRYSTALS [8, 9but it seems probable that such cases are rare, & that the simpler expression (30.) will usually be very exact.9. The expressionsbecome, by the substitution (20.), (31.)(32.)and
f" (r,) denoting the second differential coefficient of the function/(r,). We have also, by (17.),

(33.)
(34.)and

and, by the same substitutions.
(35.)If then we denote by L,, M,, N,, P,, Q,, R, the values of L, M, N, P, Q, R in the cubical arrangement of the points, and by

the coefficients of the first powers of the small dilatations or contractions a,,b,, c, in the general expressions of these six quantities L, &c., and if we put for abridgment
we shall have these 6 equations (36.)

(37.)
(38.)

together with 18 others of which it is sufficient to write these 4,
(39.)
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9, 10] XVII. PROPAGATION OF LIGHT IN CRYSTALS 421
(40.)(41.)
(42.)and the 6 quantities L, M, N, P, Q, R, in the formula of the 7®» paragraph, will now be repre­sented as follows. (43.)

10. To attain a still greater simplicity, we shall suppose further that the. e.xtent of sensible 
action of one attracting or repelling point upon another is small, yet not successively small, with 
respect to the thickness of a wave, that is, with respect to the interval in space between two succes­sive planes on which the attracting or repelling points of the system are similarly displaced from their positions of equilibrium, at any one moment of time. This interval or thickness λ is easily seen to be expressible by the formula (44.)(45.)if we put for abridgmentemploying the symbols u, v, w to denote the same three constants of a wave as in the equations (10.). We shall, therefore, suppose that the product (46.)
is small, for all those distances r, or rfor which the function f{r}, or f (r,), or even any one of its differ­
ential coefficients, has any sensible value; yet not so very small but that its square and perhaps 
higher powers may be sensible. And then, if we put(so that a, b, c shall denote the cosines of the angles which one of the two outer semmormals to the surfaces of the wave makes with the three positive semiaxes of coordinates,) we shall be able to develope the square of the sine of the trinomial
according to the ascending powers of this small product ⅛,, in a converging series of which the three first terms are

(49.)
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422 XVII. PROPAGATION OF LIGHT IN CRYSTALS [10, 11and in like manner we may develope sin 2i, in a series of which the first terms are (50.)
11. We shall now neglect the terms which are of the fourth or higher dimensions with respect to kr, in the 6 expressions , M, N,, P,, Q,, Hand also the terms which are of the third or higher dimensions with respect to the same small quantity kr, in the 6 small remaining parts

of the 6 expressions (43.). And thus we shall have
(51.)
(52.)
(53.)

andif we put for abridgment
with 8 other equations for H, I, L, M, N, P, Q, R, and if we also put

(54.)

(55.)

(56.)
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11, 12] XVII. PROPAGATION OF LIGHT IN CRYSTALS 423
(57.)*

(58.)
rand finally

in which
(59.)
(6θ.)

[Wave velocities and directions of vibrations.]12. Again, by the 8<*  paragraph, we may transform every sum of the form
into an equivalent sum of the form (61.)

(62.)in which {i^, , l„) is a fraction depending on the integer exponents i„, kI„ by the followingrule (63.)It is easily found to be a consequence of this rule that we may change the order of the 3 ex­ponents i„, k„, t„ in any manner, without altering the value of the fraction (i∖, k„, Z„);f and therefore that it is sufficient to calculate the values of these 6 different combinations,(1,0,0), (2,0,0), (1,1,0), (3,0,0), (2,1,0), (1,1,1), (64.)∖* [Equations (57.)-{60.) follow easily from results of the type
which are a direct consequence of (17.) and (19.).]
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424 XVII. PROPAGATION OF LIGHT IN CRYSTALS [12in order to be able to apply the transformation (62.) to aU those expressions of the last paragraph which are of the form (61.). The 6 values (64.) are easily foun to be.
If then we put for abridgment

(65.)

(66.)
we shall have the following results: (67.)(68.)(69.)(70.)

(71.)
(72.)
(73.)
(74.)
(75.)
(76.)
(77.)
(78.)And substituting these values, in the expressions of the form (53.), we find
(79.)
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12] XVII. PROPAGATION OF LIGHT IN CRYSTALS 425

and therefore
(80.)
(81.)
(82.)
(83.)
(84.)

Hence, by (51.) and (52.),
(85.)
(86.)
(87.)
(88.)

And hence, finally, if we can put for abridgment (89.)the equations (16.) become
(90.)
(91.)
(92.)

54HMPII
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426 XVII. PROPAGATION OF LIGHT IN CRYSTALS [12, 13It is to be remembered that in these 4 last equations the quantities Rq, Tig and a,,b,,c, are constant for any one medium depending only on the distribution of the attracting or repelling points of the system in their positions of equilibrium and on their law of action; 
ξ',η',ζ' 8bτe also constants for any one succession of plane waves and are proportional to the three coordinate displacements of any one vibrating point from its position of equilibrium; a, b, c are the cosines of the angles of direction of a normal to such a wave; and s^k~^, with which the auxiliary quantity σ is connected by the equation (89.), is the square of the velocity wherewith that wave is propagated.13. In the particular case when δ,=α,, (93.)that is, when the system of points is supposed to be, in its position of equilibrium, dilated equally or contracted equally in the 2 rectangular directions of x and y from the standard cubical arrangement, the three equations (90.), (91.), (92.) become

(94.)
(95.)
(96.)And if we further suppose that these two equal dilatations or contractions in the directions of 

X & y to vanish, so that
a,=Q, 5, = 0, (97.)(which comes to taking for the standard cubical arrangement x,,y,, z, that which differs from the position of equihbrium x, y, z only by a dilatation or contraction in the direction of the axis of z,) we shall have, more simply, the 3 equations following:

(98.)
which give, by elimination of the ratios of f', η', ζ', the following cubic equation

(99.)
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13, 14] XVΠ. PROPAGATION OF LIGHT IN CRYSTALS 427and the three roots of this cubic equation will give three corresponding values of the square 
s^k~^ of the velocity of propagation of a plane wave by the formula
to which the formula (89.) reduces itself by the supposition (97.). With respect to the three directions of displacement of a vibrating point corresponding to these three velocities of propagation of a wave, they may be deduced from the equations (98.) by determining, for each value of the velocity or of the auxihary quantity σ, the ratios of η∖ ζ'.14. One root of the cubic equation (99.) is evidently

(lθl.)which is easily seen to correspond, by the equations (98.), to the following relations between(102.)that is, to a direction of displacement or vibration which is contained upon the surface of the wave & is perpendicular to the axis of z, that is, to the direction of dilatation or contraction of the system of points when in equilibrium. And the square of the velocity of a wave when propagated with such vibrations is, by (100.) and (101.), (103.)so that it consists of a constant part, namely. (104.)which is independent of the direction of the wave, and a variable part, namely. (105.)which is proportional to the square c≡ of the cosine of the angle between the normal to the surface of the wave and the direction of dilatation or contraction.Another root of the same cubic (99.) is, very nearly.
the error being of the order of the square of the dilatation or contraction, which we have already supposed that we may neglect. This root corresponds to the following value of the square of the velocity of the wave, (107.)which consists like the former value (103.) of a constant part, in this case (108.and a part proportional to the square of the cosine of the angle between the direction of dilata­tion or contraction & the normal to the surface of the wave, namely the part (109.)The vibrations, for this velocity of propagation of the wave, have tneιr directions determined very nearly by the following equations, deduced from (98.) and (106.), (110.)

54-2
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428 XVII. PROPAGATION OF LIGHT IN CRYSTALS [14, 15They are therefore very nearly tangential to the surface of the wave, & are perpendicular to the vibrations which correspond to the former velocity.Finally, the remaining root of the cubic equation (99.) is very nearlyit corresponds to vibrations which are perpendicular to both the two former directions of vibra­tion and very nearly normal to the wave, being determined very approximately by the equations(112.)and for these last vibrations the square of the velocity of propagation of the wave is very nearly(113.)so tnat It IS composeα oi a constant and a variable part nκe tne squares oi t∩e two lormer velocities. With respect to the small angular deviation of the third set of vibrations from the normal, or of the second set of vibrations from the surface of the wave, it varies very nearly as the sine of twice the angle between the normal and the direction of dilatation or of contraction.
15. Results of the same kind would have followed if we had made in (89.), (90.), (91.) and6, = α,, c, = 0; (114.)that is, if we had supposed the arrangement of the attracting or repelling points of the system, when in equihbrium, to differ from the standard cubical arrangement by two equal dilatations or equal contractions in the two rectangular directions of x and y. We should then have had this formula for the square of the velocity of the wave.the auxιhary quantity σ, and the ratios of ς , η , ζ , which determine the direction of vibration, being found from the following equations:

(116.)
which give, by elimination.
One root of this cubic is& corresponds to the following expressions for the velocity & the vibrations.

• (117.)(118.)
another root is, nearly,& corresponds to the expressions

(119.)(120.)
(121.)
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15, 16] XVII. PROPAGATION OF LIGHT IN CRYSTALS 429and the third root is, nearly.which gives the expressions (122.)
(123.)

And all these results are evidently similar in kind to those obtained in the foregoing paragraph and lead to analogous conclusions.16. In general, if we put for abridgment
(124.)we shall get the expressions
(125.)

by means of which the system of the 3 equations (90.), (91.), (92.) may easily be transformed into the following:
(126.)
(127.)
(128.)*It is easy hence to perceive that either the two quantities σ and ζ'', or else the three quantities σ + , ξ" and η", must be considered as small of the order of the dilatations or contractionsα,, 6,, c,; of which two cases, the first corresponds to nearly tangential & the second case to nearly normal vibrations. In the first case we may suppress the products of ζ", σ, α,, 6,, c, and then the equations (126.), (127.), (128.) reduce themselves to the three following: (129.)(130.)(131.)* [The terms in (90.), (91.), (92.) not involving α,, b,, c, relate to a system of revolution, the axis of revolution being the direction a, b, c. This is the reason for adopting the transformation (124.), which is the simplest of its kind. (126.), (127.), (128.) do not follow directly from (90.), (91.), (92.). A transformation of the type of (124.) is first employed, e.g. (90.) multiplied by c, (91.) multiplied by a, etc.]
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430 XVII. PROPAGATION OF LIGHT IN CRYSTALS [16and of these the third determines a plane of vibration coinciding nearly with the surface of the wave, while the two first determine in general two distinct directions of vibration upon that plane, to each of which corresponds a certain velocity of propagation determined by the same two equations through the help of the two values assigned by them for the auxiliary quantity σ. In the second case the equation (128,) reduces itself to the form (132.)which determines this auxihary quantity σ, and therefore also, by (89.), the velocity of propagation of the wave when the vibrations are nearly normal to its surface, having the direction determined by the equations (126.), (127.), which now reduce themselves to the following:
(133.)

It is easy to prove that this line of nearly normal vibration is perpendicular to the plane (131.) of the two nearly tangential vibrations, of which the equation is, when referred to the rect­angular coordinates ξ'', η∖ ζ∖
(134.)And in this plane the two nearly tangential vibrations themselves, of which the directions are determined by the following quadratic equation, deduced from (129,) & (130.) by elimination of the auxihary quantity σ,

are easily seen to be perpendicular to each other as well as to the direction (133.) of nearly normal vibration;*  for if we consider them as represented separately by the 2 equationsin which, by (135.), (136.)(137.)then the two normal planes to the wave, contaimng the two directions (135.) or (136.) & making with each other an angle wliich in the present order of approximation must be considered as equal to the angle between those two directions themselves, have for their two equations in the rectangular coordinates ξ∖ η', ζ∖ (138.)and are therefore perpendicular to each other, because, by (137.), (139.)Wιtn respect to tne 2 velocities oi propagation oi trie wave corresponding to tnese two rect­angular & nearly tangential vibrations (135.) or (136.), they may be determined (as was above* [Three directions perpendicular to one another are given by (ΘO.), (91.), (92.), if the cubic in σ has unequal roots.]
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16, 17] XVII. PROPAGATION OF LIGHT IN CRYSTALS 431observed) by the formula (89.) through the help of the two values of the auxiliary quantity σ by these 2 linear equations (140.)or, jointly, by this one quadratic.
(141.)which may be put under the form

(142.)
17. When any two of the three quantities α,, 6,, c, are equal to each other, the last expression (142.) becomes an exact square, & the quadratic equation (141.) resolves itself into two linear factors. For example, in the case (93.) when

the roots of the quadratic (141.) may be thus separately and rationally expressed. (143.)and are connected by (140.) with the following separate & rational values of g^i, g2> (144.)which are to be substituted in the equations (136.), while the equation (131.) of the plane of nearly tangential vibrations becomes
& the formula (89.) for the velocity of propagation of the wave becomes
so that in this case the two directions of nearly tangential vibration, with the two corresponding velocities of propagation of the wave, are expressed in the following manner,*
and

* [In the equations determining the directions of the vibrations the square of {c,- a,) is neglected.]

(147.)
(148.)
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432 XVII. PROPAGATION OF LIGHT IN CRYSTALS [17,18In the same case (93.) the direction of nearly normal vibration & the corresponding velocity of the wave are determined by the following formula, deduced from equations (133.) & (132.) combined with (124.) & (89.):
(149.)

These results agree with and include those of the 14*ħ  & 15^^ paragraphs; and give the following expression for the difference of the squares of the two velocities of propagation of a wave, corresponding to the two directions of tangential or nearly tangential vibration.(150.)
[^FresneVs wave surface.^[18.] 

if c, = 0, then 
also 2 when when whenIn the 1®*  case 
in the 2°^^ case 
in the 3'<*  case
If these 6 values of s^k~^ be called (1), (2), (3), (4), (5), (6), then
If, then, we suppose I2θ + 2Rj + = θ∙, shall have
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18] XVII. PROPAGATION OF LIGHT IN CRYSTALS 433Is then 
that is.

Puttingthen 

where

& this quadratic equation does in fact agree with that lately found for σ. Thus FresneVs law 
for the square of the normal velocity of a wave in a biaxal crystal would in fact result from the 
supposition of a rectangular and nearly cubical arrangement of attracting and repelling points,* [I.e. absolute term, terms of 1st degree, terms of 2nd degree in a,, h,, σ'.]

HMPII 55 
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434 XVII. PROPAGATION OF LIGHT IN CRYSTALS [18
if we suppose the law of force <6; the mean interval to be such that 72θ + 27?^ + Tig = θ ∙* ice­
vibrations would then be perpendicular to the plane of polarisation, at least for uniaxal and '.*  
probably for biaxal crystals.But if, instead, we suppose Tiθ and to be so small with respect to Tig that when multipliedby a^ or ά, they may be neglected, then the quadratic in σ becomes 
& the question now is, whether this quadratic can be deduced from the developement of the formula 
which gives, accordingly.

Thus we should equally deduce Fresnel’s law of velocity of a wave in a biaxal crystal, by supposing Rq & R^ very small with respect to R^, but we should now have the vibrations 
parallel to the plane of polarisation, at least for uniaxal crystals and probably for biaxal also.Supposing Tiθ= — 2Tij- Tig, we shall deduce, very nearly, Fresnel’s law of polarisation in a biaxal crystal if we can prove that ξ∖ η∖ ζ' are very nearly proportional to
That is.
that is [(125.)], since aζ' + bη' + cζ' = 0 very nearly.
&, these do in fact agree with the equations (129.), {130.).But if Rq and Rj^ be very small compared with Tig, these last equations give 
also
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19] XVII. PROPAGATION OF LIGHT IN CRYSTALS 435
Reflexion <Ss Refraction.(June 27, 1838.) (See the series of sheets begun at Kilmore near Nenagh, Sept. 27*̂ ,  1836.)*

* [These sheets seem to have been lost, if we take equations (13.), p. 417, and replace mf (r) by and expand,we get, on taking average values for ∆x≡, ∆x*, etc., i.e. ⅜r≡≡, ⅜^> ©to·,(velocity)’ = S. {rψ (r) + 4r∕(r)} - ∙ {r*f' (r) + 6r≡∕ (r)} ÷ etc.In the other medium every distance r is supposed to be increased to r + αr.]
55-2

[19.] Components of attractive action of a; + ^x, y + ∆i∕, 2 + Δ2 on x, y, 3 ...—f{r}, -f{r), 
r r

—J {r). Suppose /S'./(r) = 0 and /S', rf' {r) = 0, in order to account for the equilibrium of a point placed at the separating surface of two ordinary media.To account for the change of velocity which corresponds to ordinary refraction & yet to leave the density almost unaltered, suppose 
but 
not very great, at least for the gases; because taking the velocity in vacuo for unity, we are to have

However, for the gases, the extreme smaUness of dilatation of the ether may be sufficient to account for the (probably) near proportion of this to the change of velocity.To account for the independence of velocity on colour in vacuo, suppose or at least very great.We are then to suppose in hke manner
We have been led by both refraction and dispersion to suppose the quotient
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436 XVII. PROPAGATION OF LIGHT IN CRYSTALS [19& it is remarkable that this quotient becomes, when the sums for all space are changed to sums along one radius vector & these again to single definite integrals,

in which denominator =∆θ & numerator = Δ*(r)  + (2i-l)r2^+2/(r)}; so thatΔ^.r≡{r2y(r)}' ought on this hypothesis to be greater than(June 28^**.)Let refracting surface be plane of z being negligible for incident and reflected rays, but positive for refracted. Also let all the vibrations be parallel to y, so that = 0, ζ = 0. Let incident vibration be
the incidence being perpendicular. When z<0, η = η± + η3^, when z>0, η = η2', when z = 0, both expressions hold, = ’?! + ’is ∙ When z<0,x,y,z are integers i, k, I, I being negative; when 2 > 0, ic, y, z are integers ¢, k, I multiplied by 1 + α, α being a very small fraction positive or negative 
& I being positive. The components of attraction on that point, which when at rest was 0, 0, 0 

2ττt& when in motion 0, θθs -y-, θj arθ> in thθ directions + a;, +1/, + z,A

The 1≡*  and 3’’^^ vanish; the ought to be We ought ’,· to have

that is.

* is the increase in r when y is changed to 7/ + ^-172 ∞≡ ~ξ^∙J
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19-20] XVII. PROPAGATION OF LIGHT IN CRYSTALS 437The 1≡*  is satisfied because*  

* [This result follows from the equations in the footnote of page 435 when we use the fact that the average values over a hemisphere of 1∕⅛2 and are r^/30 and r≡∕6 respectively.]

the becomes 
when we introduce the lately established laws of reflection and refraction [i .e. τj ] +173 = ∕χ (η} —173)]. Now 

because Sf(n) = Q, S.nf'{n) = 0; & the same reason which led us to establish these 2 last equations seems sufficient to lead us to establish also the equation 8.n^f"{n) = 0; whereby the condition ending the last sentence is satisfied, even without supposing, according to the laws of reflected and refracted vibrations η[ + ηl = p {ηι~⅞)∙ Thus the case of perpendicular 
incidence appears to be satisfactorily explained even without introducing the law of the vis 
viva, provided that we do employ the principle of equivalent vibrations.

[Extension of above to dispersion in a biaxdl crystal.}(July 9tħ 1838.)
[20.]

useless terms [i.e. terms which vanish on summation];
• let 

then let plane of polarisation be xy, then we have 2 different velocities , ωg, determined as follows:
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438 XVII. PROPAGATION OF LIGHT IN CRYSTALS Γ20

α,, ά,, c, are smaU dilatations or contractions & the lower accents refer to a cubical system;

& *.∙  insensible if the value of for the cubical system be unity. But we must show also that

* means ∣S.r)f(r,), etc.]

is much less than in order to account for the existence of Fresnel’s law of propagation in dispersive crystals. 
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20] XVII. PROPAGATION OF LIGHT IN CRYSTALS 439which may easily be supposed to be very small. Yet this result seems to indicate that Fresnel’s law of propagation will hold less perfectly for the more refrangible rays.Consider III>fd that velocity which corresponds to the same plane wave as in I®*  case, but to vibrations parallel to z & *.'  perpendicular to axis of crystal; that is, 

* I did ask him in presence of Poggendorf and Lord Adare in Observatory (S.E.L. room) on July IO*’*.

wnιcn IS tne eπect ol a double retraction on the square ot velocity ot the wave and is sensible on account of the greatness of the factor
(July 9th, 1838.)I think that [the] ordinary [ray of] violet light should have a slightly but sensibly different velocity in Iceland Spar, according as its course is parallel or perpendicular to the axis & I will ask Prof. Lloyd to try this experimentally.*  iJulv 10th 1838.1

Let 
henceUsing Rudberg s indices as given by Powell in Phil. Trans. 1836, Part I, page 18,1 find forIceland Spar by calculations of this date... (ω^^)ι= 1,6806; (c0^^)2= 1,6860. These then I con-
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440 XVII. PROPAGATION OF LIGHT IN CRYSTALS [20-21jecture or rather conclude from the foregoing theory (if it be right) to be the two indices of refraction of an ordinary ray H according as it passes through Iceland Spar in one or other of two different directions, namely perpendicular or parallel to axis [the axis of 2/].(July lpħ, 1838.)But I believe that it will be more accurate to consider the observed quantity 0,00014478... ΩP + Ωo<2)as being Ω^® and not as -—— . [Then] = l>θθl52. I am led to think it likely that thevalue of the same index for light parallel to axis would be found to be 1,6915: the difference being about the 200^^ part of either. Malus’s differences between observation and calculation seem to have been about as great as this, sometimes.(July 12«», 1838.)The comparison of those parts of the squares of the ordinary and extraordinary velocities which are independent of dispersion give ό, = fα, & the comparison of those parts which depend 
on dispersion give ό, = 2α,; so that, by each method, the ether in Iceland Spar ought to be about twice as much dilated or compressed (I suspect dilated) in the direction of the axis of the crystal as in a direction perpendicular thereto.Again, supposing 1 — Ω]®: 1 — Ωg^^ = 4α, + 35,: 6α, ÷ 6,, we see that the second changes faster than the first when α, recedes from 0 and b, approaches 0, if this recession and this approach be nearly equal. Suppose that db,= -^da^, α, >0, dα, >0, then cZΩ^^ = O, —Γ

A MM β “T"’.· > 0; & thus we shall explain the phenomenon observed by Mitscherhch of the extraordinary index changing much faster than the ordinary with heat <b increasing while the crystal tended to become cubical....[21.] How far would my theory agree with the experiments of Malus as cited by Biot, 
Traite de Physique, Vol. πι, the plane of incidence containing the axis of the crystal?Let[Introducing new notation 
expressions for L, M, N, R are obtained: P = 0, Q = 0. It will be sufficient to quote L and P.]
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21] XVII. PROPAGATION OF LIGHT IN CRYSTALS 441

for one set of vibrations δic = 0, δι∕ = 0, ω≡ = A; these vibrations are perpendicular to the plane of xy & are tangential to wave & correspond to the extraordinary ray if the axis of the crystal be (as before) the axis of y∖ for the other set of vibrations, namely those which give the ordinary ray, we have[ω≡ is then found, neglecting squares and higher powers of λ~≡ω~≡.]
and this expression may, with sufficient accuracy, be written
This includes the 2 expressions
andwhich correspond (as we have seen) to the cases of an ordinary ray perpendicular and parallel to the axis.In general the square of the ordinary velocity ought, by this theory, for Iceland Spar, to 
increase as the ray recedes from the axis, the increase being proportional to the square of the 
sine of the inclination just as for the extraordinary ray, except that this increase is much less rapid for the ordinary ray. And the double wave surface for Iceland Spar, and for light of any one colour, ought to be α system of 2 oblate spheroids of revolution touching at their common poles.For the extraordinary light

Ur, reierrmg to axis ot crystal, by making ω“ — ω“ = 2ω“ — 1 <κ observmg that c, =α,, we nave for ordinary light...
for extraordinary ...

HMPΠ 56
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442 XVII. PROPAGATION OF LIGHT IN CRYSTALS [21Hence ω≡ being square of sine of inclination to axis.*In the notation lately used
&The common difference of the increasing arithmetical progression ΩI≡∖ Ωp∖ is
Making Rq + = 1 & introducing a and b with the same meanings as Biot, we have

Thus the received constructions and rules for determining the course of the ordinary and extra­ordinary rays through Iceland Spar are to be modified by supposing that a and h are the two / Ω^equatorial semidiameters of my two oblate spheroids & that^/Z)^ —is the common polar semidiameter of both. [Hamilton finds from numerical calculations that “Malus’ experiments as quoted by Biot are quite inadequate to decide a question which turns on such small quantities.”](July 13^ħ, 1838.)The recent calculations, having been carried on nearly to ohe conclusion without supposing c, = α,, apply so far to a biaxal crystal also, and show that the section of the wave surface in such a crystal made by any one of the 3 principal planes is composed of 2 concentric and coaxal ellipses, though one of them is very nearly circular, its ellipticity being proportional to the product of the doubly refractive & dispersive powers or to the difference of the 2 dispersions.To examine other sections of the biaxal wave surface & in particular to examine whether it 
hcbs really two optic axes now supposed and indeed known to exist, let 
& let* [Various terms in the expressions for ωo and ωl have been neglected. They would however have disappeared in the expression for ω∣-ω^.]
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21] XVII. PROPAGATION OF LIGHT IN CRYSTALS 443then have all one common part, namely

while the other parts are

Of these the first is
the 1≡*  line being common to all 3, but the line being peculiar to As to it has been assigned.Our fundamental equations of vibration are 0 = (L — ω^) δic + R by + Q δz = = . These give

ifThese last expressions give

56-a
Put
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444 XVII. PROPAGATION OF LIGHT IN CRYSTALS [21then, omitting the small terms containing ζ" as a factor [i.e. the vibrations are assumed to be nearly tangential],

But by an investigation made lately [pp. 432-434] these formulae will give Fresnel’s laws of 
velocity <Ss polarisation to semiaxes α,,, b„, c„, provided we can have the 4 following relations:

ui tnese 4 equations, it is remarkable tnat any one ‰s a consequence oj the 3 others, in­dependently of L, M, N, P^, Q', R', ω^, oiy and in virtue of the relation ωl=l-ω^-ω^. They give 
so that it only remains to examine how nearly these 3 quantities are constant. For this examina­tion it will be convenient to calculate or ratherAny one of these will give the 2 others by transformation of the letters in the cycles a, b, c and a;, y, z.Confining ourselves at first to the terms independent of dispersion, we have

How nearly would this same constancy hold when we take account of dispersion ?... ...“neglecting Rq 4- 72i on account of there being no dispersion in a vacuum ...We may then determine the velocity & polarisation of light in a biaxal crystal by Fresnel’s rules, (the vibrations however being parallel to the plane of polarisation & at least very nearly tangential to the wave) if we employ variable semi-axes a„, b,,, c,, to construct the auxiliary ellipsoid or the wave surface; these variable semi-axes depending on the colour & on the direc­tion, according to the formulae
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21] XVII. PROPAGATION OF LIGHT IN CRYSTALS 445It is remarkable that the two differences 
are independent of the direction of the ray or wave....But it is very important to observe that although we have only been led to add a common part to each of Fresnel’s 2 values of the square of the velocity, so that the difference of those 2 
squares is still proportional to the product of the sines of the inclinations of the wave-normal to 2 fixed 
axes A & B and thus the phenomena of the rings appears to be satisfied, yet on the other hand these axes seem in the present theory to be independent of the colour; which is not true for light. And this would seem to be a fatal objection, unless it can be removed by some modification of my hypothesis....[Here follows an attempt at reconciling the values of a„, b„, c„ for topaz with the above results.]
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