521.

ON DR. WIENER'S MODEL OF A CUBIC SURFACE WITH 27 REAL LINES ; AND ON THE CONSTRUCTION OF A DOUBLESIXER.

[From the Transactions of the Cambridge Philosophical Society, vol. xir. Part I. (1873), pp. 366-383. Read May 15, 1871.]

I.

I call to mind that a cubic surface has upon it in general 27 lines which may be all of them real. We may out of the 27 lines (and that in 36 different ways) select 12 lines forming a "double-sixer," viz. denoting such a system of lines by

$$
\begin{aligned}
& a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, \\
& b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6} ;
\end{aligned}
$$

then no two lines a meet each other, nor any two lines b, but each line a meets each line b, except that the two lines of a pair $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots\left(a_{6}, b_{6}\right)$ do not meet each other. And such a system of twelve lines leads at once to the remaining fifteen lines; viz. we have a line c_{12}, the intersection of the planes which contain the pairs of lines $\left(a_{1}, b_{2}\right)$ and $\left(a_{2}, b_{1}\right)$ respectively.

The model is formed of plaster, and is contained within a cube, the edge of which is $=18.2$ inches: the lines a, b, c are coloured blue, yellow, and red respectively; the lines a_{1}, b_{2}, b_{5} being at right angles to each other, in such wise that taking the origin at the centre of the cube, the axes parallel to the edges, and the unit of length $=1.6$ inches, the equations of these three lines are

$$
\begin{array}{ll}
a_{1}, & x=0, y=0, \\
b_{2}, & x=0, \quad z=1, \\
b_{5}, & y=0, z=-1 .
\end{array}
$$

The model is a solid figure bounded by portions of the faces of the cube, and by a portion of the cubic surface, being a surface with three apertures, the collocation of which is not easily explained.

To determine the construction I measured, on the faces of the cube, the coordinates of the two extremities of each of the twelve lines; these were measured in tenths of an inch (taking account of the half division, or twentieth of an inch), and the resulting numbers divided by 16 to reduce them to the before-mentioned unit of 1.6 inches. These reduced values are shewn in the table: knowing then the coordinates of two points on each line, the equations of the several lines became calculable; the true theoretical form of these results-(viz. the form which, but for errors of the model, or of the measurement, they would have assumed)-is

$$
\begin{array}{llll}
b_{1}, & x=B_{1} z+D, & y=B_{1}^{\prime} z+D^{\prime}, & \\
b_{2}, & x=0, & & z=1, \\
b_{3}, & x=B_{3}\left(z+\beta_{3}\right), & y=B_{3}^{\prime}\left(z+\beta_{3}\right), & \\
b_{4}, & x=B_{4}\left(z+\beta_{4}\right), & y=B_{4}^{\prime}\left(z+\beta_{4}\right), & \\
b_{5}, & & y=0, & z=-1, \\
b_{6}, & x=B_{6}\left(z+\beta_{6}\right), & y=B_{6}^{\prime}\left(z+\beta_{6}\right), & \\
a_{1}, & x=0, & y=0, & \\
a_{2}, & x=A_{2} z+C_{2}, & y=A_{2}^{\prime}(z-1), & \\
a_{3}, & x=A_{3}(z+1), & y=A_{3}^{\prime}(z-1), & \\
a_{4}, & x=A_{4}(z+1), & y=A_{4}{ }^{\prime}(z-1), & \\
a_{5}, & x=A_{5}(z+1), & y=A_{5}^{\prime} z+C_{5}^{\prime}, & \\
a_{6}, & x=A_{6}(z+1), & y=A_{6}^{\prime}(z-1) ; &
\end{array}
$$

but in consequence of such errors, the results are not accurately of the form in question.
The faces of the cube being as in the diagram :

the Table is

Equations calculated from the measurements of the model.		$\begin{gathered} A B C D \\ z=-5 \cdot 688 \end{gathered}$	$\begin{gathered} E F G H \\ z=+5 \cdot 688 \end{gathered}$	$\begin{gathered} A E B F \\ y=+5 \cdot 688 \end{gathered}$	$\begin{gathered} B C F G \\ x=-5.688 \end{gathered}$	$\begin{gathered} C D G H \\ y=-5.688 \end{gathered}$	$\begin{gathered} A E D H \\ x=+5 \cdot 688 \end{gathered}$
$\begin{aligned} & x=0 \\ & y=0 \end{aligned}$	a_{1}	$\begin{aligned} & x=0 \\ & y=0 \end{aligned}$	$\begin{aligned} & x=0 \\ & y=0 \end{aligned}$				
$\begin{aligned} & x=-\cdot 780 z-\cdot 187 \\ & y=-\cdot 423 z+\cdot 406 \end{aligned}$	a_{2}	$\begin{aligned} & x=4.250 \\ & y=2.812 \end{aligned}$	$\begin{aligned} & x=-4.625 \\ & y=-2.000 \end{aligned}$				
$\begin{aligned} & x=-654 z-\cdot 656 \\ & y=-\cdot 588 z+\cdot 531 \end{aligned}$	a_{3}	$\begin{aligned} & x=3.062 \\ & y=3.875 \end{aligned}$	$\begin{aligned} & x=-4.375 \\ & y=-2.812 \end{aligned}$				
$\begin{aligned} & x=-2.912 z-2.959 \\ & y=-736 z+.752 \end{aligned}$	a_{4}			\ldots	$\begin{aligned} & y=\cdot 0625 \\ & z=.9375 \end{aligned}$	$\begin{aligned} & y=\quad 2.937 \\ & z=-2.969 \end{aligned}$
$\begin{aligned} & x=1.024 z+1.014 \\ & y=-1.049 z-.277 \end{aligned}$	a_{5}	$\begin{aligned} & x=-4.812 \\ & y=5.688 \end{aligned}$		\ldots	$\begin{aligned} & y=-5.063 \\ & z=4.562 \end{aligned}$
$\begin{aligned} & x=\quad \cdot 264 z+\cdot 187 \\ & y=-\cdot 104 z+\cdot 219 \end{aligned}$	a_{6}	$\begin{aligned} & x=-1 \cdot 313 \\ & y=8125 \end{aligned}$	$\begin{array}{lr} x= & 1.687 \\ y=- & 375 \end{array}$				
$\begin{aligned} & x=-1 \cdot 611 z+\cdot 151 \\ & y=-1 \cdot 438 z+\cdot 288 \end{aligned}$	b_{1}				$\begin{aligned} & y=5.500 \\ & z=-3.625 \end{aligned}$	$\begin{aligned} & y=-4.656 \\ & z=3.437 \end{aligned}$
$\begin{aligned} & x=0 \\ & z=-1 \end{aligned}$	b_{2}			$\begin{aligned} & x=0 \\ & z=-1 \end{aligned}$		$\begin{aligned} & x=0 \\ & z=-1 \end{aligned}$	
$\begin{aligned} & x=-1.352 z-.685 \\ & y=-2.034 z-.984 \end{aligned}$	b_{3}	\ldots	$\begin{aligned} & x=3.750 \\ & z=-3.281 \end{aligned}$	$\begin{aligned} & x=-3.812 \\ & z=2.313 \end{aligned}$	
$\begin{aligned} & x=-.753 z-.0315 \\ & y=-.500 z-.0315 \end{aligned}$	b_{4}	$\begin{aligned} & x=4.250 \\ & y=2.812 \end{aligned}$	$\begin{aligned} & x=-4.313 \\ & y=-2.875 \end{aligned}$				
$\begin{aligned} & y=0 \\ & z=+1 \end{aligned}$	b_{5}				$\begin{aligned} & y=0 \\ & z=1 \end{aligned}$		$\begin{aligned} & y=0 \\ & z=1 \end{aligned}$
$\begin{aligned} & x=1 \cdot 123 z-\cdot 702 \\ & y=-1 \cdot 123 z+\cdot 702 \end{aligned}$	b_{6}		$\begin{aligned} & x=-5.688 \\ & z=-4.438 \end{aligned}$	\ldots	\ldots	$\begin{aligned} & y=-5.688 \\ & z=5.688 \end{aligned}$

I hence calculate the intersections: considering any two lines which ought to intersect, then projecting on the horizontal plane and calculating x, y the coordinates
of the point of intersection of the two projections, these values of x, y substituted in the equations should give the same value of z; but if the lines do not accurately intersect, then the values of z will be different.

Starting from the assumed equations of $b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, a_{1}$, and calculating by the theory the remaining lines, the equations of the b-lines (those of b_{1} being calculated) are

b_{1},	$\begin{aligned} & x=1 \cdot 321 z-310 \\ & y=-1 \cdot 295 z+581 \end{aligned}$
b_{2},	$x=0, z=-1$;
b_{3},	$\begin{aligned} & x=-1.352(z+510) \\ & y=-2034(z+510) \end{aligned}$
b_{4},	$\begin{aligned} & x=-753(z+\cdot 052) \\ & y=-500(z+\cdot 052) \end{aligned}$
b_{5},	$y=0, z=+1$;
b_{6},	$\begin{aligned} & x=1 \cdot 123(z-624) \\ & y=-1 \cdot 123(z-\cdot 624) \end{aligned}$

C. VIII.
and the equations of the a-lines (those of all but a_{1} being calculated) are

$$
\begin{array}{ll}
a_{1}, & x=0, y=0 ; \\
a_{2}, & x=-753 z-091, \\
& y=-\cdot 498(z-1) ; \\
a_{3}, & x=-\cdot 609(z+1), \\
& y=-\cdot 677(z-1) ; \\
a_{4}, & x=-2 \cdot 506(z+1), \\
& y=-\cdot 841(z-1) ; \\
a_{5}, & x=-874(z+1), \\
& y=-\cdot 967 z-288 ; \\
a_{6}, & x=\cdot 170(z+1), \\
& y=-\cdot 071(z-1) ;
\end{array}
$$

and thence for the points of intersection the coordinates are

II.

I have in a paper "On the double-sixers of a cubic surface," Quart. Math. Journal, t. x. (1870), pp. 58-71, [459], obtained analytical expressions for the twelve lines of a double-sixer, and also calculated numerical values, which however (as there remarked) did not come out convenient ones for the construction of a figure. A different mode of treatment since occurred to me, by means of the following equation of the cubic surface

$$
\left(\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}\right)\left(\frac{x z}{\alpha \gamma}-\frac{y w}{\beta \delta}\right)-k\left(\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}-\frac{w}{\delta}\right)\left(\frac{x z}{\alpha^{\prime} \gamma^{\prime}}-\frac{y w}{\beta^{\prime} \delta^{\prime}}\right)=0,
$$

which as will appear is a very convenient one for the purpose. We in fact obtain at once eight lines of the double-sixer; viz. these are

1. $x=0, w=0$,
2. $y=0, z=0$,
3. $\frac{x}{\alpha}-\frac{y}{\beta}=0, \frac{z}{\gamma}-\frac{w}{\delta}=0$,
4. $\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}=0, \frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}=0$,

2'. $x=0, y=0$,
4'. $z=0, w=0$,
5'. $\frac{x}{\alpha^{\prime}}-\frac{w}{\delta^{\prime}}=0, \frac{y}{\beta^{\prime}}-\frac{z}{\gamma^{\prime}}=0$,
6'. $\frac{x}{\alpha}-\frac{w}{\delta}=0, \frac{y}{\beta}-\frac{z}{\gamma}=0$;
and also five lines not belonging to the double-sixer, viz.
12. $x=0,\left(-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}\right) \frac{1}{\beta \delta}-k\left(-\frac{y}{\beta}+\frac{z}{\gamma}-\frac{w}{\delta}\right) \frac{1}{\beta^{\prime} \delta^{\prime}}=0$,
23. $y=0,\left(\frac{x}{\alpha^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}\right) \frac{1}{\alpha \gamma}-k\left(\frac{x}{\alpha}+\frac{z}{\gamma}-\frac{w}{\delta}\right) \frac{1}{\alpha^{\prime} \gamma^{\prime}}=0$,
34. $z=0, \quad\left(\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}-\frac{w}{\delta^{\prime}}\right) \frac{1}{\beta \delta}-k\left(\frac{x}{\alpha}-\frac{y}{\beta}-\frac{w}{\delta}\right) \frac{1}{\beta^{\prime} \delta^{\prime}}=0$,
41. $\quad w=0, \quad\left(\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}\right) \frac{1}{\alpha \gamma}-k\left(\frac{x}{\alpha}-\frac{y}{\beta}+\frac{z}{\gamma}\right) \frac{1}{\alpha^{\prime} \gamma^{\prime}}=0$,
56.

$$
\frac{x}{\alpha}-\frac{y}{\beta}+\frac{z}{\gamma}-\frac{w}{\delta}=0, \quad \frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}=0 .
$$

The remaining lines of the double-sixer are then easily determined; viz. the lines $3,5,6$, and 12 are met by the line 2^{\prime}, and by a second line 1^{\prime}; this, as a line meeting $3,5,6$, will be given by equations of the form

$$
x-\frac{\alpha}{\beta} y=\phi\left(\frac{\delta}{\gamma} z-w\right), \quad x-\frac{\alpha^{\prime}}{\beta^{\prime}} y=\phi\left(\frac{\delta^{\prime}}{\gamma^{\prime}} z-w\right),
$$

and observing that these equations, writing therein $x=0$, give

$$
\frac{z}{\gamma}-\frac{w}{\delta}=-\frac{\alpha}{\beta \delta \phi} y, \quad \frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}=-\frac{\alpha^{\prime}}{\beta^{\prime} \delta^{\prime} \phi} y,
$$

the condition of intersection with the line 12 gives

$$
\phi=-\frac{\alpha^{\prime}-k \alpha}{\delta^{\prime}-k \delta}
$$

which is the value of ϕ in the foregoing equations: and to these we may join the resulting equation

$$
y \gamma \gamma^{\prime}\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right)=z \phi \beta \beta^{\prime}\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right)
$$

Proceeding in like manner for the lines $3^{\prime}, 2,4$, the equations for the remaining four lines of the double-sixer are

$$
\begin{aligned}
\text { 2. } \begin{array}{rlrl}
\phi & =\frac{\alpha^{\prime}-k \alpha}{\beta^{\prime}-k \beta}, & \phi & =\frac{\alpha^{\prime}-k \alpha}{\delta^{\prime}-k \delta}, \\
x-w \frac{\alpha^{\prime}}{\delta^{\prime}} & =\phi\left(y-z \frac{\beta^{\prime}}{\gamma^{\prime}}\right), & x-y \frac{\alpha^{\prime}}{\beta^{\prime}} & =\phi\left(z \frac{\delta^{\prime}}{\gamma^{\prime}}-w\right), \\
x-w \frac{\alpha}{\delta} & =\phi\left(y-z \frac{\beta}{\gamma}\right), & x-y \frac{\alpha}{\beta} & =\phi\left(z \frac{\delta}{\gamma}-w\right), \\
w \gamma \gamma^{\prime}\left(\alpha \delta^{\prime}-\alpha^{\prime} \delta\right) & =z \phi \delta \delta^{\prime}\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right) . & y \gamma \gamma^{\prime}\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =z \phi \beta \beta^{\prime}\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right) . \\
4 . & 3^{\prime} . & \phi & =-\frac{\gamma^{\prime}-k \gamma}{\beta^{\prime}-k \beta}, \\
\gamma^{\prime}-k \gamma \\
\delta^{\prime}-k \delta \\
\phi\left(x \frac{\delta^{\prime}}{\alpha^{\prime}}-w\right) & =y \frac{\gamma^{\prime}}{\beta^{\prime}-z,} & \phi\left(x \frac{\beta^{\prime}}{\alpha^{\prime}}-y\right) & =z-w \frac{\gamma^{\prime}}{\delta^{\prime}}, \\
\phi\left(x \frac{\delta}{\alpha}-w\right) & =y \frac{\gamma}{\beta}-z, & \phi\left(x \frac{\beta}{\alpha}-y\right) & =z-w \frac{\gamma}{\delta}, \\
x \phi \beta \beta^{\prime}\left(\alpha \delta^{\prime}-\alpha^{\prime} \delta\right) & =y \alpha \alpha^{\prime}\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right) . & x \phi \delta \delta^{\prime}\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) & =w \alpha \alpha^{\prime}\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right) .
\end{array}
\end{aligned}
$$

It may be added that:-
In plane $x=0$,
intersection of 1^{\prime} lies on line $z: w=\left(x \beta^{\prime}-\alpha^{\prime} \beta\right) \gamma \gamma^{\prime}: \alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta$,

$$
2 \quad \text { " } \quad y: z=\alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta:\left(\alpha \delta^{\prime}-\alpha^{\prime} \delta\right) \gamma \gamma^{\prime},
$$

and that the line joining these intersections is the line 12.
In plane $y=0$,
intersection of 2 lies on line $x: w=\alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta:-\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right) \delta \delta^{\prime}$,

$$
3^{\prime} \quad " \quad z: w=\alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta:\left(\alpha \beta^{\prime}-\alpha^{\prime} \beta\right) \delta \delta^{\prime}
$$

and that the line joining these intersections is the line 23.

In plane $z=0$,

$$
\begin{aligned}
& \text { intersection of } 3^{\prime} \text { lies on line } x: y=\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right) \alpha \alpha^{\prime}: \alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta, \\
& 4 \quad " \quad x: w=-\left(\beta \gamma^{\prime}-\beta^{\prime} \gamma\right) \alpha \alpha^{\prime}: \alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta \text {, }
\end{aligned}
$$

and that the line joining these intersections is the line 34 .
And in plane $w=0$,
intersection of 4 is on line $y: z=\left(\alpha \delta^{\prime}-\alpha^{\prime} \delta\right) \beta \beta^{\prime}: \alpha_{\gamma} \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta$,

$$
" \quad 1^{\prime} \quad " \quad x: y=\alpha \gamma \beta^{\prime} \delta^{\prime}-\alpha^{\prime} \gamma^{\prime} \beta \delta:\left(\gamma \delta^{\prime}-\gamma^{\prime} \delta\right) \beta \beta^{\prime} \text {, }
$$

and that the line joining these intersections is the line 14.
The equations of the remaining ten lines of the surface may be obtained without difficulty, and also the forty-five triple planes, but I do not stop to effect this; the planes $x=0, y=0, z=0, w=0$, are, it is clear, triple planes, containing the lines $1,2^{\prime}, 12 ; 2^{\prime}, 3,23 ; 3,4^{\prime}, 34$; and $4^{\prime}, 1,41$ respectively.

If, to fix the ideas, the planes $x=0, y=0, z=0, w=0$ are taken to be those of the tetrahedron $A B C D(x=B C D \& c$., as usual), then the edges $A B, B C, C D, D A$ (but not the remaining opposite edges $A C, B D$) will be lines on the surface. Each plane of the tetrahedron, for instance $A B C(w=0)$, is met by the ten lines not contained therein in two vertices A, C, three points on the edge $B A$, three points on the edge $B C$, and two other points, viz. these are the intersections of the plane $A B C$ by the lines 4 and 1'. For the construction of a model it is sufficient to determine the three points on each edge, and the two points, say in the plane $A B C$ and in the plane $D B C(x=0)$ respectively; for then each of the remaining eight lines will be determined as a line joining two points in these two planes respectively. If in the first instance k is considered as a variable parameter, then the two points in the plane $w=0$ are given as the intersections of two fixed lines by a variable line (14) rotating round the fixed point $\frac{x}{\alpha}-\frac{y}{\beta}+\frac{z}{\gamma}=0, \frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}=0$; and the like as regards the two points in the plane $x=0$. By making (with assumed values of the other parameters) the proper drawings for the two planes $w=0, x=0$, it is easy to fix upon a convenient value of the parameter k; and I have in this manner succeeded in making a string model of the double-sixer; viz. the coordinates x, y, z, w are taken to be as the perpendicular distances of the current point from the faces of a regular tetrahedron (the coordinates being positive for an interior point); the values of $\alpha, \beta, \gamma, \delta$ were put $=3,4,5,6$ and those of $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}=1,1,1,1$; the value of k fixed upon as above was $k=-\frac{1}{8}$; this however brings the lines 2 and 4 too close together (viz. the shortest distance between them is not great enough), and also their apparent intersection too close to their intersections with the line 6^{\prime}; and it is probable that a slightly different value of k would be better.

The results just obtained may be exhibited in a compendious form as follows:

1^{\prime} and 2 meet $B C D$ on line $\left(-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}\right) \frac{1}{\beta \delta}-k\left(-\frac{y}{\beta}+\frac{z}{\gamma}-\frac{w}{\delta}\right) \frac{1}{\beta^{\prime} \delta^{\prime}}=0$,
2 and $3^{\prime} " C D A \quad " \quad\left(\frac{x}{\alpha^{\prime}}+\frac{z}{\gamma^{\prime}}-\frac{w}{\delta^{\prime}}\right) \frac{1}{\alpha \gamma}-k\left(\frac{x}{\alpha}+\frac{z}{\gamma}-\frac{w}{\delta}\right) \frac{1}{\alpha^{\prime} \gamma^{\prime}}=0$,
3^{\prime} and $4 \quad D A B \quad, \quad\left(\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}} \quad-\frac{w}{\delta^{\prime}}\right) \frac{1}{\beta \delta}-k\left(\frac{x}{\alpha}-\frac{y}{\beta} \quad-\frac{w}{\delta}\right) \frac{1}{\beta^{\prime} \delta^{\prime}}=0$,
4 and $1^{\prime} " A B C \quad\left(\frac{x}{\alpha^{\prime}}-\frac{y}{\beta^{\prime}}+\frac{z}{\gamma^{\prime}}\right) \frac{1}{\alpha \gamma}-k\left(\frac{x}{\alpha}-\frac{y}{\beta}+\frac{z}{\gamma}\right) \frac{1}{\alpha^{\prime} \gamma^{\prime}}=0$;
or calculating the numerical values from the foregoing assumed data, say

which last four equations serve as a verification.
The outside numerical values are given in the manner most convenient for the construction of a drawing; viz. when the coordinates refer to a point on an edge of the tetrahedron, or say on the side of an equilateral triangle, then taking the length of this edge (or side) to be $=100$, the numerical values are fixed so that the sum of the two coordinates may be $=100$, and the two coordinates thus denote the distances from the extremities of the edge or side: but when the three coordinates belong to a point in the face of the tetrahedron, or say in the plane of an equilateral triangle, then the sum of the coordinates is made $=86.6$, and the three coordinates thus denote the perpendicular distances from the sides of the triangle.

III.

It is possible to find on a cubic curve a double-sixer of points 1, 2, 3, 4, 5, 6 and $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$ such that any six points such as $1,2,3,4^{\prime}, 5^{\prime}, 6^{\prime}$ lie in a conic. In fact considering a cubic surface having upon it the double-sixer of lines $1,2,3,4,5,6$ and $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$, the section by any plane is a cubic curve meeting the lines, say in the points $1,2,3,4,5,6,1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}$: each of the lines $1,2,3$ meets each of the lines $4^{\prime}, 5^{\prime}, 6^{\prime}$, and consequently the six lines lie in a quadric surface: therefore the points $1,2,3,4^{\prime}, 5^{\prime}, 6^{\prime}$ lie in a conic: and so in the other cases; the number of the conics is of course $=60$.

The cubic curve may be a given curve, and six of the points upon it (not being points on a conic) may also be taken to be given; for instance the points $1,2,3,1^{\prime}, 4^{\prime}, 5^{\prime}$. For take through the points 2,3 respectively any two lines 1,2 ; through $1^{\prime}, 4^{\prime}, 5^{\prime}$ respectively the lines $1^{\prime}, 4^{\prime}, 5^{\prime}$ each meeting each of the lines 2,3 : and through 1 a line meeting each of the lines $4^{\prime}, 5^{\prime}$. It is easy to see that a cubic surface may be drawn through the cubic curve and the lines $1,2,3,1^{\prime}, 4^{\prime}, 5^{\prime}$: for the passage through the cubic curve requires 9 conditions; the surface then passes through the point 2 and to make it pass through the line 2 requires 3 conditions; similarly the surface passes through the point 3 , and to make it pass through the line 3 requires 3 conditions. The surface now passes through 1^{\prime} and through the points of intersection of the line 1^{\prime} with the lines 2,3 : to make it pass through the line 1^{\prime} requires 1 condition; similarly to make it pass through the lines $4^{\prime}, 5^{\prime}, 1$ requires in each case 1 condition; or there are in all 19 conditions, so that the cubic surface is completely determined. Take now through the points $1,2,3,4^{\prime}, 5^{\prime}$, a conic meeting the cubic in the point 6^{\prime} : then through the lines $1,2,3,4^{\prime}, 5^{\prime}$ we have a quadric surface passing through this
conic, and therefore through 6^{\prime} : hence through 6^{\prime} we may draw a line 6^{\prime} meeting each of the lines $1,2,3$; and since the cubic surface passes through the point 6^{\prime} and also through the intersections of the line 6^{\prime} with the lines $1,2,3$, it passes through the line 6^{\prime}. We complete in this manner by constructions in the plane of the cubic the system of the twelve points, viz. each new point is given as the intersection of the cubic curve by a conic drawn through five points of the cubic curve. It is then shown as for the point 6^{\prime} and the line 6^{\prime} through it, that through each new point there can be drawn a line denoted by the same number and meeting each of the lines which it ought to meet, and hence lying on the cubic surface: the twelve points are thus the intersections of the plane of the cubic curve by the twelve lines of the double-sixer; and it follows that the six points which ought to lie in a conic (in every case where such conic has not been used in the plane construction) do actually lie in a conic.

I was anxious to construct such a double-sixer of points on a cubic curve; for this purpose I take the equation of the curve to be $y^{2}=\left(1-\frac{x}{a}\right)\left(1-\frac{x}{b}\right)\left(1-\frac{x}{c}\right)$, or say for shortness $y^{2}=X$; where, to fix the ideas, a, b are supposed to be positive, a greater than b; and c to be negative.

The cubic curve is thus a parabola symmetrical in regard to the axis of x, and consisting of a loop and infinite branch; and I take upon it the points $1,2,3,1^{\prime}, 4^{\prime}, 5^{\prime}$

as shown in the figure, viz. the coordinates of these points are as stated in the Table, where m is the x coordinate, and $\sqrt{M}=\sqrt{\left(1-\frac{m}{a}\right)\left(1-\frac{m}{b}\right)\left(1-\frac{m}{c}\right)}$ and so in other cases, $\sqrt{14}=3.74165$.

	x	y	x	
1	m	\sqrt{M}	6	y
2	0	1	0	0
3	0	-1	$2-\frac{75}{1369}=1 \cdot 945$	$\sqrt{14}=3 \cdot 742$
4	θ	$\sqrt{\Theta}$	$-1+\frac{75}{361}=-0 \cdot 792$	-1
5	ϕ	$\sqrt{\Phi}$	$-\frac{2280}{(37)^{3}} \sqrt{14}=-\cdot 168$	
6	m_{1}	$-\sqrt{M_{1}}$	$\frac{13}{3}=4 \cdot 333$	$\frac{1110}{(19)^{3}} \sqrt{14}=\cdot 606$
1^{\prime}	m	$-\sqrt{M}$	6	$-\frac{4}{9} \sqrt{14}=-1 \cdot 641$
2^{\prime}	σ	$\sqrt{\Sigma}$	$-\frac{1560(14-\sqrt{14})}{(31 \sqrt{14}-5)^{2}}=1 \cdot 299$	$\cdots=+676$
3^{\prime}	τ	\sqrt{T}	$-\frac{1560(14+\sqrt{14})}{(31 \sqrt{14}+5)^{2}}=1 \cdot 887$	$\cdots=+\cdot 247$
4^{\prime}	c	0	-1	$-\sqrt{14}=-3 \cdot 742$
5^{\prime}	b	0	2	0
6^{\prime}	m_{1}	$\sqrt{M_{1}}$	$\frac{13}{3}=4 \cdot 333$	0

The numerical values belong to the curve $y^{2}=\left(1-\frac{x}{3}\right)\left(1-\frac{x}{2}\right)(1+x)$ and to $m=6$.
Starting with the points $1,2,3,1^{\prime}, 4^{\prime}, 5^{\prime}$ we have to find the remaining points $6^{\prime}, 6,4,5,2^{\prime}, 3^{\prime}$.

Point 6^{\prime} by means of the conic $1234^{\prime} 5^{\prime} 6^{\prime}$, as follows.
The equation of the conic is

$$
(x-b)(x-c)-b c y^{2}+k x y=0,\left(2,3,4^{\prime}, 5^{\prime}\right)
$$

and making this pass through the point $1(x=m, y=\sqrt{M})$ we find

$$
(m-b)(m-c)+k a \sqrt{M}=0
$$

Hence taking the coordinates of 6^{\prime} to be $m_{1}, \sqrt{M_{1}}$, we have

$$
\left(m_{1}-b\right)\left(m_{1}-c\right)+k a \sqrt{M_{1}}=0, \quad\left(6^{\prime}\right)
$$

and thence

$$
\frac{\sqrt{M_{1}}}{\sqrt{M}}=\frac{\left(m_{1}-b\right)\left(m_{1}-c\right)}{(m-b)(m-c)}=\frac{M_{1}}{\bar{M}} \frac{(m-a)}{\left(m_{1}-a\right)}
$$

that is,

$$
\frac{\sqrt{M_{1}}}{\sqrt{M}}=\frac{\left(m_{1}-b\right)\left(m_{1}-c\right)}{(m-b)(m-c)}=\frac{m_{1}-a}{m-a}
$$

We have thus for m, a quadric equation satisfied by $m=m_{1}$, so that throwing out the factor $m-m_{1}$, the equation is a linear one, viz. we find

$$
m_{1}=\frac{m a-a b-a c+b c}{m-a}
$$

or, what is the same thing,

$$
m_{1}-a=\frac{(a-\dot{b})(a-c)}{m-a}
$$

and thence also

$$
\sqrt{M_{1}}=\frac{(a-b)(a-c)}{(m-a)^{2}} \sqrt{M},
$$

viz. $\sqrt{M_{1}}$ is determined rationally in terms of m, \sqrt{M}; this is of course as it should be, since the point 6^{\prime} is uniquely determinate.

Point 6 by means of the conic $2361^{\prime} 4^{\prime} 5^{\prime}$.
In precisely the same manner the coordinates are $m_{1},-\sqrt{M_{1}}$, where $m_{1}, \sqrt{ } M_{1}$, denote the same quantities as before.

Point 4 by means of the conic $2341^{\prime} 5^{\prime} 6^{\prime}$.
The equation of the conic is

$$
\begin{equation*}
F x+G y+H=\frac{1-y^{2}}{x} \tag{2,3}
\end{equation*}
$$

where

$$
\begin{align*}
& F b=\frac{1}{b} \\
& F m_{1}+G \sqrt{M_{1}}+H=\frac{1-M_{1}}{m_{1}} \\
& F m-G \sqrt{M}+H=\frac{1-M}{m}
\end{align*}
$$

which give without difficulty

$$
a b c F=-a-c+P
$$

$$
\begin{aligned}
\sqrt{M} a b c G & =(m-b)(-m+P) \\
a b c H & =a b+a c+b c-b P
\end{aligned}
$$

where $P=2 a-c-\frac{2(a-c)(b-c)}{m+m_{1}-2 c}$, a quantity which will presently be expressed in terms of m only.

And then

$$
F \theta+G \sqrt{\Theta}+H=\frac{1-\Theta}{\theta}
$$

or say

$$
\begin{aligned}
F(\theta-b)+G \sqrt{\Theta} & =\frac{1-\Theta}{\theta}-\frac{1}{b} \\
& =-(\theta-b)\left(\frac{1}{a b}+\frac{1}{b c}-\frac{\theta}{a b c}\right)
\end{aligned}
$$

that is,

$$
(\theta-b)(a b c F+a+c-\theta)+G a b c \sqrt{\Theta}=0
$$

viz. that is,

$$
(\theta-b)(P-\theta)+(m-b) \frac{\sqrt{\Theta}}{\sqrt{M}}(P-m)=0
$$

or, rationalising and throwing out the factor $\theta-b$, this is

$$
(\theta-b)(\theta-P)^{2}-(m-b)(m-P)^{2} \frac{(\theta-a)(\theta-b)}{(m-a)(m-b)}=0
$$

which is a cubic equation satisfied by $\theta=m$ and $\theta=m_{1}$; so that throwing out the factors $\theta-m, \theta-m_{1}$ we have for θ a linear equation.

Putting for shortness

$$
\begin{aligned}
& A=(m-a)^{2}-(a-b)(a-c) \\
& B=(m-b)^{2}-(b-c)(b-a) \\
& C=(m-c)^{2}-(c-a)(c-b)
\end{aligned}
$$

the value of θ may be expressed in the forms

$$
\theta-a=\frac{B^{2}}{C^{2}}(c-a), \quad \theta-b=\frac{A^{2}}{C^{2}}(c-b), \quad \theta-c=\frac{4(m-a)(m-b)(m-c)(b-c)(a-c)}{C^{2}}
$$

We have moreover

$$
P-c=\frac{2(a-c)(m-b)(m-c)}{C}, \quad P-m=-\frac{(m-c) A}{C}
$$

equations which express P in terms of m only; also

$$
\theta-P=\frac{-2(a-c)(m-b)(m-c) B}{C^{2}}
$$

and then

$$
\sqrt{\Theta}=-\sqrt{M} \frac{\theta-b}{m-b} \frac{P-\theta}{P-m}
$$

whence

$$
\sqrt{\Theta}=2 \sqrt{M}(b-c)(c-a) \frac{A B}{C^{3}}
$$

so that $\theta, \sqrt{\Theta}$ are now determined.

Point 5 by means of the conic $2351^{\prime} 4^{\prime} 6^{\prime}$.
The conic is

$$
\begin{equation*}
F x+G y+H=\frac{1-y^{2}}{x}, \tag{2,3}
\end{equation*}
$$

where

$$
\begin{align*}
& F c . \quad+H=\frac{1}{c}, \\
& F m_{1}+G \sqrt{M_{1}}+H=\frac{1-M_{1}}{m_{1}}, \\
& F m-G \sqrt{M}+H=\frac{1-M}{m},
\end{align*}
$$

Everything is the same as for the point 4 except that b, c are interchanged: hence writing Q instead of P, and using A, B, C to denote as before, we have

$$
\begin{aligned}
a b c F & =-a-b+Q, \\
\sqrt{M} a b c G & =(m-c)(-m+Q), \\
a b c H & =a b+a c+b c-c Q
\end{aligned}
$$

and

$$
\begin{aligned}
& \phi-a=\frac{C^{2}(b-a)}{B^{2}}, \\
& \phi-b=\frac{4(m-a)(m-b)(m-c)(c-b)(a-b)}{B^{2}}, \\
& \phi-c=\frac{A^{2}(b-c)}{B^{2}}, \\
& Q-b=\frac{2(m-b)(m-c)(a-b)}{B}, \\
& Q-m=-\frac{A(m-b)}{B}, \\
& \phi-Q=-\frac{2(m-b)(m-c) C(a-b)}{B^{2}},
\end{aligned}
$$

and

$$
\sqrt{\Phi}=2 \sqrt{M}(c-b)(b-a) \frac{A C}{B^{3}}
$$

which determine $\phi, \sqrt{\Phi}$.
Point 3^{\prime} by means of the conic $1263^{\prime} 4^{\prime} 5^{\prime}$.
The conic is

$$
F x+G y+H=\frac{(x-b)(x-c)}{y}, \quad\left(4^{\prime}, 5^{\prime}\right)
$$

and we have

$$
\begin{gather*}
G+H=b c \tag{2}\\
F m+G \sqrt{M}+H=\frac{(m-b)(m-c)}{\sqrt{M}} \tag{1}\\
F m_{1}-G \sqrt{M_{1}}+H=\frac{\left(m_{1}-b\right)\left(m_{1}-c\right)}{-\sqrt{M_{1}}} \tag{6}
\end{gather*}
$$

Eliminating F, we have

$$
G\left(m_{1} \sqrt{M}+m \sqrt{M_{1}}\right)+H\left(m-m_{1}\right)=\frac{m_{1}(m-b)(m-c)}{\sqrt{M}}+\frac{m\left(m_{1}-b\right)\left(m_{1}-c\right)}{\sqrt{M_{1}}}
$$

which is easily reduced first to

$$
G \frac{2 m m_{1}-a\left(m+m_{1}\right)}{(m-a) \sqrt{M}}+H\left(m-m_{1}\right)=\left(m+m_{1}\right) \frac{(m-a)(m-b)}{\sqrt{M}}
$$

and then to

$$
G\{a A+2 m(a-b)(a-c)\}-H \frac{(m-a) A}{\sqrt{M}}+a b c\{-A+2 m(m-a)\}_{0}^{\prime}=0
$$

and combining herewith $G+H=b c$, we have

$$
\begin{aligned}
& H=\frac{2 b c m[a(m-a)+(a-b)(a-c)]}{a A+2 m(a-b)(a-c)+\frac{(m-a) A}{\sqrt{M}}} \\
& G=b c-H
\end{aligned}
$$

and we have then

$$
F\left(m+m_{1}\right)+G\left(\sqrt{M}-\sqrt{M_{1}}\right)+2 H=0
$$

that is,

$$
F\{2 m(m-a)-A\}+G \frac{A \sqrt{M}}{m-a}+2 H(m-a)=0
$$

or, what is the same thing,

$$
F\{2 m(m-a)-A\}=-b c \frac{A \sqrt{M}}{m-a}-H\left\{2(m-a)-\frac{A \sqrt{M}}{m-a}\right\}
$$

We then have

$$
\begin{aligned}
F x+H & =y\left(-G+\frac{(x-b)(x-c)}{y^{2}}\right) \\
& =y\left(-G-\frac{a b c}{x-a}\right)=-\frac{y(H a+G x)}{x-a}
\end{aligned}
$$

that is,

$$
(F x+H)^{2}=-\frac{(x-b)(x-c)}{a b c(x-a)}(H a+G x)^{2}
$$

or

$$
a b c(x-a)(F x+H)^{2}+(x-b)(x-c)(G x+H a)^{2}=0 .
$$

Developing and throwing out the factor x, this is

$$
\begin{aligned}
& G^{2} x^{3} \\
+ & \left\{2 a G H-(b+c) G^{2}+a b c F^{2}\right\} x^{2} \\
+ & \left\{a^{2} H^{2}-2 a(b+c) G H+b c G^{2}+a b c\left(2 F H-a F^{2}\right)\right\} x \\
+ & \left\{-(b+c) a^{2} H^{2}+2 a b c G H+a b c\left(H^{2}-2 a F H\right)\right\}=0 .
\end{aligned}
$$

This must be satisfied by $x=m, x=m_{1}$; hence the left hand must be $=G^{2}(x-m)\left(x-m_{1}\right)(x-\sigma)$, or equating the constant terms we have

$$
G^{2} m m_{1} \sigma=a H\{-2 a b c F+2 b c G+(b c-a b-a c) H\}
$$

which gives σ; and we then have

$$
\sqrt{\Sigma}=-\frac{\sigma-a}{G \sigma+H a}(F \sigma+H)
$$

but I have not attempted the further reduction of these expressions.
The numerical values for the example are

$$
3 F=\frac{-140+62 \sqrt{14}}{5+21 \sqrt{14}}, \quad G=\frac{-10+62 \sqrt{14}}{5+21 \sqrt{14}}, \quad H=\frac{-104 \sqrt{14}}{5+\sqrt{14}},
$$

whence σ as in the Table.
Point 2^{\prime} by means of the conic $1362^{\prime} 4^{\prime} 5^{\prime}$.
The equation of the conic is

$$
F x+G y+H=\frac{(x-b)(x-c)}{y}
$$

where

$$
\begin{align*}
-G+H & =-b c \tag{3}\\
F m+G \sqrt{M}+H & =\frac{(m-b)(m-c)}{\sqrt{M}} \tag{1}\\
F m_{1}-G \sqrt{M_{1}}+H & =\frac{\left(m_{1}-b\right)\left(m_{1}-c\right)}{-\sqrt{M_{1}}} \tag{6}
\end{align*}
$$

which are the same as for point 3^{\prime}, if only we reverse the signs of F, H and $\sqrt{M}, \sqrt{M_{1}}$.

Hence the formulæ are

$$
\begin{aligned}
H & =-\frac{2 b c m[a(m-a)+(a-b)(a-c)]}{a A+2 m(a-b)(a-c)-\frac{(m-a) A}{\sqrt{M}}}, \\
G & =b c+H, \\
F\{2 m(m-a)-A\} & =-b c \frac{A \sqrt{M}}{m-a}-H\left\{2(m-a)+\frac{A \sqrt{M}}{m-a}\right\}, \\
G^{2} m m_{1} \tau & =a H\{-2 a b c F-2 b c G+(b c-a b-a c) H\},
\end{aligned}
$$

which gives τ; and then

$$
\sqrt{T}=\frac{(\tau-a)}{G \tau-H a}(F \tau+H)
$$

which are also unreduced.
The numerical values are

$$
3 F=\frac{140+62 \sqrt{14}}{5-21 \sqrt{14}}, \quad G=\frac{-10-62 \sqrt{14}}{5-21 \sqrt{14}}, \quad H=\frac{-104 \sqrt{14}}{5-21 \sqrt{14}},
$$

whence τ as in the Table.

