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Stability and instability of the thermodiffusive equilibrium in 
anisotropic magnetohydrodynamics ( *) 

M. MAIELLARO (BARI) 

LINEAR instability and nonlinear Liapunov energy stability of the thermodiffusive equilibrium 
in anisotropic M.H.D. are considered and stabilizing-instabilizing effects of Hall's and ion-slip 
currents are proved. 

Rozwazono niestatecznosc oraz statecznosc nieliniow'l energii w sensie Lapunova dla r6wnowagi 
termodyfuzyjnej w magnetohydrodynarnice anizotropowej; wykazano stabilizuj'lce i destabili­
zuj'lce efekty zjawiska Halla i pr'ld6w poslizg6w jonowych. 

PaccMoTpeHbi Heycro:H:'I.fiiBOCTh, a Tal{)f{e Herrirne:H:Ha.R: ycro:H:'I.fiiBOCTb :mepnm a CMhicrre Jl.R:ny­
Hoaa ~JI.ff TepMO~H<P<PY3HOrO paBHOBeCH.ff B aHli30TpOnHOH MarHHTOrH~po,wrnaMm<e; llOJ<a-
3aHbl cra6HJIH3Hpyro.r.QHe H ~ecTa6l'IJIH3Hpyro.r.QHe 3<P<PeJ<Tbi .R:BJieHl'l.ff Xorrrra H ToJ<oB HOHHhiX 
CJ<OJih>KeHHH. 

1. Introduction 

IN THESE LAST years we have published some papers [1]-[10] on the anisotropic M.H.D. 
In some of these papers, taking into account Hall's and ion-slip currents, we have proved 
the existence and uniqueness of steady flows in plane layers and in coaxial cylinders and 
we have compared these flows with the classical Couette, Poiseuille, Hartmann flows of the 
hydrodynamics and isotropic M.H.D. Moreover, since, as it is well known, the effective 
physical technical realization and, overall, the persistence of the motions, strongly depend 
on their stability, we have studied the stability of these flows. 

Nevertheless, in almost all of these papers the fluid is considered in isothermal evolu­
tion. In the present work, in greater adherence to the physical situation, we consider the 
fluid not only electrical but also thermal conducting and we study the linear and nonlinear 
stability of the thermodiffusive equilibrium and the effects of the electroanisotropic 
currents on the stability. 

2. Statement of the problem 

In the dynamics of electrical conducting fluids in a magnetic field it is not right to neglect 
the anisotropic character of the electroconductivity when the mass fraction of the neutral 
particles is near to unity and the product of the cyclotron frequency of the charged particles 

(*)Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala, 
4-10 September, 1983. 
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for the average time between the collisions exceeds considerably the unity; this is the case, 
for instance, of a weakly ionized gas in a strong magnetic field [11, 12]. In these cases 
Hall's and ion-slip currents must be taken into account. The equations for these flows, 
in the nonrelativistic M.H.D. and in the Boussinesq approximation, for the incompressible 
case, are 

Ov 1 A Pe . { ] - = -v·Vv--Vn+PLJ2V+-VxHxH+[l-~X T-T0 ) g, ot eo eo 
aH 

(2.1) Tt = Vx(vxH}+1JeL1 2 H+/11 VxHxVxH+/12 Vx(HxHxVxH), 

ar 
- = -v · VT+kTL1z T at ' 
V·v=V·H=O. 

To these equations, of course, suitable initial and boundary conditions (depending on 
the nature of the boundary) must be added. In these equations v, H, T, n, g, are velocity, 
magnetic, thermal total pressure and gravitational fields, respectively; (!o and T0 are 
fixed density and temperature of reference; Pe is the magnetic permeability; P, 1Je are kin­
ematic and magnetic viscosities and ex, KT are volumetric expansion and thermal conductiv­
ity coefficients. Moreover Hall's and ion-slip currents are present with the coefficients 
P1 and Pz. 

Let the fluid be at rest in a thermodiffusive equilibrium in a fixed and rigid bounded 
domain S, under a constant temperature gradient c and in a constant magnetic field H 0 ; 

that is, let us censider the solution: 

(2.2) v=O, H=H0 , VT=c, Vp0 =e0 g[1-cx(T-To)] 

of the equations in S. The aim of the paper is to study the stability of this thermodiffusive 
equilibrium and the effects of Hall's and ion-slip currents on the stability. 

3. Linear instability 

Let S be a layer of boundary .E, with the two walls x3 = 0 and x3 = d( > 0), both 
free, not electrical but thermal conductors, in a constant orthogonal magnetic field H 0 = 

= H 0 e3 , where e3 is normal to .E and vertically positive upwards. The linearized equations 
for small perturbations 

(3.1) {u(x/t); b(x/t); fJ(x/t)} 

to the thermodiffusive equilibrium, of {u, b, ()} kinetic, magnetic and thermal fields 
respectively, after we have introduced the vorticity vector and the current denisty vector 

S2=Vxu, j=Vxh, 

are the following [9]: 

(3.2) oh3 ou3 ( 2 oj3 
--~ = Ho-~- + 1Je+P2Ho)Lt2h3-P1Ho-~-, 

ut uX3 uX3 
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(3.2) 
[cont.] 

8!J3 = ,Lt
2
Q 3 + f-leHo oh ' 

ot . (! ox3 

0 f-leHo 0 ( (}2() ()2()) 
-L12u3 = YL14u3+ - ---Ll2h3+g(X - -2 + --2 ' 
ot (! ox3 ox! ox2 

oh _ o!J3 . a 2 o2j3 
~- Ho-~- +rJeL12h+fJ1Ho-~-L12h3+fJ2Ho~' ut ux3 uX3 uX3 

(}() 
~ = {Ju3 +KTL12 () 

· ut 

with the boundary conditions 

(3.3) 

For the perturbations of normal mode 

359 

(3.4) {u3, 0, !J3,h, h3} = {W(x3), e(x3), Z(x3), X(x3), K(x3)}exp[i(k1x1 +k2x2 +pt], 

if we introduce the wave number k = y (ki+kD and the nondimensional parameters 

a= Kd, a= pd2/Y, Pl = Y/KT, P2 = Y/'YJe, fJH = fJIHoi'YJe, fJI = {J2H5IrJe; 

assuming the nondimensional derivative D ::;;;: d. (dfdx3), from Eq. (3.2) it follows 

[(D2 -a2)(1 +{J1)-p2a]K = -Hod DW+fJHdDX, 
'YJe 

(D2- a2- a)Z = - f-leHod DX, 
(!oY 

(3.5) (D2-a2)(D2-a2-a)W+ P,eHod D(D2-a2)K = grxa2d2 e, 
(!oY Y 

[(1+{J1)D2-a2-p2a]X =-_Hod Dz-l!.!!_D(D2-a2)K, 
'YJe d 

with the boundary cmiditions 

(3.6) W=e=DZ=D2W=X=0, x 3 =0,1. 

If we have the onset of instability as stationary convection, the marginal state will be 
characterized by a = 0, then from Eq. (3.5) we have 

(3.7) [(D2 -a2)3 +Ra2] ( {(D2 -a2)[(1 + {J1)D2- a2]- M 2 D2 }(D2 -a2) (1 +{11) 

+ (D2 -a2)2fJ~D2) W = M2(D2 -a2)2 {[(1 +fl1)D2 -a2](D2-a2)-M2D2 }D2 W, 

where 

M = HodV !-"e/(!oY'YJe and R = grx{Jd4 /YKT 

are Hartmann and Rayleigh numbers, respectively. It is easy to prove that not only W, 
but all its even derivatives must be zero on the boundary. Therefore, for perturbations 
of the type sinusoidal waves 

W = A sin(nnx3), 
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we obtain the following Rayleigh function: 

x+n 2 

R(n, x, M, fJH, {J1) = n 4 
---

x 
(3.8) 

{(n2 +x)[(1 +{J 1)n 2 +x] + M;n 2
} {(n2 +x)2 (1 + {J 1)+Mfu2

} + {Jfin 2 (n 2 +xP 
x {(n 2 +x)[.(l + fJ I)n 2 +x] + Mf u2

} (I+ {J1) + fJ.iin 2 (n 2 +x) . 

with 

Mf = M 2 /n 2
, x = a2 fn 2

• 

By comparison, it easily follows 

R(1, x, M, {JH, fJI) < R(n, x, M, fJH, fJ1); Vn > 1, Vx, M, fJH, {J1 

and therefore from Eq. (3.8), with n = 1, we have the critical Rayleigh functions for the 
linear instability: 

(3.9) 

in the purely hydrodynamic case (M = fJH = {J1 = 0), in the isotropic M.H.D. case (fJH = 
= {J1 = 0), in the anisotropic case and in the presence of the only Hall's current ({J1 = 0), 
in the presence of both Hall's and ion-slip currents, respectively. Finally the comparison 
between these functions and the proof of the existence and uniqueness of the minimum 
of the Rayleigh function (3.8) allow us to state the following: 

TEEOREM. Let R<c>, R~)' R~', R~} be the critical Rayleigh numbers related to the critical 
Rayleigh functions (3.9), respectively. We have 

(3.10) 

Therefore Hall's and ion-slip currents, at least for the linear stability of the thermodiffusive 
equilibrium, have a stabilizing effect with respect to the hydrodynamic case, but they have an 
instabilizing effect with respect to the isotropic M.H.D. case. 

Now, at this step, we cannot know if this linear stability implies nonlinear stability, 
since, for that is at our knowledge, there does not exist a linearization principle in aniso­
tropic M.H.D. like in the hydrodynamic case [13] and in isotropic M.H.D. [14]. There­
fore we shall investigate directly the nonlinear stability of the thermodiffusive equilib­
rium solution. 

4. Nonlinear energy stability 

Lest us suppose that the fluid lies in a domain S, bounded in at least one dimension, 
like a layer, and the boundary is conducting, rigid and fixed £. With Eqs. (2.1) we must 
consider now the following boundary conditions: 

(4.1) vj.z: = 0, H x n/.z: = H.z:, T = T.z:, 

where n is the outward unit vector and H.z:, T.z: are fixed. 
If we introduce nondimensional quantities: 

x = x*d, t = t*d2 jv, u = u*vfd, H = H*H0 , T = T*vcdfkT, 

http://rcin.org.pl



STABILITY AND INSTABILITY OF THE THERMODIFFUSIVE EQUILmRIU~ 361 

with d a comparison length the nonlinear equations for the perturbations belonging to 
a suitable class of regularity 

(4.2) {u(x/t); h(x/t); O(xft); p(x/t)}, 

are the following (the stars are left out): 

au 
at= -u· Vu-Vp+L1 2 u+O'M2 (Vxh)x(e3 +h)+Ra0e3 , 

(4.3) 
ah a!= Vx [ux (e3 +h)]+O'L1 2 h+,8nVx [(e3 +h)xVxh] 

+,81Vx {(e3 +h)x [(e3 +h)xVxh]}, 

ao 1 
- -= -u·(C+V0)+-L12() at Pr ' 

v. u = 0, v. h = 0, 

with the boundary conditions 

(4.4) 

In Eqs. (4.3) 

0' = Rm/Re, Pr = vfkT, Ra = ga.cd4 /vKT, 
.Bn = ,81Ho/v, ,81 = ,82H5/v, 

with Re, Rm, Pr, Ra, ,Bn, ,81 , Reynolds, magnetic Reynolds, Prandtl, Rayleigh, Hall and 
ion-slip numbers, respectively. 

Let us assume the functional (like total energy of perturbations) 

(4.5) V(t) = ~ f (u2+0'2M 2h2 +Pr02)dS 
s 

as a measure of the perturbations (4.2). From Eqs. (4.3) taking into account the boundary 
conditions (4.4), the transport and the divergence theorems and the well-known vectorial 
identities, we obtain the following Reynolds equation: 

(4.6) 

with the quadratic functionals 

dV 
-- =f-q) 
dt 

(4.7) f = J (Ra-1)0u3 dS, 
s 

(4.8) q) = f {[(Vu)2 +0'2 M 2 (Vxh)2 +0'M2,81 [(e3 +h)xVxh]2+(V0)2 }dS. 
s 

Thanks to Eqs. (4.6), (4.7) and (4.8) we can establish the following three theorems: 
I. The isothermal anisotropic M.H.D. equilibrium 

(4.9) 

is unconditionally asymptotically stable with respect to the measure J (u2 + a2 M 2h2 )dS 
s 

of the isothermal perturbations {u, h, () = 0}. 
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2. Hall's current has no effect on the nonlinear energy stability of the thermodiffusive 
equilibrium (2.2) 

3. The ion-slip current can only have a stabilizing effect on the nonlinear energy stability 
of the thermodiffusive equilibrium (2.2). 

Proof of the first theorem: If we put W(t) = ~ J (u 2 + a2 M 2h2 )dS,from Eqs. (4 .6), 
s 

(4.7) and (4.8) it follows 

(4.10) dW J (ft ~ - [(Vu) 2 + a2 M 2 (V x h) 2]dS. 
S I 

Therefore we have 

W(t) ~ W(O)exp( -mt), 

with m = min(t5, y), where <5, y, are the constants of the problems 

(4.11) 
f (VA) 2dS 

t5 = min -8----=---­
s f A 2dS 

s 

(A, B) E C0 >(S), [V · A]s = [V · B]s = 0, [A]r = [B x n]E = 0 

with the related well-known variational problems [15, 16]. 
The proofs of the second and the third theorem are quite clear. 
Finally, we shall give now a further theorem that will be a sufficient condition to ensure 

nonlinear Liapunov stability of the solution (2.2). 
Let us assume the following functionals: 

(4.12) Xf = { u2dS, Xi = .r (V X h) 2dS, 
s s 

Xj= J(hxVxh) 2dS, 
s 

Xl = I (J2dS. 
s 

From Eqs. (4.6), (4.7) and (4.8) and suitable well-known integral inequalities, with the 
constants t5 and y given by Eq. ( 4.11) it is easy to find the Liapunov functional 

(4.13) / = - t5Xf -aM2(a-{11)Xi-aM2{11 Xj-yXl+2aM 2 f1rX2X3 + (Ra+ 1)XtX4, 

such that 

(4.14) dV . (5 

dt~t:/· 

Therefore the conditions for the quadratic form (4.13) to be negative allow us to prove 
the following theorem [1, 17] 

4. The conditions 

Ra + 1 < 2 Y t5y, 

1 
flr<TO" 

ensure the asymptotic exponential stability of the thermodiffusive equilibrium (2.2), » ith 
respect to the total energy measure V(t). 
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REMARK. Of course, the optimum stability conditions and the connection between 
linear and nonlinear stability, that are solved in the hydrodynamic case and in the isotropic 
M.H.D. case, [18, 19, 20], in the field of the Anisotropic Magnetohydrodynamics are 
open problems; at the stage of the present work I have not answer to these questions. 
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