497.

NOTE ON THE CALCULUS OF LOGIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xi. (1871), pp. 282, 283.]

It appears to me that the theory of the Syllogism, as given in Boole's paper, "The Calculus of Logic," Camb. and Dubl. Math. Jour., t. III. (1848), pp. 183-198, may be presented in a more concise and compendious form as follows:

We are concerned with complementary classes, X, X^{\prime}; viz. these together make up the universe (of things under consideration), $X+X^{\prime}=1$; viz. X^{\prime} is the class not- X, and X the class not- X^{\prime}.

Any kind whatever of simple relation between two classes (if we attend also to the complementary classes) can be expressed as a relation of total exclusion, $X Y=0$, or as a relation of partial (it may be total) inclusion, $Y X$ not $=0$; viz. the relation $X Y=0$ may be read in any of the forms

> No X 's are X 's,
> No Y 's are X 's,
> All X 's are not- Y 's,
> All Y 's are not- X 's,
and the relation $X Y$ not $=0$ in either of the forms
Some X 's are Y 's,
Some Y 's are X 's.
I say the above are the only kinds of simple relations; it being understood that X^{\prime} may be substituted for X, or Y^{\prime} for Y; so that the example $X^{\prime} Y=0$ (all Y^{\prime} s are X 's) is the same kind of relation as $X Y=0$; and $X^{\prime} Y$ not $=0$ (some Y^{\prime} 's are not- X 's) the same kind of relation as $X Y$ not $=0$.
c. VIII.

Now taking X or X^{\prime} and Z or Z^{\prime} for the extreme terms, and Y or Y^{\prime} for the middle term, of a syllogism; the only combinations of premises are
(1) $X Y=0, \quad Z Y=0$.
(2) $X Y=0, \quad Z Y$ not $=0$, therefore $X^{\prime} Z$ not $=0$.
(3) $X Y$ not $=0, \quad Z Y$ not $=0$.
(4) $X Y=0, \quad Z Y^{\prime}=0, \quad$ therefore $X Z=0$.
(5) $X Y=0, \quad Z Y^{\prime}$ not $=0$.
(6) $X Y$ not $=0, \quad Z Y^{\prime}$ not $=0$.

And of these, there are (as shown by the third column) only two which give rise to a conclusion (or relation between the extreme terms). As regards the negative cases, this is at once seen to be so ; thus $X Y=0, Z Y=0$ (no X 's are Y 's, no Z 's are Y 's) leads to no conclusion in regard to X, Z. As regards the positive cases, it is also at once seen that the conclusions do follow; but we may obtain the conclusions by symbolical reasoning, thus
(2) $Y=Y X+Y X^{\prime},=Y X^{\prime}$;
therefore $Z Y=Z Y X^{\prime}$, not $=0$; therefore $Z X^{\prime}$ not $=0$.
(4) $X Z=X Z Y+X Z Y^{\prime}$, where on the right-hand side each term (the first as containing $X Y$, the second as containing $Z X^{\prime}$) is $=0$; that is, $X Z=0$; where the logical signification of each step is obvious.

