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Flow through a porous medium in the presence of mass transfer
and free convection flow

A. RAPTIS (IOANNINA)

TAKING the general form of the Darcy law, a flow through a porous medium bounded by a plate
is analysed in the presence of free convection and mass transfer flow and free stream velocity.

Opierajac sie na ogolnej postaci prawa Darcy przeanalizowano problem przeplywu przez o$rodek
porowaty ograniczony plyta, uzwgledniajac konwekcje swobodna i przeplyw masy.

Onupasice Ha obmmii BUA 3akoHa Jlapcu, IpoaHaHM3MpOBaHA NPo0JieMa TeUeHHA yepes IIO-
PHCTYIO CPeAy OrPaHHYEHHYIO ILIATOMN, YUMTHIBas CBODOQHYIO KOHBEKLHIO M IIEPEHOC MaccChl.

Nomenclature

C* species concentration,
C nondimensional species concentration,
C} species concentration at the plate,
C} species concentration at the free stream,
¢, specific heat of the fluid at constant pressure,
D chemical molecular diffusivity,
E Eckert number,
Gr Grashof number,
Gc  modified Grashof number,
g gravitational acceleration,
K* permeability of the porous medium,
K nondimensional permeability,
k thermal conductivity,
P Prandtl number,
p*  pressure,
Sc  Schmidt number,
T+ dimensional temperature of the fluid,
T nondimensional temperature,
T.; temperature of the plate,
T4 temperature of the fluid in the free stream,
u* velocity component in the x*-direction,
U free stream velocity,
vt velocity component in the y*-direction,
f  volumetric coefficient of thermal expansion,
B* volumetric coefficient of expansion with concentration,
ft  viscosity,
v kinematic viscosity,
o density.
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1. Introduction

RECENTLY published papers by RAPTIs et al. [1, 2, 3] and RAPTIs [4] presented an analytical
study of the free convection and mass transfer flow through a very porous medium boun-
ded by an infinite plate, when there is no free-stream velocity. The object of the present
paper is to study the effects of free convection and mass transfer flow through a very
porous medium bounded by an infinite vertical porous plate when there is free-stream
velocity. The porous plate is subjected to a constant suction, the temperature and the
species concentration at the plate are constant and the flow is steady. The results of the
work are important in geophysics [5].

2. Mathematical analysis

In order to formulate the problem mathematically, we write down the equations of
fluid motion, for two-dimensional steady free convection and mass transfer flow of an
incompresible and viscous fluid through a very porous medium, occupying a semi-infinite
region of the space and bounded by an infinite vertical porous plate. We assume also that
the fluid properties are not affected by temperature and concentration differences except
the denisty in the body force term. With the x*-axis along the vertical plate in the upward
direction and the y*-axis normal to it and the above assumption, the physical variables
are functions of y* only, except the pressure p*, and therefore the equations which govern
the problem are [I, 6]:

Continuity equation:

cu
. Mo~
@) o
Momentum equations:
out ap*t o%ut

(2.2) ou’ ay: = — —81):_—+ — 08+ W — % ut,
a +

(23) 0= — 8‘;% — —%;*'U+,

Energy equation:
Ttk Tt v [aw \?

2.4 s ——] .
@9 T T T T [5+)

Diffusion equation:

oC* o0*Ct
2.5 o ¥l = D_@:f"
The last terms on the r.h.s of Egs. (2.2) and (2.3) signify the additional resistance due
to the porous medium. The boundary conditions are
ut=0, T+=T}, Ct=C}, at y*=0

(2.6) ut->Ur, T*->TF, C*->C: as yt - w0,

(T >T13, Ci>C).
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From Eq. (2.2) we have for the free-stream

+

__o° B
2.7 0= T axt Qw8x+— K+ us.
T ap*
Eliminating — g
au+ 82u+
(2.8) ev” e = 80— +p 5 & T x L wi-u,
where g, is the density of the flow in the free stream. The equation of state is [6]
(2.9 8x+(00—0) = &5+ Po(T* —T3)+g:+f*e(C* - C3).
Substituting Eq. (2.9) in Eq. (2.8), we obtain
a EZ +
@10) v 2L g BT —T8) +e fH(CH —CH 4t 4 2 (U =),
oyt ay K
Since the suction is assumed constant, integrating Eq. (2.1) we get
(2.11) vt = —7,,

where v, is the constant suction velocity at the plate. The negative sign in Eq. (2.11) indi-
cates the suction velocity is directed towards the plate. Substituting Eq. (2.11) in Egs.
(2.10), (2.4) and (2.5), we get

ou* o*ut
2.12) —%53,72gx+/3(T+—T$)+gx+ﬂ*(C+ DVt K+ (Ug—u®),

oT+ k o*T+ v [ ou
1 o= e ()
oc+ 92C*
(2.14) —To F = W.
On introducing the following dimensionless parameters
u* y*o, Tr-T%
v=gz: Y= T=7_r:
cr-¢Cs vgx+ (T —T3)
C= Ci-cx’ (Cy >C% Gr= Uiol (T3 > T3)s
_ vg+B*(C5 —C}) __ ug _ o6
O ="TTr E=omi-to> 7w
v 03
Sc = e K= T§K+,
equations (2.12), (2.13) and (2.14) become
1 1
2. e r_ - = S -
(2.15) u'+u Ku GrT—-GcC 7
(2.16) T"+PT' = —PEu'?,

(2.17) C"+8cC’ =0,
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where the primes denote differentation with respect to y. The boundary conditions (2.6)
in the nondimensional form become

u=0, T=1, C=1 at y=0,

(2.18) u—»1, T-0, C-0 as y- .

In order to solve the system of Egs. (2.15)-(2.17) under the boundary conditions (2.18),
we expand the velocity and the temperature ficlds in powers of the Eckert number E which,
for incompressible viscous fluids is very small. Hence we can write

2.19) u(y) = ue(V)+Eu, (M + ...,

(2.20) T(y) = To(M+ET(N+ ...

Substituting the above expressions in Eqs. (2.15) and (2.16), we get the following system:
g 1

2.21) Uy +u0——Euo= ~GrTO—GcC—7<—,

(2.22) u'1'+u{-—-—11?u1 = —GrT,,

(2.23) T, +PT, =0,

(2.24) T, +PT; = —Pug?,

(2.25) C"+ScC’' =0,

while the boundary conditions (2.18) become
u0=0, UJZO, Tozl, T1=O, C0=1, Cl=0 at y:0,
228) ug—->1, u; -0, Ty—-0, T,-0, C,—-0, C, -0 as y— .

Thus the solutions of Egs. (2.21)-(2.25), under the boundary conditions (2.26) and in
view of Egs. (2.19) and (2.20). are given by

(227) wu=Cie"+Coe 57+ C3eR? +1+E(Cy 2R+ Cp 2P+ C 30”25
+ CpaeRe=P2y C seRa=SW 4 Cwe““’“”+C1-,e"’”+C,geR1”),
(2.28) T =e ™+E(C,e2R?+Cs e~ 2PV 4 Cpe™ 350 4 C,etRa=PY 4 Cy o(Ra=Se)y

- —P
J-Coe (P+Scw_|_cloe y'

(2.29) C = o=,
where '
4 1/2 1,2
o —1+(1+-—K—) . —1—(14—?)
1 = "2—’ 2 2 )
C - _ Gr C. —  Ge
e (P+R)(P+R,)’ o (Sc+R,)(Sc+Ry)’
3 B PR,C}
Cs = —(Ci+Cy+1), Cs= ~ 2(2R,+P)’
PC? PScC?
it ) S ol islivet” L2
s 2 Co = 20p-25¢)°
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c, = GG
T (R-P)
c. _2PCG
9 = TP:S—C)—’
C,. = JﬁL
T QRy—R)R,
C.. - GrCe
"* 7 (2Sc+R,)(2Sc+R,)’
Co. = GrCy
15~ (R;—Sc—R,)Sc”’
G
Ci7 = K10

" (P+R)(P+R,)’

(R,—Sc)(R,—Sc+P)’

9
Cio = an,
i=4

Cg=

C, = OrC
' (P+R,)(2P+R;)"
c.— GG
7 (R,—P—R)P’
GrC.
Clﬁ = 2

T (P+Sc+R,)(P+Sc+R,)’

12
Cis=~ D G

i=11

Expression (2.27) will be used for numerical calculations for the velocity field while the
corresponding expression for the rate of heat transfer through the Nusselt number Nu

is given, in view of Eq. (2.28), by
dT

2, = —|—

(2.30) Nu (dy

3. Results

) = P—E[2R,C,—2PCs—28cCs+ (R, —P)Cy+ (R, —Sc) Cy
y=0

—(P+S¢) Co—PCyo).

The velocity profiles are shown in Fig. 1 and the rate of heat transfer through the Nusselt
number Nu in Fig. 2 for the case of cooling (Gr > 0) of the plate by free convection cur-

u Gr=2, P=0T, Sc=024
E=0.01
- 6c K
1: 2 1
2: 2 2
s 3 5 1
1 4 5 2
3
3
2
I 1
1
[ ] l

FiG. 1. Velocity profiles.
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l L
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Fi1G. 2. Nusselt number.

rents. The Prandtl numbzr P is taken equal to 0.71, which corresponds to the air. The
Schmidt number Sc(Sc = 0.24) is chosen in such a way as to represent H, at low concen-
tration in air at approximately 25°C and 1 atmoshpere. For Fig. 1 we observe that when
the permeability parameter K or modified Grashof numbzr Gc increases, the velocity
increases, while from Fig. 2 we observe that when the permeability parameter K or modi-
fied Grashof number Gc increases, the Nusselt number decreases.
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