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487.

ON THE QUARTIC SURFACES V, Wγ = Q.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871), pp. lδ—2δ.]
Among the surfaces of the form in question are included the reciprocals of several interesting surfaces of the orders 6, 8, 9, 10, and 12, viz.Order 6, parabolic ring.„ 8, elliptic ring.„ 9, centro-surface of a paraboloid.„ 10, parallel surface of a paraboloid.„ „ envelope of planes through the points of an ellipsoid at right angles tothe radius vectors from the centre.„ 12, centro-surface of an ellipsoid.„ „ parallel surface of an ellipsoid.I propose to consider these surfaces, not at present in any detail, but merely for the purpose of presenting them in connexion with each other and with the present theory. It will be convenient to use homogeneous equations, but for the metrical interpretation the coordinate W or w may be considered as equal to unity: I have not thought it necessary so to adjust the constants that the equations shall be homogeneous in regard to the constants ; this can of course be done without difficulty, and in many cases it would be analytically advantageous to make the change.I take throughout (A, F, Z, W) for the coordinates of a point on the quarticsurface [so that (fJ, V, W) in the equation V, 1K)^=O are to be considered asquadric functions of (A, Y, Z, lk)j, reserving (x, y, z, w} for the coordinates of a point on the reciprocal surface of the order 6, 8, 9, 10, or 12. The reciprocation isperformed in regard to the imaginary sphere ÷ + z" -f- w- = 0 : the relation between
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487] ON THE QUARTIC SURFACES (-5S∙][ι7, F, ψ)≡ = 0. 3the coordinates (X, F, Z, TF) and {x, y, z, τυ) is then Xx + Υy + Zσ + TFw = 0, and the equation (X, F, Z, W)^ = 0 is the equation in point-coordinates of the quartic surface, or in line-coordinates of the reciprocal surface : and similarly the equation (x, y, z, = 0 is the equation in point-coordinates of the reciprocal surface, or in line-coordinates of the quartic surface.
Parabolic ring, or envelope of a sphere of constant radius having its centre on a 

parabola.Taking k for the radius of the sphere,- and z = 0, y≡ = 4oκc for the equations of the parabola, then the coordinates of a point on the parabola are a&^, 1aθ, 0; where 
θ is a variable parameter. The equation of the sphere therefore is 
and the ring is the envelope of this sphere.The reciprocal of the sphere is 
writing this in the form 
and taking the envelope in regard to θ, we have 
or, what is the same thing.
for the equation of the quartic surface. This has the line X = 0, F= 0 for a tacnodal line, but I am not in possession of a theory enabling me thence to infer that the parabolic ring is of the order 6.To show that it is so, I revert to the equation of the variable sphere 
or, what is the same thing.
where

1—2
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4 ON THE QUARTIC SURFACES (-5t][Z7, F, W)^ = 0. [487Then / = J = a^w^J', and the equation is I'^ — J'"^ = 0, viz. this is 
or, as this may also be written,
Developing, the whole divides by 27, and the equation of the ring finally is

Elliptic ring, or envelope of a sphere of constant radius having its centre on an 
ellipse.Taking k for the radius of the sphere, and z=0, —+ ^- = 1 for the equations of the ellipse, the coordinates of a point on the ellipse are a cos θ, δ sin ; hence the equation of the variable sphere is
The reciprocal of this is 
viz. writing this under the form 
and taking the envelope in regard to θ, the equation of the reciprocal surface is 
viz. this is 
or 
that is
which is a quartic surface having the nodal conic W = 0, (α≡ — k^) + (b^ -k^} = 0.This singularity alone would only reduce the order of the reciprocal surface to 12; the reciprocal surface or elliptic ring is in fact (as I proceed to show) of the order 8.
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487] ON THE QUARTIC SURFACES (⅛](17, V, ≈ 0.For this purpose reverting to the equation 
this may be written 
where 

and the equation is 
or say
This is of the order 12, but it is easy to see that the terms in A*® and + D^)disappear from the equation, all the other terms divide by ; and the equation is thus of the order 8,The equation may be obtained somewhat differently as follows. The equation of the variable sphere is

a?where (a, β} vary subject to the condition - + ^=1. We have therefore 

and thence

Consequently
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fi ON THE QUARTIC SURFACES (-'-'i[i7, V, W)^ = 0. [487from which λ is to be eliminated. The second equation may be replaced by
which has the first for its derived equation in regard to λ. Hence, writing this last equation in the form
we have to equate to zero the discriminant of this cubic function of λ. Calling the equationwe have

The required equation then is
The developed equation (Salmon’s Conic Sections, Ed. v., p. 32δ) is

I remark that the before-mentioned nodal conic W = 0, (α≡ — + (⅛2 _^2^2_θis the reciprocal of a quadric cone, which is a bitangent cone of the ring: this is a cone, vertex at the centre of the ring, and which is the envelope of-the right cone, vertex the same point, circumscribed about the variable sphere which generates the ring.
Gentro-surface of a paraboloid.For the paraboloid 0, it may be shown that the centro-surface isthe envelope of the quadric
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487] ON THE QUARTIC SURFACES V, TΓ)2 = O. 7The quartic surface is consequently the envelope of the quadric 
viz. this is
Hence the quartic surface is 
or, what is the same'thing,
This has four conic nodes ; viz. considering the equations 
these give the point X = 0, T=0, Z=0 four times, and four other points which are the nodes in question; the point (X = 0, Y = 0, Z = 0) is a singular point of a higher order; the reduction caused by these singularities should be = 8 + 19, so as to make the order of the surface of centres = 9; that is the reduction on account of the point (X = 0, y = 0, Z=0) must be =19; but it is not by any means obvious how this is so.

Parallel surface of the paraboloid.This is given, Salmon’s Solid Geometry, 2nd Edit., pp. 146 and 148, [Ed. 4, p. 180], for the paraboloid aX^ + bY^ + 2rZW = 0, as the envelope of the quadric surface
The reciprocal quartic is thus the envelope of 
that is 
whence the equation is
viz. this is a quartic having the nodal line-pair Z = 0, furthersingularity at the point X = 0, F = 0, Z = 0. It would require some consideration to show that the order of the parallel surface is thence = 10, as it should be.
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8 ON THE QUARTIC SURFACES (⅛][t7, F, ΤΓ)^ = 0. [487

Envelope of the planes through the points of an ellipsoid at right angles to the 
radiiis vectors from the centre.This is given in my paper “ Sur la surface &c.” in the Annali di Matematica, t. II. (1859), [250], as the envelope of the quadric surface
The reciprocal quartic surface is thus the envelope of 
or, what is the same thing.
viz. this is
Λvhich is in fact the inverse surface

y-2of the ellipsoid — + + —7 = 1; this is obvious geometrically inasmuch as the recι-
(Xf 0 Qprocal of the variable plane is the inverse of the point on the ellipsoid.The quartic surface has the nodal conic 

and also the node JΓ = O, F=0, Z=0; there is consequently in the order of the reciprocal surface a reduction 24 + 2 = 26, or the order of the reciprocal surface is = 10.
Centro-surface of the ellipsoid.

(XpWriting the equation of the ellipsoid in the form ~+ + — — = 0, the centrosurface is given as the envelope of the quadric surface
(Salmon, [Ed. 2], p. 400, [Ed. 4, p. 179]), and hence the reciprocal quartic surface is the envelope of
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487] ON THE QUARTIC SURFACES (⅛](i∕, V, TΓ)≡ = O. 9in regard to the variable parameter θ, viz, the equation is
(see Salmon, [Ed. 2], p. 144 [Ed. 4, p. 172]). It hence at once appears, that the quartic surface has 12 nodes, viz. these are the four angles of the fundamental tetrahedron 
(XYZW), and the eight points 

or writing as it is convenient to do 
and therefore 
these are the eight points 
the order of the reciprocal of the quartic surface is thus 86 — 2.12, = 12, which is in fact the order of the surface of centres.The equation of the centro-surface is given, Salmon, [Ed, 2], p. 151, and Quart. 
Math. Jour., t. ιι. (1858), p. 220, in the form(a, β, γ)θ(^, η, ζ, ω)!·" = 0,where ξ, η, ζ, ω stand for ax, by, cz, iw, it is therefore of the degree 18 in regard to 
a, b, c.

Parallel surface of the ellipsoid.This is given, Salmon, [Ed. 2], p. 148 [Ed. 4, p. 176], as the envelope of the quadric surface
The reciprocal quartic is thus the envelope of 
or writing + θ = λ, this is

C. VIII. 2
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10 ON THE QUARTIC SURFACES (⅛][t7', V, W)^= 0. [487or, what is the same thin?, 
whence the equation is 
viz. this is a quartic having the nodal conic
The order of the reciprocal or parallel surface is thus 36 — 24, = 12, as it should be. The nodal conic of the quartic surface is the reciprocal of a bitangent or node-couple quadric cone, vertex the centre, in the parallel surface: this cone is imaginary for the ellipsoid, but real for either of the hyperboloids, and its existence in the case of the hyperboloid is readily perceived.Reverting to the equation 
or say 
this is 
where putting for shortness 

and
we have

The equation of the parallel surface is of course
(AE - 4βJ) + 3C≡∕ - 27 (ACE - AD^ - B^E + 2BCD - C≡)≡ = 0.
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487] ON THE QUARTIC SURFACES F, TF)≡ = 0. 11It is remarked (Salmon, [Ed. 2], p. 148 [Ed. 4, p. 176]) that there is in the planes; = 0, a nodal conic------ 1- ------(Id—) w^ = 0, the complete section being made up
d — co — C∖C∕of this conic twice, and of the curve of the eighth order which is the parallel curveof the ellipse — d- = 0 ; course the case as to the sections bythe other two principal planes ic=0 and ^ = 0. For the section by the plane w = 0 (or plane infinity) we have at once (4pr — = 0, where observe that

The section is thus made up of two conics, each twice, and of four right lines: viz. 
Spthe conics are a? d- + = 0, the circle at infinity and — + ¾- d- — = 0, the section at c®infinity of the ellipsoid ; and the lines are 

viz. these are the common tangents of the two conics. The circle at infinity is a nodal conic on the surface, Λvhich has thus 4 nodal conics.
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