494.

EXAMPLE OF A SPECIAL DISCRIMINANT.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xI. (1871), pp. 211-213.]

IF we have a function $(a, \ldots\rangle x, y, z)^{n}$, where the coefficients (a, \ldots) are such that the curve $(a, \ldots \chi x, y, z)^{n}=0$ has a nude, and $\dot{\alpha}$ fortiori if this curve has any number of nodes or cusps, the discriminant of the function (that is, the discriminant of the general function $(*)(x, y, z)^{n}$, substituting in such discriminant for the coefficients their values for the particular function in question) vanishes identically. But the particular function has nevertheless a special discriminant, viz. this is a function of the coefficients which, equated to zero, gives the condition that the curve may have (besides the nodes or cusps which it originally possesses) one more node; and the determination of this special discriminant (which, observe, is not deducible from the expression of the discriminant of the general function $\left.(* X x, y, z)^{n}\right)$ is an interesting problem. I have, elsewhere, shown that if the curve in question $(a, \ldots \gamma x, y, z)^{n}=0$ has δ nodes and κ cusps, then the degree of the special discriminant in regard to the coefficients a, \&c., of the function is $=3(n-1)^{2}-7 \hat{\delta}-11 \kappa$: and I propose to verify this in the case of a quartic curve with two cusps.

Consider the curve

$$
6 n x^{2} y^{2}+12 r z^{2} x y+(4 g x+4 i y+c z) z^{3}=0
$$

where $x=0$ is the tangent at a cusp; $y=0$ the tangent at a cusp; and $z=0$ the line joining the two cusps.

For the special discriminant we have

$$
\begin{aligned}
& 3 n x y^{2}+3 r y z^{2}+g z^{3}=0 \\
& 3 n x^{2} y+3 r x z^{2}+i z^{3}=0 \\
& z\{6 r x y+(3 g x+3 i y+4 c z) z\}=0
\end{aligned}
$$

the last of which may be replaced by the equation of the curve.

Assume $x=\lambda z, y=\mu z$, the first two equations give
whence also

$$
\begin{aligned}
& 3(n \lambda \mu+r) \mu+g=0 \\
& 3(n \lambda \mu+r) \lambda+i=0
\end{aligned}
$$

$$
6 n \lambda^{2} \mu^{2}+6 r \lambda \mu+g \lambda+i \mu=0,
$$

and the equation of the curve gives

$$
6 n \lambda^{2} \mu^{2}+12 r \lambda \dot{\mu}+4 g \lambda+4 i \mu+c=0,
$$

whence eliminating $g \lambda+i \mu$ we find

$$
18 n \lambda^{2} \mu^{2}+12 r \lambda \mu-c=0
$$

Moreover the first two equations give
or putting $\lambda \mu=\theta$ we have

$$
9(n \lambda \mu-r)^{2} \lambda \mu-i g=0
$$

$$
\begin{aligned}
& 18 n \theta^{2}+12 r \theta-c=0 \\
& 9(n \theta+r)^{2} \theta-i g=0
\end{aligned}
$$

from which θ is to be eliminated.
The equations are

$$
\begin{array}{r}
18 n \theta^{2}+12 r \theta-c=0 \\
9 n^{2} \theta^{3}+18 n r \theta^{2}+9 r^{2} \theta-i g=0
\end{array}
$$

and thence

$$
\begin{array}{ll}
18 n^{2} \theta^{3}+36 n r \theta^{2}+18 r^{2} \theta-2 i g= & 0 \\
18 n^{2} \theta^{3}+12 n r \theta^{2}-c n \theta & =0, \\
24 n r \theta^{2}+\left(18 r^{2}+c n\right) \theta-2 i g=0, \\
18 n r \theta^{2}+12 r^{2} \theta-c r=0, \\
\left(6 r^{2}+3 c n\right) \theta-6 i g+4 c r & =0, \\
\theta=\frac{6 i g-4 c r}{6 r^{2}+3 c n}=\frac{2}{3} \frac{3 i g-2 c r}{2 r^{2}+c n} ; &
\end{array}
$$

or substituting in $18 n \theta^{2}+12 r \theta-c=0$, this is

$$
8 n(3 i g-2 c r)^{2}+8 r(3 i g-2 c r)\left(2 r^{2}+c n\right)-c\left(2 r^{2}+c n\right)^{2}=0 .
$$

Hence, developing, the special discriminant is

$$
\begin{aligned}
\square= & -1 c^{3} n^{2} \\
& +12 c^{2} n r^{2} \\
& -72 c g i n r \\
& -36 c r^{4} \\
& +72 g^{2} i^{2} n \\
& +48 g i r^{3},
\end{aligned}
$$

which is as it should be of the degree $5,=3 \cdot 3^{2}-11.2$.

