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Dynamics of a model of two-component medium 

Z. WESOLOWSKI (W ARSZA WA) 

Two INFINITELY long, parallel elastic rods interact with each other, the forces of interaction 
being proportional to the difference of their axial velocities. The dispersion curve is determined, 
and two initial problems are solved. In the first problem the initial displacement distribution 
corresponds to Heaviside's function, and in the second one- to the case of contact of a uni
formly deformed and an undeformed rod. The solutions are sought in the form of Fourier 
series. At the beginning of the process, for small values of time, the profile velocities in both 
the rods are equal to the corresponding propagation speeds, and for large values of time the 
wave profile propagates at the velocity different from the individual propagation speeds. 

Dwa r6i.ne nieskonczenie dlugie pr~ty spr~:iyste oddzialywuj~ na siebie sil~ proporcjonal~ 
do r6:inicy ich pr~dkosci. Wyznacza si~ krzyw~ dyspersyjn~, a nast~pnie rozwi~zuje dwa za
gadnienia poc~tkowe. W pierwszym rozklad przemieszczen jest taki jak w funkcji Heaviside'a, 
a w drugim odpowiadaj~cy kontaktowi pr~ta poddanego jednorodnemu odksztalceniu i pr~ta 
nieodksztalconego. Rozwi~zan poszukuje si~ w postaci szereg6w Fouriera. W chwilach bliskich 
zera pr~dkosc profilu w pr~cie pierwszym i drugim jest r6wna pr~dkosci propagacji w tych pr~
tach. Dla du:iych czas6w profil fali porusza si~ z pr~dkosci~ inn~ ni:i pr~dkosci propagacji 
w pr~tach. 

,Usa pa3HbiX 6eCI<OHel.IHO ,ZJ;JIMHHbiX ynpyrMX CTep>I<HH B03,ZJ;eHCTBYIOT Ha ce6H CMJIOH nponopQ
MOHaJILHOH pa3HOCTM MX ci<opoCTM. Onpe,n;enHeTcH ,n;McnepcHoHHaH I<pMBaH, a 3aTeM pemaiOTCH 
,n;se Hat~a.n:LHbie 3a,n;at~M. B nepso:H pacnpe,n;eneHMe nepeMe~eHMH Tai<oe Kai< B <PYHI<QMM Xe
BMca:H,n;a, a so BTOpo:H pacnpe,n;eneHMe oTseqaroiQee I<OHTaKTY crep>I<HH no,n;seprHyToro o,ZJ;Ho
po.D;Ho:H ,n;e$opMaQMM M He,n;e$opMMpyeMoro CTep>I<HH . PemeHHH MIQeTCH B BM,ZJ;e pH.D;OB <f>ypLe. 
B MoMeHTax 6JIM3I<MX HyJIH ci<opocrL npo$HJIH B nepsoM 11 so BTopoM crep>I<HHX pasHa CI<o
poCTH pacnpoCTpaHeHMH B 3THX CTep>I<HHX. ,UJIH 6oJILliiMX BpeMeH npo$MJIL BOJIHbl ,ZJ;BM>I<eTCH 
C ,n;pyroH CI<OpOCTLIO, lleM CI<OpOCTL pacnpocrpaHeHHH B CTep>I<HHX. 

THERE exists a large literature concerning the statics of multi-component media, but very 
few papers deal with the problem of dynamics of such media. Formal consideration of 
discontinuity waves is worthless since, as it was shown in [1], the speed of the wave profile 
is completely different from the speed of the wave propagation; that is why none of such 
papers will be quoted here. 

1. Equation of the problem 

Two parallel elastic rods of cross-sections S1, S2 are made of different materials with 
the respective elastic moduli £ 1 , E2 and densities (h, (h· Let us consider the motion of 
the rods in the direction of their axes and disregard the motion in the transversal direction. 
The rods are assumed to exert forces on each other, and the forces are proportional to 
the difference of their velocities, Fig. 1. An experimental model of such a system may be 
represented by a rod placed in a thick-walled pipe filled with a viscous liquid, Fig. 2. 

http://rcin.org.pl



706 Z. WESOLOWSKI 

1 t u(x,t) 

c . t= 
£:~z.!&.--________________ ---d--r 

FIG. 1. 

FIG. 2. 

Displacements of the first rod are denoted by u, and in the second - by v. Elementary 
considerations yield the following equations of motion: 

(1.1) 
E1 u,;;+h(v,r-u.~) = (hU,rr' 

E2 v.e;+h(u.r-v,r) = (J2V.rr, 

where h denotes the interaction coefficient. ln order to simplify the considerations assume 
(! 1 = (!2 = (!. By introducing a new coordinate 

(1.2) 

and the parameters 

(1.3) 
h 

H= - , 
(! 

the following system of equations is obtained 

(1.4) 
U,xx+H(v,t-U,r) = U,rt' 

q 2v,xx+H(u,r-V,r) = V,rr; 

this is a set of linear second order differential equations. if H = 0, then the rods will be 
uncoupled. In such a case the disturbances in the first rod will be propagated with the 
speed c1 = 1, and in the second one- with the speed c2 = q. 

2. Weak discontinuity wave 

Let us assume the existence of a time-dependent surface f/ described by the equation 

(2.1) X= Ut, 
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at which the displacements u(x, t) and v(x, t), and their derivatives u,o u, 0 v,Jo v,, are 
continuous, and the higher order derivatives are discontinuous. Denoting by double 
brackets the jump at !/', 

(2.2) [ . ] = lim ( . ) - lim ( . ) , 
x~Ut-0 x-+Ut+O 

we obtain the following compatibility conditions (cf. e.g., [2]): 

(2.3) 
[u.xx] = B1, [u,tt] = U 2B1 , 

[v,xx] = B2, [v,tr] = U 2
B2, 

B 1 , B2 denoting certain parameters. Substitution of expressions (2.3) into Eqs. (I .4) 
yields two equations 

(2.4) 
(U 2

- I)B1 = 0, 

(U 2 -q2)B2 = 0, 

which must be satisfied simultaneously. It follows that the equalites must be satisfied: 

(2.5) 

or 

(2.6) 

The discontinuity surface must propagate therefore either at velocity U = 1 or at 
velocity U = q. This result is of a great scientific value but, as it will be shown later, it 
yields no information on the real behaviour of the mechanical system discussed here. 

The system considered is linear and, hence, the propagation speeds of strong discon
tinuity waves are the same as the weak discontinuity wave speeds determined above. 

3. Sinusoidal wave 

The solution of Eqs. (1.4) is sought in the form 

(3.1) 
U = Aei<kx-wt>, 

V = pAei<kx-wt>, 

frequency w and amplitudes A, pA being constant, independent of x and t. The wave 
number k is assumed to be known. 

By substituting the expression (3.1) into Eqs. (1.4) we obtain the set of two equations 
in constants w and p 

(w 2 -k2 +iwH)-iwHp = 0, 

-iwH+(w2 -k2q2 +iwH)p = 0. 
(3.2) 

Non-zero solutions of the set exist provided its principal determinant vanishes. Denoting 
w = iw we obtain the fourth degree algebraic equation 

(3.3) w4 +2Hw3 +k2 (l+q 2)w2 +k2 (1+q 2)Hw+k4 q2 = 0 , 

with real-valued coefficients and the single unknown w(k). This equation has four solutions 
w 1 , w2 , w3 , w4 • Hence, there exist four branches of the dispersion curve w(k), and namely 
w 1 (k), w 2 (k), w 3 (k), w4 (k). For each q, H =I= 0 the values of w(k) are imaginary or complex 
numbers. In Fig. 3 are shown the numerically determined real (solid line) and imaginary 
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(dashed line) parts of the function wr(k), r = I, 2, 3, 4 for H = I. For large k the real 
part of w(k) is proportional t,? k, and 

(3.4) 

For H = 0 the Eq. 
(3.5) 

and we have 

Rero1 = -Rero2 = q, 

Rero3 = -Rero4 = I. 

(3.3) is a biquadratic equation 
w2+k2(1 +q2)w2+k4q2 = 0, 

(3.6) ro1 = -w2 = q, ro3 = -ro4 =I. 

Such system is dispersionless and its dynamics is very simple. In the considerations t<> 
follow it will be assumed that H i= 0. 

From the theory of algebraic equations it is known that the roots of the fourth degree 
Eq. (3.3) are identical with the roots of two quadratic equations 

2 (2H M) w ( 2Hy-k2(1 +q2) ) - 0 
(3.7) w + + 2 + y+ M - ' 

w ( 2Hy -_k2M(l + q2) ) -- 0: w2 + (2H- M) -2- y + - ---=-----=-
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Here y is an arbitrary solution of the algebraic equation of the third degree 

{3.8) 8y3 -4k2 (1 +q2)y2 +4k2[H2(1 +q2)-2k2q2]y 

709 

+4k4q2[k2(1-q2)-H2]-k4H2(1 +q2)2 = 0, 

and parameter M is defined by the formula 

(3.9) 

Equation (3.8) is of the third degree, and so it must possess at least one real-valued 
root y. This conclusion enables further analysis of the solutions of Eqs. (3. 7). Without 
going into detailed calculations, let us present the final conclusion concerning the frequency 
.w. There exists such k depending on H that for k > k Eqs. (3. 7) have complex conjugate 
roots, and the corresponding frequencies w have the forms 

())1 = (X1 + i{J 1' ())3 = (X2 + i{J2' 

w2 = -ex~ +i{J1, w4 = -cx2+ifJ2· 
(3.10) 

However, fork ~ k one of the Eqs. (3.7) has real-valued roots, and the second one
complex conjugate roots. In such a case 

(3.11) 
())1 = cx1+i{Jl, ())3 = iy3, 

())2 = - CX.t + i{Jl, ())4 = iy4. 

If H = 1, then k ~ 0.84, Fig. 3. 
In compliance with Eq. (3.2), the coefficient p is found from any of the formulae 

w2 _ k2 w2 _ k2 
(3.12) p = 1 + iwH , p = - w2 -k2q2 . 

In the case of very small values of H, Eq. (3.12h is more expedient since it doesn't 

contain the 0/0-type ratio. Using the formulae (3.10), (3.1.1) we obtain fork > k 

(3.13) 
Pt = fPt +itpt, P3 = fP2 +itp2, 

P2 = cp~-itpt, P4 = fP2- itp2, 

(3.14) 'P• = I+ ~ (I+ k2 ) 
cx.i + {Ji ' 

~. ( k2 ) 
"Pl = n - 1 + cx.i + fJi 

'1'2 = I+ ~ (I+ k2 ) 
(X~+ {J~ ' 

~2 ( k' ) 
"P2 = n - 1 + ex~+ {J~ . 

Fork < k the formulae for p 1 , p 2 remain unchang~d, while p 3 , p4 are determined by 
the formulae '--

Y3 k2 
P3 = 1+ - + - - , 

H Hy3 (3.15) 

Y4 k2 
P4=1+ - + --. 

H Hy4 

The solutions of Eqs. (1.4) are the following displacements 

(3.16) 
U = A,ei<kx-wr<k>x>, 

v = Pr A, ei<kx-w,<k>x>, 
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where wr, r = 1, 2, 3, 4 are determined by Eqs. (3.10) or (3.11), and Pr- by Eqs. (3.13) 
or (3.15). Superposition of the solutions of Eqs. (3.16) makes it possible to solve the initial 
problem (Sect. 5). Observe that the phase and group velocities, UP and U9 , corresponding 
to the solutions (3.16) 

(3.17) U = w(k) 
p k ' 

U = dw(k) 
g dk 

are complex and different at different branches of the dispersion curve w(k). 

4. Case q2 = 2 

Having in view the solution of the initial problem, let us now analyze in detail the case 
q2 = 2; it corresponds to the case when the ratio of propagation speeds in both the rods 

equals J./ 2. Substitution of q2 = 2 into Eq. (3.8) and simple transformations lead to the 
following equation for 'YJ (y was found from Eq. (3.9h and substituted into Eq. (3.8)) 

(4.1) L('YJ) = 'YJ 3 +(6h2 -3H2 )'YJ2 +(k4 -6k2H 2+3H4 )'YJ-H6 = 0. 

One root of this equation lies within the interval 

0 < 'YJ < H 2, 

since L(O) = - H 6 < 0, and L(H2) = H 2 k 2 > 0. This root must be determined numeri
cally. With H = 1 the curve 'YJ(k2) is shown in Fig. 4. 

,., 

4 6 8 10 12 

FIG. 4. 

Equations (3. 7) are reduced to two equations 

(4.2) - 1 [ -H2+'YJ] 
w

2
+(H± Jln)w+ T 3k

2
-H

2
+'Y}±H l/ 'YJ = 0. 

which enable us to determine w and w = iw. Denote 

(4.3) 
Q1 = 6k2+'Y}-3H2+2H3fJ/ rj, 
Q2 = 6k2 + 'YJ- 3H2- 2H3 jyrj. 
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For each k we have Q 1 > 0. If Q2 > 0, then 

W1,2 = ±ext +if3t, W3 , 4 = ±a2+i(32, 

(4.4) 

If Q2 < 0, the formulae for cx 1 and {3 1 remain unchanged, while 

(4.5) 

The parameter k introduced in the preceding section corresponds to Q2 = 0. Coefficients: 
q;1 , tp1 , q;2 , 1p2 , p~ which correspond to the above functions are determined by the formulae
(3.14), (3.15). 

Let us now pass to the construction of the solutions. In accordance with the definitions; 
introduced above, we obtain the following solutions: 

(4.6) 

u = etJ1 tet<kx-rx1 t), v = (cp1 + i1p1)e'<kx-a.1t>, 

u = eft•tei<-kx+a.tt>, v = (9't- i"Pt)e'<-kx+a.tt>, 

u = ef11 tei<kx+cx 1t>, 

u = eP1tet<-kx-a.1t), 

v = (9'1- i1p1)e'<kx+a.•t>, 

V = (9'1 + i1p1)e'<-kx-cxtt>. 

Following the scheme [(1)+(2)-(3)-(4)]: 2, [(1)-(2)+(3)-(4)] :2i, we obtain twOo 
real-valued solutions 

(4.7) 

where 

(4.8) 

u1 = eflttc1' v1 = efllt(9'1 Ct -VJtSt), 

u2 = efl•ts1 , v 2 = efl•t(VJ1 C1 +cpLct), 

c1 = cos(kx- cx1 t)-cos(kx+ cx1 t), 

s1 = sin(kx-cx1 t)+sin(kx+cx1 t). 

If Q2 > 0, a similar reasoning yields two further solutions 

(4.9) 

where 

(4.10) 

u3 = ef12tc2, v3 = ef12 t(q;2c2-VJ2S2), 

u4 = eft2 tS2, V4 = ef12 t(1p2c2+q;2c2), 

c2 = cos(kx- a2 t)-cos(kx+ a2 t), 

s2 = sin(kx-cx2 t)+sin(kx+cx2 t). 

If Q2 < 0, we obtain 

(4.11) 
u3 = (e" 3 r -e"41)sinkx, 

u4 = (e"3 r +e"•')sinkx, 

v3 = (p3e"3t-p4 e"•t)sinkx,. 

v4 = (p3eY3t+p4 e"•t)sinkx. 
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Having in view the initial problem, let us now determine the displacements and speeds 
at the instant t = 0. In accordance with Eqs. (4.7) and (4.9) we obtain with Q2 > 0 

l
ur(x, 0)] [ Atr l 
Vr(X, 0) A2r · k . = Sin X 
Ur(X, 0) A3r 
Vr(X, 0) A4r 

(4.12) 

matrix A1r being determined by the formula 

(4.13) 
[ 

0, 1, 0, l 
Air = 2 -1pl' {J(/)1' -1p2' {J(/)2 . 

cx1, 1• cx2, 2 

_- fJ1"P1 + CX1 (/)1, fJ1 (/)1 + CXt"Pt, - fJ2"P2 + CX2 (/)2, fJ2 (/)2 + CX21jJ2 

If Q2 < 0 then, in accordance with Eqs. (4.7) and (4.11), we obtain 

0, 1' 0, 

-1p1' (/JI' 
P3-P4 P3+P4 

2 2 

(4.14) Air= 2 
{J 1 ' 

y3-y4 Y3 +:Y4 ex I, 
2 - 2--

- flt"Pt + CX1 (/)1, fJ1 (/)1 + CX11jJ1, 
Y3P3 -y4p4 Y3P3 +y4p4 

2 ' 
__ 2 _____ 

It should be stressed that A1, depends on the wave number k. 

5. Initial problem 

Let us assume that the displacements and their time rates at t = 0 are known; under 
this condition let us find the displacements at t > 0. Let us consider two cases only. In the 
first case 

(5.1) 
4 ( . sin3k0 x sin5k0 x ) u(x, 0) = v(x, 0) = ---;- smkox + 

3 
+ - -

5
- -- + ··· ' 

u(x, 0) = v(x, 0) = 0. 

In the neighbourhood of zero this function represents the Heaviside function. In the 
second case 

( 2) ( 0) ( 0) 4 ( . . k 1 . . 5. u x, = v x, = - ncx smcxsm 0 x+ y sm3cxsm3k0 x 

u(x, 0) = v(x, 0) = 0. 

1 . . k + - 2 sm5cxsm5 0 x+ 
s .. ) ' 

The graphs of functions (5.1) and (5.2) are shown in Fig. 5. Both the functions are 
periodic, but let us concentrate upon the motion of the wave profile which at instant t 
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u,v 

0 

X 

-1 r-------

n,v 

X 

FIG. 5. 

lies close to the point x = 0 (in the case of (5.1)), or close to x = <X (in the case of (5.2)). 
The calculations will be confined to a finite number of terms of the Fourier series. 

It should be stressed that, due to a very complex form of the dispersion formula, the 
application of the Fourier transform is impractical. The transforms would have to be 
determined numerically thus obscuring the physical sense of the results. 

Let us fix the value of k 0 and assume 

(5.3) k = Nk0 • 

Coefficients X1 , X 2 , X 3 , X4 are selected so as to satisfy the following equations 

(5.4) 

Obviously, Ai,. = Ai,.(N), X,. = X,.(N). The displacements 

(5.5) 
(N) 4 

u = .2,;u,.X,., 
r=l 

4 
(N) \1 
v = ~ v,.X,., 

r= 1 

are, at instant t = 0, equal to sin Nk0 x and their time derivatives vanish since Eqs. (5.4) 
are satisfied. Suitable summation will then lead to a solution fulfilling the conditions (5.1) 
or (5.2). 

In particular, by assuming 

(5.6) 

4 ((1) 1 (3) 1 (5) 1 (K)) 
u(x, t) = - n u+ 3 u+ 5 u+ ... + K u , 

4 ( 1 1 <3> 1 <5> 1 (K)) 
v(x,t)=-n v+ 3 v+ 5 v+ ... +Kv, 

10 Arch. Mech. Stos. nr 6/85 
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u, v 

FIG. 6. 

we obtain the solution satisfying the initial conditions (5.1). The wave profiles at times 
t = 0, 1, 2, 4 for H = 1, k 0 = 0.1 are shown in Fig. 6. The last term of (5.6) taken into 
account corresponds to N = K = 75. The solid line represents u(x, t) and the dashed 
line- v(x, t). Points of the second rod are reached by the disturbances earlier than 
those of the first rod. From the measurements made at half height of the profile it follows, 
however, that the profile speeds for large values of time (t > 2) are practically the same 

Uu ~ Uv ~ 1.23. 

At small times Uu < Uv. The corresponding measurement yield the following speeds 

Uu ~ 1 , Uv ~ 1.40. 

Let us observe that the discontinuity wave velocities determined for q 2 = 2 are U = 1 
and u = v2 ~ 1.414. 

u,v 
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The wave profile deforms, its slope becoming more gentle with increasing time. To 
visualize the effect of viscosity upon the process of smoothing the profile, the subsequent 
profiles for H = 0.5 and H = 5 (at time t = 8 only) are shown in Fig. 7. The viscosity 
is seen to increase the profile distortion. 
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Assuming 

(5.7) 

4 (( 1) 1 (3) 1 (K) • ) 
u(x, t) = - nrx usinrx+ y usin3rx+ ... + K 2 usmKrx , 

4 ((1) 1 (3) 1 (K) . ) 
v(x, t) = - - vsinrx+ - - vsin3rx+ ... + K 2 v smKrx , 

nrx 32 

we obtain the solution of the initial problem (5.2). With ex = n/6 the series is alternating 
and converges rapidly. The profiles shown in Fig. 8 are obtained under the assumptions 
k 0 = 0.1, H = I, K = 39; dashed lines correspond to v, and solid lines- to u. In order 
to proceed with the analysis in the case of small times we may use the diagrams in Fig. 9 
which present the enlarged neighbourhood of point (5.5, -1). Wave profiles for t = 5 

u,v 

FIG. 10. 

and various viscosities H are shown in Fig. 10. At low viscosities the displacements u 
and v differ from each other considerably, and at high viscosities u ~ v. For H = 5 the 
profiles u and v are practically identical. 
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