492.

NOTE ON A SYSTEM OF ALGEBRAICAL EQUATIONS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XI. (1871), pp. 132, 133.]

Consider the system of equations

$$
\begin{aligned}
& a+b(y+z)^{2}+c y^{2} z^{2}=0 \\
& a+b(z+x)^{2}+c z^{2} x^{2}=0 \\
& a+b(x+y)^{2}+c x^{2} y^{2}=0
\end{aligned}
$$

which is a particular case of that belonging to the porism of the in-and-circumscribed triangle. We have y and z the roots of

$$
a+b x^{2}+2 u \cdot b x+u^{2}\left(b+c x^{2}\right)=0
$$

consequently

$$
\begin{aligned}
y+z & =\frac{-2 b x}{b+c x^{2}} \\
y z & =\frac{a+b x^{2}}{b+c x^{2}}
\end{aligned}
$$

or substituting in the equation between y and z, this becomes

$$
\left(a c+b^{2}\right)\left(a+4 b x^{2}+c x^{4}\right)=0
$$

so that if $a c+b^{2}$ is not $=0$, we have

$$
a+4 b x^{2}+c x^{4}=0
$$

and moreover

$$
(x-y)(x-z)=x^{2}+\frac{2 b x^{2}}{b+c x^{2}}+\frac{a+b x^{2}}{b+c x^{2}},=\frac{1}{b+c x^{2}}\left(a+4 b x^{2}+c x^{4}\right)=0
$$

so that $x=y$ or else $x=z$. If $x=z$, the three equations reduce themselves to the two

$$
\begin{array}{r}
a+b x^{2}+2 y \cdot b x+y^{2}\left(b+c x^{2}\right)=0 \\
a+4 b x^{2}+c x^{4}=0
\end{array}
$$

giving $y=x$, or else $y=-\frac{3 b x+c x^{3}}{b+c x^{2}}$; and it hence appears that if from this last equation and $a+4 b x^{2}+c x^{4}=0$ we eliminate x, the result must be $a+4 b y^{2}+c y^{4}=0$. For in the same way that the elimination of y, z from the original three equations gives $a+4 b x^{2}+c x^{4}=0$, the elimination of x, z from the same three equations will give $a+4 b y^{2}+c y^{4}=0$, so that in any case y is a root of this equation.

