505.

ON THE SURFACES DIVISIBLE INTO SQUARES BY THEIR CURVES OF CURVATURE.

[From the Proceedings of the London Mathematical Society, vol. Iv. (1871-1873), pp. 120, 121. Read June 13, 1872.]

Professor Cayley gave an account of an investigation recently communicated by him to the Academy of Sciences at Paris. The fundamental theorem is that, if the coordinates x, y, z of a point, on a surface are expressed as functions of two parameters p, q (such expressions, of course replacing the equation of the surface); and if these parameters are such that $p=$ const., $q=$ const. are the equations of the two sets of curves of curvature respectively; then (writing for shortness

$$
\frac{d x}{d p}=x_{1}, \quad \frac{d x}{d q}=x_{2}, \quad \frac{d^{2} x}{d p^{2}}=x_{3}, \quad \frac{d^{2} x}{d p d q}=x_{4}, \quad \frac{d^{2} x}{d q^{2}}=x_{5}
$$

and the like for y, z), the coordinates x, y, z, considered always as functions of p, q, satisfy the equations

$$
\begin{aligned}
& x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0, \\
& \left|\begin{array}{lll}
x_{1}, & y_{1}, & z_{1} \\
x_{2}, & y_{2}, & z_{2} \\
x_{4}, & y_{4}, & z_{4}
\end{array}\right|=0
\end{aligned}
$$

The last equation is equivalent to

$$
\begin{aligned}
& x_{4}+A x_{1}+B x_{2}=0 \\
& y_{4}+A y_{1}+B y_{2}=0 \\
& z_{4}+A z_{1}+B z_{2}=0
\end{aligned}
$$

C. VIII.
and if in the notation of Gauss we write

$$
\begin{aligned}
& x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=E, \\
& x_{2}^{2}+y_{2}^{2}+z_{2}^{2}=G
\end{aligned}
$$

then adding the equations multiplied by x_{1}, y_{1}, z_{1} respectively, and also adding the equations multiplied by x_{2}, y_{2}, z_{2} respectively, we find

$$
A=-\frac{1}{2} \frac{1}{E} \frac{d E}{d q}, \quad B=-\frac{1}{2} \frac{1}{G} \frac{d G}{d q}
$$

and the equations thus become

$$
\begin{aligned}
& 2 x_{4}-\frac{1}{\bar{E}} \frac{d E}{d q} x_{1}-\frac{1}{G} \frac{d G}{d q} x_{2}=0, \\
& \& c . \quad \& c . \quad \& c .
\end{aligned}
$$

which, in fact, agree with the equations (10 bis) in Lamé's "Leçons sur les coordonnées curvilignes," Paris (1859), p. 89. The surface will be divisible into squares if only $E: G$ is the quotient of a function of p by a function of q, or say if

$$
E=\Theta P, \quad G=\Theta Q
$$

where Θ is any function of (p, q), but P and Q are functions of p and q respectively; we then have

$$
\frac{1}{E} \frac{d E}{d q}=\frac{1}{\Theta} \frac{d \Theta}{d q}, \quad \frac{1}{G} \frac{d G}{d p}=\frac{1}{\Theta} \frac{d \Theta}{d p}
$$

and the equations for x, y, z are

$$
\begin{aligned}
& 2 x_{4}-\frac{1}{\Theta} \frac{d \Theta}{d q} x_{1}-\frac{1}{\Theta} \frac{d \Theta}{d p} x_{2}=0 \\
& \& c . \quad \& c . \quad \& c .
\end{aligned}
$$

viz. x, y, z being functions of p, q such that $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0$, and which besides satisfy these equations, or say which each of them satisfy the equation

$$
2 u_{4}-\frac{1}{\Theta} \frac{d \Theta}{d q} u_{1}-\frac{1}{\Theta} \frac{d \Theta}{d p} u_{2}=0
$$

then the values of x, y, z in terms of (p, q) determine a surface which has the property in question.

