502.

ON THE SURFACES DIVISIBLE INTO SQUARES BY THEJR CURVES OF CURVATURE.

[From the Proceedings of the London Mathematical Society, vol. Iv. (1871-1873), pp. 8, 9. Read December 14, 1871.]

Geometrically, the question is as follows:-Consider any two curves of curvature $A B, C D$ of one set, and any two $A C, B D$ of the other set, as shown by the continuous lines of the figure: drawing the consecutive curves as shown by dotted lines, the curve consecutive to $A B$ at an arbitrary (infinitesimal) distance from $A B$, the other three curves may be drawn at such distances that the elements at A, B, and C shall be each of them a square; but this being so, the element at D will not be in general a square, and it is only for certain surfaces that it is so. But if (whatever the curves

of curvature $A B, C D, A D, B C$ may be) the element at D is a square, then it is clear that the whole surface can be, by means of its curves of curvature, divided into infinitesimal squares.

Analytically, if for a given surface the equations of its curves of curvature are expressed in the form $h=f(x, y, z), k=\phi(x, y, z)$; then the coordinates x, y, z can
c. VIII.
be expressed each of them as a function of the parameters h, k, and we have for the element of distance between two consecutive points on the surface

$$
d x^{2}+d y^{2}+d z^{2}=A d h^{2}+C d k^{2},
$$

where A, C are in general each of them a function of h and k. The condition for the divisibility into squares is that the quotient $A \div C$ shall be of the form function h \div function k.

It was shown by M. Bertrand that, in a triple system of orthotomic isothermal surfaces, each surface possesses the property in question of divisibility into squares by means of its curves of curvature. But in such a triple system, each surface of the system is necessarily a quadric; so that the theorem comes to this, that a quadric surface is, by means of its curves of curvature, divisible into squares. The analytical verification is at once effected: taking the equation of the surface to be

$$
\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}=1
$$

then the expressions for the coordinates in terms of the parameters h, k of a curve of curvature are

$$
\begin{aligned}
& x^{2}=\frac{a(a+h)(a+k)}{(a-b)(a-c)} \\
& y^{2}=\frac{b(b+h)(b+k)}{(b-c)(b-a)} \\
& z^{2}=\frac{c(c+h)(c+k)}{(c-a)(c-b)}
\end{aligned}
$$

and we have

$$
4\left(d x^{2}+d y^{2}+d z^{2}\right)=(h-k)\left\{\frac{h d h^{2}}{(a+h)(b+h)(c+h)}-\frac{k d k^{2}}{(a+k)(b+k)(c+k)}\right\} ;
$$

so that $A \div C$ is of the required form.
But there is nothing to show that the property is confined to quadric surfaces; and the question of the determination of the surfaces possessing the property appears to be one of considerable difficulty, and which has not hitherto been examined.

