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Flow through a porous medium in the presence of mass transfer 
and free convection flow 

A. RAPTIS (IOANNINA) 

TAKING the general form of the Darcy law, a flow through a porous medium bounded by a plate 
is analysed in the presence of free convection and mass transfer flow and free stream velocity. 

Opieraj!lC si~ na og6lnej postaci prawa Darcy przeanalizowano problem przeplywu przez osrodek 
porowaty ograniczony plyt!l, uzwgl~dniaj(!C konwekcj~ swobodn!l i przeplyw masy. 

OnHpaHCb Ha o6I..UHH BH~ 3aKoHa ,UapcH, npoaHaJIH3HpoaaHa npo6neMa TeqeHHH qepe3 no­
PHCTyiO cpe~y orpaHnqeHHyiO llJIHTOH, yqnThiBaH CB060~HyiO KOHBeKJ..lHIO H nepeHOC MaCCbl. 

Nomenclature 

c+ species concentration, 
C nondimensional species concentration, 

Cj" species concentration at the plate, 
CJ; species concentration at the free stream, 

cp specific heat of .the fluid at constant pressure, 
D chemical molecular diffusivity, 
E Eckert number, 

Gr Grashof number, 
Gc modified Grashof number, 
g I gravitational acceleration, 
K+ permeability of the porous medium, 

K nondimensional permeability, 
k thermal conductivity, 
P Prandtl number, 

p + pressure, 
Sc Schmidt number, 

- T 
T: 
T+ 

00 

u+ 

u+ 00 

dimensional temperature of the fluid, 
nondimensional temperature, 
temperature of the plate, 
temperature of the fluid in the free stream, 
velocity component in the x+ -direction, 
free stream velocity, 
velocity component in the y+ -direction, 

fJ volumetric coefficient of thermal expansion, 
{J* volumetric coefficient of expansion with concentration, 
ft viscosity, 
v kinematic viscosity, 
e density. 
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1. Introduction 

RECENTLY published papers by RAPTIS eta!. [I, 2, 3] and RAPTIS [4] presented an analytical 
study of the free convection and mass transfer flow through a very porous medium boun­
ded by an infinite plate, when there is no free-stream velocity. The object of the present 
paper is to study the effects of free convection and mass transfer flow through a very 
porous medium bounded by an infinite vertical porous plate when there is free-stream 
velocity. The porous plate is subjected to a constant suction, the temperature and the 
species concentration at the plate are constant and the flow is steady. The results of the 
work are important in geophysics [5]. 

2. Mathematical analysis 

In order to formulate the problem mathematically, we write down the equations of 
fluid motion, for two-dimensional steady free convection and mass transfer flow of an 
incompresible and viscous fluid through a very porous medium, occupying a semi-infinite 
region of the space and bounded by an infinite vertical porous plate. We assume also that 
the fluid properties are not affected by temperature and concentration differences except 
the denisty in the body force term. With the x+ -axis along the vertical plate in the upward 
direction and the y+ -axis normal to it and the above assumption , the physical variables 
are functions of y+ only, except the pressure p+, and therefore the equations which govern 
the problem are [1, 6]: 

Continuity equation: 

(2.1) 
au+ 
ay+ = o. . 

Momentum equations: 

(2.2) 

(2.3) 

Energy equation : 

(2.4) ar+ k a2 T+ v ( au+ )
2 

v+ ay+ ·= (!Cp ay+ 2 + c; ay+ 

Diffusion equation: 

ac+ a2 c+ 
(2.5) v+ ay+ = D ay+ 2 

The last terms on the r.h.s of Eqs. (2.2) and (2.3) signify the additional resistance due 
to the porous medium. The boundary conditions are 

u+ = 0, r+ = r:, c+ = c~, at y+ = 0 

(2.6) u+ ~ U~, r+ ~ T~, c+ ~ c~ as y+ ~ 00, 

(T: > T~, c+ w > C~). 
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From Eq. (2.2) we have for the free-stream 

(2.7) 

ap+ 
Eliminating - ax+ between Eqs. (2.2) and (2.7) we obtain 

(2.8) 

where (2 00 is the density of the flow in the free stream. The equation of state is [6] 

(2.9) 

Substituting Eq. (2.9) in Eq. (2.8), we obtain 

(2.10) 

Since the suction is assumed constant, integrating Eq. (2.1) we get 

(2.11) 

where v0 is the constant suction velocity at the plate. The negative sign in Eq. (2.11) indi­
cates the suction velocity is directed towards the plate. Substituting Eq. (2.11) in Eqs. 
(2.10), (2.4) and (2.5), we get 

(2.12) 
au+ a2u+ v 

-v0 ay+ =gx+f3(T+-T~)+gx+f3*(C+-c;)+v ay+ 2 + K+ (U~-u+), 

(2.13) 
ar+ k a2T+ v (au+ )

2 

-Vo ay+ = (!Cp ay+ 2 + c; -(}y+ ' 

(2.14) 
ac+ a2 c+ 

-Vo ay+ = D ay+2 . 

On introducing the following dimensionless parameters 

C= 
c+-c~ 

(C! > C~) 
C!-C~' 

Gc = 
vgx+f3*(C~- C~) 

Sc= ~ 
D' 

U~v5 
2 

K=~K+ 2 ,. v 

Gr= 
vgx+ {J(T~- T~) 

U~v5 

ij+2 
E= 00 

cp(T:-T~)' 

equations (2.12), (2.13) and (2.14) become 

(2.15) 

(2.16) 

(2.17) 

II I 1 G T G c 1 u +u- K u = - r - c - K, 

T" +PT' = -PEu'2, 

C" +SeC'= 0, 

(T~ > T~), 

p = (!VCp 

k ' 
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where the primes denote differentation with respect to y. The boundary conditions (2.6) 
in the nondimensional form become 

u = 0, T = 1, C = 1 at y = 0, 

u --+- 1 , T --+- 0 , C --+- 0 as y --+- oo . 
(2.18) 

In order to solve the system of Eqs. (2.I5)-(2.I7) under the boundary conditions (2.I8), 
we expand the velocity and the temperature fields in powers of the Eckert number E which, 
for incompressible viscous fluids is very small. Hence we can write 

(2.I9) 

(2.20) 

u(y) = uo(Y) + Eu1 (y) + ... , 
T(y) = To(Y)+ET1(y)+ ... . 

Substituting the above expressions in Eqs. (2.15) and (2.16), we get the following system : 

(22) " I I G G I . 1 u0 +u0 - Ku0 =- rT0 - cC- K' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

" I 1 G u 1 + u 1 - K u 1 = - r T1 , 

T~' +PT~ = 0, 

T~' +PT~ = -Pub2
, 

C" +SeC' = 0, 

while the boundary conditions (2.18) become 

u0 = 0, 
(2.26) 1 

Uo --+- ' 

T0 =I, 

T0 --+- 0, 

Co= I, 

Co--+-0, 

c1 = 0 at y = 0, 

C 1 --+- 0 as y --+- oo . 

Thus the solutions of Eqs. (2.21)-(2.25), under the boundary conditions (2.26) and in 
view of Eqs. (2.19) and (2.20). are given by 

(2.27) u = c1 e-Py + Cz e-Scy + c3 eRly + 1 + E(Cll e2R1 y + c12 e-ZPy + c13 e-zScy 

+ c14e<Rl-P)y + c1S e<Rl-Sc)y+ c16e-<P+Sc)y + c17e-Py + c18 eRlY), 

(2.28) T = e-Py +E(C4e2Rly + Cs e-2Py + C6e-2Scy + C7e<Rl-P>y + Cae<Rl-Sc>y 

(2.29) 

where 

Gr 
----::(P--+R--,--

1 
)(P + Rzf' 

PCf 
Cs =- - 2- , 

..J.... Coe-<P+Scw ..J.... Cloe-Py, 

Gc c2 =- ·- --
(Sc+Rt)(Sc+R2)' 

PR 2 Cj 
c4 = -2(2Rz+P)' 

PScCi 
C6 = 2(P-2Sc) ' 
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c _ -~P2 C1 c3 Cs = 
2R2 C2 C3ScP 

7 - (R2-P) ' (R2-Sc)(R2-Sc+P)' 
9 

c9 = 
2P2C1C2 

C1o = 2; Ct, - -(P+Sc) - , 
i=4 

Cu = 
GrC4 

c12 = 
GrCs 

- (2R2-Rt)R2 ' (2P+R1)(2P+R2)' 

cl3 = 
GrC6 

c14 = 
GrC7 

(2Sc+R1)(2Sc+R2)' (R2 -P-R1)P' 

C1s = 
GrC8 

c16 = 
GrC9 

(R2-Sc-R1)Sc' (P+Sc+R1)(P+Sc+R2)' 

GrC10 
12 l, C11 = (P+R1)(P+R2)' 

c18 = - Ct. 
i= 11 

Expression (2.27) will be used for numerical calculations for the velocity field while the 
corresponding expression for the rate of heat transfer through the Nusselt number Nu 
is given, in view of Eq. (2.28), by 

(2.30) Nu = -(ddT_) = P-E[2R2C4-2PC5 -2ScC6 +(R2-P)C7 +(R2-Sc)C8 
Y Y=O 

- (P+Sc)C9-PCtol· 

3. Results 

The velocity profiles are shown in Fig. 1 and the rate of heat transf~r through the Nusselt 
number Nu in Fig. 2 for the case of cooling (Gr > 0) of the plate by free convection cur-

u --------------------------------------------------~ 
Gr=2, P=0.71, Sc=0.24 

5 

3 

0 1 2 

FIG. 1. Velocity profiles. 
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FIG. 2. Nusselt number. 
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K 

rents. The Prandtl number P is taken equal to 0.71, which corresponds to the air. The 
Schmidt number Sc(Sc = 0.24) is chosen in such a way as to represent H 2 at low concen­
tration in air at approximately 25°C and 1 atmoshpere. For Fig. 1 we observe that when 
the permeability parameter K or modified Grashof number Gc increases, the velocity 
increases, while from Fig. 2 we observe that when the permeability parameter K or modi­
fied Grashof number Gc increases, the Nusselt number decreases. 
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